Green's relations and the relation \mathcal{N} in Γ-semigroups

Niovi Kehayopulu

Abstract

Let M be a Γ-semigroup. For a prime ideal I of M, let σ_{I} be the relation on M consisted of the pairs (x, y), where x and y are elements of M such that either both x and y are elements of I or both x and y are not elements of I. Let \mathcal{N} be the semilattice congruence on M defined by $x \mathcal{N} y$ if and only if the filters of M generated by x and y coincide. Then the set \mathcal{N} is the intersection of the relations σ_{I}, where I runs over the prime ideals of M. If $\mathcal{R}, \mathcal{L}, \mathcal{I}, \mathcal{H}$ are the Green's relations of M and \mathcal{A} the set of right ideals, \mathcal{B} the set of left ideals and \mathcal{I} the set of ideals of M, then we have $\mathcal{H} \subseteq \mathcal{R} \subseteq \mathcal{I} \subseteq \mathcal{N}, \mathcal{H} \subseteq \mathcal{L} \subseteq \mathcal{I} \subseteq \mathcal{N}$ and $\mathcal{L} \circ \mathcal{R} \subseteq \mathcal{I}, \mathcal{R}=\bigcap_{I \in \mathcal{A}} \sigma_{I}$, $\mathcal{L}=\bigcap_{I x \in \mathcal{B}} \sigma_{I}, \quad \mathcal{I}=\bigcap_{I \in \mathcal{M}} \sigma_{I}$. The relation $\mathcal{R} \circ \mathcal{L}(=\mathcal{L} \circ \mathcal{R})$ is the least -with respect to the inclusion relation- equivalence relation on M containing both \mathcal{R} and \mathcal{L}. Finally, we characterize the Γ-semigroups which have only one \mathcal{L} (or \mathcal{R})-class or only one \mathcal{I}-class.

1. Introduction and prerequisites

An ideal I of a semigroup S is called completely prime if for any $a, b \in I, a b \in I$ implies that either $a \in I$ or $b \in I$. Every semilattice congruence on a semigroup S is the intersection of congruences σ_{I} where I is a completely prime ideal and for all $x, y \in S$, we have $x \sigma_{I} y$ if and only if $x, y \in I$ or $x, y \notin I[6]$. For semigroups, ordered semigroups or ordered Γ-semigroups, we always use the terminology weakly prime, prime (subset) instead of the terminology prime, completely prime given by Petrich. For Green's relations in semigroups we refer to $[1,6]$. For Green's relations in ordered semigroups, we refer to [2]. In the present paper we mainly present the analogous results of [2] in case of Γ-semigroups.

The concept of a Γ-semigroup has been introduced by M.K. Sen in 1981 as follows: If S and Γ are two nonempty sets, S is called a Γ-semigroup if the following assertions are satisfied: (1) $a \alpha b \in S$ and $\alpha a \beta \in \Gamma$ and (2) $(a \alpha b) \beta c=a(\alpha b \beta) c=$ $a \alpha(b \beta c)$ for all $a, b, c \in S$ and all $\alpha, \beta \in \Gamma[8]$. In 1986, M.K. Sen and N.K. Saha changed that definition and gave the following definition of a Γ-semigroup: Given two nonempty sets M and Γ, M is called a Γ-semigroup if (1) $a \alpha b \in M$ and (2) $(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in M$ and all $\alpha, \beta \in \Gamma[9]$. Later, in [7], Saha calls a nonempty set S a Γ-semigroup ($\Gamma \neq \emptyset$) if there is a mapping

[^0]$S \times \Gamma \times S \rightarrow S \mid(a, \gamma, b) \rightarrow a \gamma b$ such that $(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in S$ and all $\alpha, \beta \in \Gamma$, and remarks that the most usual semigroup concepts, in particular regular and inverse Γ-semigroups have their analogous in Γ-semigroups. Although it was very convenient to work on the definition by Sen and Saha using binary relations [9], the uniqueness condition was missing from that definition. Which means that in an expression of the form, say $a \gamma b \mu c \xi d \rho e$ or $a \Gamma b \Gamma c \Gamma d \Gamma e$, it was not known where to put the parentheses. In that sense, the definition of a Γ-semigroup given by Saha in [7] was the right one. However, adding the uniqueness condition in the definition given by Sen and Saha in [9], we do not need to define it via mappings. The revised version of the definition by Sen and Saha in [9] has been introduced by Kehayopulu in [3] as follows:

For two nonempty sets M and Γ, define $M \Gamma M$ as the set of all elements of the form $m_{1} \gamma m_{2}$, where $m_{1}, m_{2} \in M, \gamma \in \Gamma$. That is,

$$
M \Gamma M:=\left\{m_{1} \gamma m_{2} \mid m_{1}, m_{2} \in M, \gamma \in \Gamma\right\} .
$$

Definition 1.1. Let M and Γ be two nonempty sets. The set M is called a Γ-semigroup if the following assertions are satisfied:
(1) $M \Gamma M \subseteq M$.
(2) If $m_{1}, m_{2}, m_{3}, m_{4} \in M, \gamma_{1}, \gamma_{2} \in \Gamma$ such that $m_{1}=m_{3}, \gamma_{1}=\gamma_{2}$ and $m_{2}=m_{4}$, then $m_{1} \gamma_{1} m_{2}=m_{3} \gamma_{2} m_{4}$.
(3) $\left(m_{1} \gamma_{1} m_{2}\right) \gamma_{2} m_{3}=m_{1} \gamma_{1}\left(m_{2} \gamma_{2} m_{3}\right)$ for all $m_{1}, m_{2}, m_{3} \in M$ and $\gamma_{1}, \gamma_{2} \in \Gamma$.

In other words, Γ is a set of binary operations on M such that:

$$
\left(m_{1} \gamma_{1} m_{2}\right) \gamma_{2} m_{3}=m_{1} \gamma_{1}\left(m_{2} \gamma_{2} m_{3}\right) \text { for all } m_{1}, m_{2}, m_{3} \in M \text { and all } \gamma_{1}, \gamma_{2} \in \Gamma .
$$

According to that "associativity" relation, each of the elements $\left(m_{1} \gamma_{1} m_{2}\right) \gamma_{2} m_{3}$, and $m_{1} \gamma_{1}\left(m_{2} \gamma_{2} m_{3}\right)$ is denoted by $m_{1} \gamma_{1} m_{2} \gamma_{2} m_{3}$.

Using conditions (1) - (3) one can prove that for an element of M of the form

$$
m_{1} \gamma_{1} m_{2} \gamma_{2} m_{3} \gamma_{3} m_{4} \ldots \gamma_{n-1} m_{n} \gamma_{n} m_{n+1}
$$

or a subset of M of the form

$$
m_{1} \Gamma_{1} m_{2} \Gamma_{2} m_{3} \Gamma_{3} m_{4} \ldots \Gamma_{n-1} m_{n} \Gamma_{n} m_{n+1}
$$

one can put a parenthesis in any expression beginning with some m_{i} and ending in some $m_{j}[3,4,5]$.

The example below based on Definition 1.1 shows what a Γ-semigroup is.
Example 1.2. [4] Consider the two-elements set $M:=\{a, b\}$, and let $\Gamma=\{\gamma, \mu\}$ be the set of two binary operations on M defined in the tables below:

γ	a	b
a	a	b
b	b	a

μ	a	b
a	b	a
b	a	b

One can check that $(x \rho y) \omega z=x \rho(y \omega z)$ for all $x, y, z \in M$ and all $\rho, \omega \in \Gamma$. So, M is a Γ-semigroup.
Example 1.3. [5] Consider the set $M:=\{a, b, c, d, e\}$, and let $\Gamma=\{\gamma, \mu\}$ be the set of two binary operations on M defined in the tables below:

γ	a	b	c	d	e
a	a	b	c	d	e
b	b	c	d	e	a
c	c	d	e	a	b
d	d	e	a	b	c
e	e	a	b	c	d

μ	a	b	c	d	e
a	b	c	d	e	a
b	c	d	e	a	b
c	d	e	a	b	c
d	e	a	b	c	d
e	a	b	c	d	e

Since $(x \rho y) \omega z=x \rho(y \omega z)$ for all $x, y, z \in M$ and all $\rho, \omega \in \Gamma, M$ is a Γ-semigroup.
Let now M be a Γ-semigroup. A nonempty subset A of M is called a subsemigroup of M if $A \Gamma A \subseteq A$, that is, if $a \gamma b \in A$ for every $a, b \in A$ and every $\gamma \in \Gamma$. A nonempty subset A of M is called a left ideal of M if $M \Gamma A \subseteq A$, that is, if $m \in M, \gamma \in \Gamma$ and $a \in A$, implies $m \gamma a \in A$. It is called a right ideal of M if $A \Gamma M \subseteq A$, that is, if $a \in A, \gamma \in \Gamma$ and $m \in M$, implies $a \gamma m \in A . A$ is called an ideal of M if it is both a left and a right ideal of M. For an element a of M, we denote by $R(a), L(a), I(a)$, the right ideal, left ideal and the ideal of M, respectively, generated by a, and we have $R(a)=a \cup a \Gamma M, L(a)=a \cup M \Gamma a$, $I(a)=a \cup a \Gamma M \cup M \Gamma a \cup M \Gamma a \Gamma M$. An ideal A of M is called a prime ideal of M if $a, b \in M$ and $\gamma \in \Gamma$ such that $a \gamma b \in A$, then $a \in A$ or $b \in A$. Equivalently, if B and C are subsets of M such that $B \neq \emptyset$ (or $C \neq \emptyset$), $\gamma \in \Gamma$ and $B \gamma C \subseteq A$, then $B \subseteq A$ or $C \subseteq A$. A subsemigroup F of M is called a filter of M if $a, b \in M$ and $\gamma \in \Gamma$ such that $a \gamma b \in F$, implies $a \in F$ and $b \in F$. For an element a of M, we denote by $N(a)$ the filter of M generated by a and by \mathcal{N} the equivalence relation on M defined by $\mathcal{N}:=\{(x, y) \mid N(x)=N(y)\}$. An ideal A of M is a prime ideal of M if and only if $M \backslash A=\emptyset$ or $M \backslash A$ is a subsemigroup of M. A nonempty subset F of M is a filter of M if and only if $M \backslash F=\emptyset$ or $M \backslash F$ is a prime ideal of M. An equivalence relation σ on M is called a left congruence on M if $(a, b) \in \sigma$ implies $(c \gamma a, c \gamma b) \in \sigma$ for every $c \in M$ and every $\gamma \in \Gamma$. It is called a right congruence on M if $(a, b) \in \sigma$ implies $(a \gamma c, b \gamma c) \in \sigma$ for every $c \in M$ and every $\gamma \in \Gamma$. It is called a congruence on M if it is both a left and a right congruence on M. A semilattice congruence σ is a congruence on M such that
(1) $(a \gamma a, a) \in \sigma$ for every $a \in M$ and every $\gamma \in \Gamma$ and
(2) $(a \gamma b, b \gamma a) \in \sigma$ for every $a, b \in M$ and every $\gamma \in \Gamma$.

The relation \mathcal{N} defined above is a semilattice congruence on M.

2. Main results

For a Γ-semigroup M, the Green's relations $\mathcal{R}, \mathcal{L}, \mathcal{I}, \mathcal{H}$ are the equivalence relations on M defined by:

$$
\mathcal{R}=\{(x, y) \mid R(x)=R(y)\}, \quad \mathcal{L}=\{(x, y) \mid L(x)=L(y)\}
$$

$$
\mathcal{I}=\{(x, y) \mid I(x)=I(y)\}, \quad \mathcal{H}=\mathcal{R} \cap \mathcal{L} .
$$

The relation \mathcal{R} is a left congruence and the relation \mathcal{L} is a right congruence on M. Let now M be a Γ-semigroup. For a subset I of M we denote by σ_{I} the relation on M defined by

$$
\sigma_{I}=\{(x, y) \mid x, y \in I \text { or } x, y \notin I\} .
$$

Exactly as in case of semigroups, for a Γ - semigroup the following holds:
Lemma 2.1. Let M be a Γ-semigroup. If F is a filter of M, then
($\star) \quad M \backslash F=\emptyset$ or $M \backslash F$ is a prime ideal of M.
In particular, any nonempty subset F of M satisfying (\star) is a filter of M.
Proposition 2.2. Let M be a Γ-semigroup and I a prime ideal of M. Then the set σ_{I} is a semilattice congruence on M.

Proof. Clearly σ_{I} is a relation on M which is reflexive and symmetric. Let $(a, b) \in$ σ_{I} and $(b, c) \in \sigma_{I}$. Then $a, b \in I$ or $a, b \notin I$ and $b, c \in I$ or $b, c \notin I$. If $a, b \in I$ and $b, c \in I$, then $a, c \in I$, so $(a, c) \in \sigma_{I}$. The case $a, b \in I$ and $b, c \notin I$ is impossible and so is the case $a, b \notin I$ and $b, c \in I$. If $a, b \notin I$ and $b, c \notin I$, then $a, c \notin I$, then $(a, c) \in \sigma_{I}$, and σ_{I} is transitive. Let $(a, b) \in \sigma_{I}, c \in M$ and $\gamma \in \Gamma$. Then $(a \gamma c, b \gamma c) \in \sigma_{I}$. Indeed: If $a, b \in I$ then, since I is an ideal of M, we have $a \gamma c, b \gamma c \in I$, so $(a \gamma c, b \gamma c) \in \sigma_{I}$. Let $a, b \notin I$. If $c \in I$ then, since I is an ideal of M, we have $a \gamma c, b \gamma c \in I$, so $(a \gamma c, b \gamma c) \in \sigma_{I}$. If $c \notin I$, then $a \gamma c, b \gamma c \notin I$. This is because if $a \gamma b \in I$ then, since I is a prime ideal of M, we have $a \in I$ or $c \in I$ which is impossible. For $b \gamma c \in I$, we also get a contradiction. Thus we obtain $(a \gamma c, b \gamma c) \in \sigma_{I}$, and σ_{I} is a right congruence on M. Similarly σ_{I} is a left congruence on M, so σ_{I} is a congruence on M.
σ_{I} is a semilattice congruence on M. In fact: Let $a \in M$ and $\gamma \in \Gamma$. Then $(a \gamma a, a) \in \sigma_{I}$. Indeed: If $a \notin I$, then $a \gamma a \notin I$. This is because if $a \gamma a \in I$ then, since I is a prime ideal of M, we have $a \in I$ which is impossible. Since $a, a \gamma a \notin I$, we have $(a, a \gamma a) \in \sigma_{I}$. If $a \in I$ then, since I is an ideal of M, we have $a \gamma a \in I$, so $(a, a \gamma a) \in \sigma_{I}$. Let now $a, b \in M$ and $\gamma \in \Gamma$. Then $(a \gamma b, b \gamma a) \in \sigma_{I}$. In fact: If $a \gamma b \in I$ then, since I is a prime ideal of M, we have $a \in I$ or $b \in I$. Then, since I is an ideal of M, we have $b \gamma a \in I$. Since $a \gamma b, b \gamma a \in I$, we have $(a \gamma b, b \gamma a) \in \sigma_{I}$. If $a \gamma b \notin I$, then $b \gamma a \notin I$. This is because if $b \gamma a \in I$ then, since I is a prime ideal of M, we have $b \in I$ or $a \in I$. Since I is an ideal of M, we have $a \gamma b \in I$ which is impossible. Since $a \gamma b, b \gamma a \notin I$, we have $(a \gamma b, b \gamma a) \in \sigma_{I}$.

Theorem 2.3. Let M be a Γ-semigroup and $\mathcal{P}(M)$ the set of prime ideals of M. Then

$$
\mathcal{N}=\bigcap_{I \in \mathcal{P}(M)} \sigma_{I} .
$$

Proof. $\mathcal{N} \subseteq \sigma_{I}$ for every $I \in \mathcal{P}(M)$. In fact: Let $(a, b) \in \mathcal{N}$ and $I \in \mathcal{P}(M)$. Then $(a, b) \in \sigma_{I}$. Indeed: Let $(a, b) \notin \sigma_{I}$. Then $a \in I$ and $b \notin I$ or $a \notin I$ and $b \in I$. Let $a \in I$ and $b \notin I$. Since $b \in M \backslash I$, we have $\emptyset \neq M \backslash I \subseteq M$. Since
$M \backslash(M \backslash I)=I$ and I is a prime ideal of M, the set $M \backslash(M \backslash I)$ is a prime ideal of M. By Lemma 2.1, $M \backslash I$ is a filter of M. Since $b \in M \backslash I$, we have $N(b) \subseteq M \backslash I$. Since $N(a)=N(b)$, we have $a \in M \backslash I$ which is impossible. If $a \notin I$ and $b \in I$, we also get a contradiction.

Let now $(a, b) \in \sigma_{I}$ for every $I \in \mathcal{P}(M)$. Then $(a, b) \in \mathcal{N}$. In fact: Let $(a, b) \notin \mathcal{N}$. Then $N(a) \neq N(b)$, from which $a \notin N(b)$ or $b \notin N(a)$ (This is because if $a \in N(b)$ and $b \in N(a)$, then $N(a) \subseteq N(b) \subseteq N(a)$, so $N(a)=N(b))$. Let $a \notin N(b)$. Then $a \in M \backslash N(b)$. Since $b \in N(b), b \notin M \backslash N(b)$. Since $a \in M \backslash N(b)$ and $b \notin M \backslash N(b)$, we have $(a, b) \notin \sigma_{M \backslash N(b)}$. Since $N(b)$ is a filter of M and $M \backslash N(b) \neq \emptyset$, by Lemma 2.1, $M \backslash N(b) \in \mathcal{P}(M)$. We have $M \backslash N(b) \in \mathcal{P}(M)$ and $(a, b) \notin \sigma_{M \backslash N(b)}$ which is impossible. If $b \notin N(a)$, by symmetry we get a contradiction.

For two relations ρ and σ on a set X, their composition $\rho \circ \sigma$ is defined by

$$
\rho \circ \sigma=\{(a, b) \mid \exists x \in X:(a, x) \in \rho \text { and }(x, b) \in \sigma\} .
$$

If \mathcal{B}_{X} is the set of relations on X, then the composition " \circ " is an associative operation on \mathcal{B}_{X}, and so (\mathcal{B}_{X}, \circ) is a semigroup.
Theorem 2.4. Let M be a Γ-semigroup, \mathcal{A} the set of right ideals, \mathcal{B} the set of left ideals and \mathcal{M} the set of ideals of M. Then we have
(1) $\mathcal{R}=\bigcap_{I \in \mathcal{A}} \sigma_{I}, \quad \mathcal{L}=\bigcap_{I \in \mathcal{B}} \sigma_{I}, \quad \mathcal{I}=\bigcap_{I \in \mathcal{M}} \sigma_{I}$.
(2) $\mathcal{H} \subseteq \mathcal{R} \subseteq \mathcal{I} \subseteq \mathcal{N}, \quad \mathcal{H} \subseteq \mathcal{L} \subseteq \mathcal{I}(\subseteq \mathcal{N})$ and $\mathcal{L} \circ \mathcal{R} \subseteq \mathcal{I}$.
(3) In particular, if M is commutative, then $\mathcal{L}=\mathcal{R}=\mathcal{H}=\mathcal{I}=\mathcal{L} \circ \mathcal{R}$.

Proof. (1). Let $(x, y) \in \mathcal{R}$ and $I \in \mathcal{A}$. If $x \in I$, then

$$
y \in R(y)=R(x)=x \cup x \Gamma M \subseteq I \cup I \Gamma M=I,
$$

so $y \in I$. Then $x, y \in I$, and $(x, y) \in \sigma_{I}$. If $x \notin I$, then $y \notin I$. This is because $y \in I$ implies $x \in I$ which is impossible. Since $x, y \notin I$, we have $(x, y) \in \sigma_{I}$. Let now $(x, y) \in \sigma_{I}$ for every $I \in \mathcal{A}$. Since $x \in R(x)$ and $(x, y) \in \sigma_{R(x)}$, we have $y \in R(x)$, then $R(y) \subseteq R(x)$. Since $y \in R(y)$ and $(x, y) \in \sigma_{R(y)}$, we have $x \in R(y)$, so $R(x) \subseteq R(y)$. Then $R(x)=R(y)$, and $(x, y) \in \mathcal{R}$. The rest of the proof is similar.
(2). Let $(x, y) \in \mathcal{R}$. Then $R(x)=R(y)$, so $x \cup x \Gamma M=y \cup y \Gamma M$. Then

$$
M \Gamma(x \cup x \Gamma M)=M \Gamma(y \cup y \Gamma M),
$$

and $M \Gamma x \cup M \Gamma x \Gamma M=M \Gamma y \cup M \Gamma y \Gamma M$. Then we have

$$
I(x)=x \cup x \Gamma M \cup M \Gamma x \cup M \Gamma x \Gamma M=y \cup y \Gamma M \cup M \Gamma y \cup M \Gamma y \Gamma M=I(y),
$$

and $(x, y) \in \mathcal{I}$. Moreover, $\mathcal{I} \subseteq \mathcal{N}$. Indeed: By Theorem $2.3, \mathcal{N}=\bigcap_{I \in \mathcal{P}(S)} \sigma_{I}$, where $\mathcal{P}(S)$ is the set of prime ideals of M. Since $\mathcal{P}(M) \subseteq \mathcal{M}$, by (1), we have

$$
\mathcal{I}=\bigcap_{I \in \mathcal{M}} \sigma_{I} \subseteq \bigcap_{I \in \mathcal{P}(S)} \sigma_{I}=\mathcal{N} .
$$

$\mathcal{L} \circ \mathcal{R} \subseteq \mathcal{I}$. In fact: If $(a, b) \in \mathcal{L} \circ \mathcal{R}$, then there exists $c \in M$ such that $(a, c) \in \mathcal{L}$ and $(c, b) \in \mathcal{R}$. Then $L(a)=L(c)$ and $R(c)=R(b), a \in c \cup M \Gamma c$ and $c \in b \cup b \Gamma M$. Then we get $a \in b \cup b \Gamma M \cup M \Gamma(b \cup b \Gamma M)=b \cup b \Gamma M \cup M \Gamma b \cup M \Gamma b \Gamma M=I(b)$, and so $I(a) \subseteq I(b)$. Since $(b, c) \in \mathcal{R}$ and $(c, a) \in \mathcal{L}$, we have
$b \in c \cup c \Gamma M \subseteq a \cup M \Gamma a \cup(a \cup M \Gamma a) \Gamma M=a \cup M \Gamma a \cup a \Gamma M \cup M \Gamma a \Gamma M=I(a)$,
and $I(b) \subseteq I(a)$. Then $I(a)=I(b)$, and $(a, b) \in \mathcal{I}$.
(3). Let now M be commutative. Then we have

$$
\begin{aligned}
(a, b) \in \mathcal{L} & \Longleftrightarrow L(a)=L(b) \Longleftrightarrow a \cup M \Gamma a=b \cup M \Gamma b \\
& \Longleftrightarrow a \cup a \Gamma M=b \cup b \Gamma M \Longleftrightarrow(a, b) \in \mathcal{R} .
\end{aligned}
$$

$\mathcal{I} \subseteq \mathcal{H}$. Indeed:

$$
\begin{aligned}
(a, b) \in I & \Longrightarrow I(a)=I(b) \\
& \Longrightarrow a \cup M \Gamma a \cup a \Gamma M \cup M \Gamma a \Gamma M=b \cup M \Gamma b \cup b \Gamma M \cup M \Gamma b \Gamma M \\
& \Longrightarrow a \cup M \Gamma a \cup M \Gamma M \Gamma a=b \cup M \Gamma b \cup M \Gamma M \Gamma b \\
& \Longrightarrow a \cup M \Gamma a=b \cup M \Gamma b \Longrightarrow L(a)=L(b) \Longrightarrow(a, b) \in \mathcal{L}=\mathcal{R}=\mathcal{H} .
\end{aligned}
$$

Since $\mathcal{I} \subseteq \mathcal{H}$ and $\mathcal{H} \subseteq \mathcal{I}$ (by (2)), we have $\mathcal{H}=\mathcal{I}$.
$\mathcal{I} \subseteq \mathcal{L} \circ \mathcal{R}$. Indeed: If $(a, b) \in \mathcal{I}$, then $\mathcal{I}=\mathcal{L}=\mathcal{R}$. Since $(a, b) \in \mathcal{L}$ and $(a, b) \in \mathcal{R}$, we have $(a, b) \in \mathcal{L} \circ \mathcal{R}$. Besides, by $(2), \mathcal{L} \circ \mathcal{R} \subseteq \mathcal{I}$. Thus we get $\mathcal{I}=\mathcal{L} \circ \mathcal{R}$.
Corollary 2.5. Let M be a Γ-semigroup, A a right ideal, B a left ideal and I an ideal of M. Then

$$
A=\bigcup_{x \in A}(x)_{\mathcal{R}}, B=\bigcup_{x \in B}(x)_{\mathcal{L}}, I=\bigcup_{x \in I}(x)_{\mathcal{I}} .
$$

Proof. Let A be a right ideal of M. If $t \in A$, then $t \in(t)_{\mathcal{R}} \subseteq \bigcup_{x \in A}(x)_{\mathcal{R}}$. Let $t \in(x)_{\mathcal{R}}$ for every $x \in A$. Then, by Theorem 2.4, we have $(t, x) \in \mathcal{R}=\bigcap_{I \in \mathcal{A}} \sigma_{I}$. Since $(t, x) \in \sigma_{A}$ and $x \in A$, we have $t \in A$. The proof of the rest is similar.

Finally, we prove that the relation $\mathcal{R} \circ \mathcal{L}$, which is equal to $\mathcal{L} \circ \mathcal{R}$, is the least with respect to the inclusion relation - equivalence relation on M containing both \mathcal{R} and \mathcal{L}.

For a set X, denote by $E(X)$ the set of equivalence relations on X and by $\sup _{E(X)}\{\rho, \sigma\}$ the supremum of ρ and σ in $E(X)$.
Lemma 2.6. If ρ and σ are equivalence relations on a set X such that $\rho \circ \sigma=\sigma \circ \rho$, then $\rho \circ \sigma$ is also an equivalence relation on X and $\rho \circ \sigma=\sup _{E(X)}\{\rho, \sigma\}$.
Lemma 2.7. If ρ and σ are symmetric relations on a set X such that $\rho \circ \sigma \subseteq \sigma \circ \rho$, then $\rho \circ \sigma=\sigma \circ \rho$.
Theorem 2.8. If M is a Γ-semigroup, then $\mathcal{R} \circ \mathcal{L}=\sup _{E(M)}\{\mathcal{R}, \mathcal{L}\}$.

Proof. We prove that $\mathcal{R} \circ \mathcal{L}=\mathcal{L} \circ \mathcal{R}$, then the rest of the proof is a consequence of Lemma 2.6. According to Lemma 2.7, it is enough to prove that $\mathcal{R} \circ \mathcal{L} \subseteq \mathcal{L} \circ \mathcal{R}$. Let $(a, b) \in \mathcal{R} \circ \mathcal{L}$. Then there exists $c \in M$ such that $(a, c) \in \mathcal{R}$ and $(c, b) \in \mathcal{L}$. Since $R(a)=R(c)$ and $L(c)=L(b)$, we have $a \in c \cup c \Gamma M$ and $b \in c \cup M \Gamma c$. Then $a=c$ or $a=c \gamma x$ and $b=c$ or $b=y \mu c$ for some $x, y \in M, \gamma, \mu \in \Gamma$.

We consider the cases:
(A) Let $a=c$ and $b=c$. Then $(a, b)=(c, c)$. Since $c \in M,(c, c) \in \mathcal{L}$ and $(c, c) \in \mathcal{R}$, we have $(c, c) \in \mathcal{L} \circ \mathcal{R}$. So $(a, b) \in \mathcal{L} \circ \mathcal{R}$.
(B) Let $a=c$ and $b=y \mu c$ for some $y \in M, \mu \in \Gamma$. Then $(a, b)=(c, y \mu c)$. Since $(b, b) \in \mathcal{R}$, we have $(b, y \mu c) \in \mathcal{R}$. Since $c \in M,(c, b) \in \mathcal{L}$ and $(b, y \mu c) \in \mathcal{R}$, we have $(c, y \mu c) \in \mathcal{L} \circ \mathcal{R}$, so $(a, b) \in \mathcal{L} \circ \mathcal{R}$.
(C) Let $a=c \gamma x$ for some $\gamma \in \Gamma, x \in M$ and $b=c$. Then $(a, b)=(c \gamma x, c)$. Since $(a, a) \in \mathcal{L}$, we have $(c \gamma x, a) \in \mathcal{L}$. Since $a \in M,(c \gamma x, a) \in \mathcal{L}$ and $(a, c) \in \mathcal{R}$, we have $(c \gamma x, c) \in \mathcal{L} \circ \mathcal{R}$, so $(a, b) \in \mathcal{L} \circ \mathcal{R}$.
(D) Let $a=c \gamma x$ and $b=y \mu c$ for some $x, y \in M, \gamma, \mu \in \Gamma$. Then $(a, b)=$ $(c \gamma x, y \mu c) \in \mathcal{L} \circ \mathcal{R}$. Indeed: We have $b \gamma x=y \mu c \gamma x=y \mu a$. Since $(c, b) \in \mathcal{L}$ and \mathcal{L} is a right congruence on M, we have $(c \gamma x, b \gamma x) \in \mathcal{L}$. Since $(a, c) \in \mathcal{R}$ and \mathcal{R} is a left congruence on M, we have $(y \mu a, y \mu c) \in \mathcal{R}$, so $(b \gamma x, y \mu c) \in \mathcal{R}$. Since $b \gamma x \in M$, $(c \gamma x, b \gamma x) \in \mathcal{L}$ and $(b \gamma x, y \mu c) \in \mathcal{R}$, we have $(c \gamma x, y \mu c) \in \mathcal{L} \circ \mathcal{R}$.

Each Γ-semigroup M has an \mathcal{L}-class, an \mathcal{R}-class, and an \mathcal{I}-class. The set M is nonempty and, for each $x \in M,(x)_{\mathcal{L}}$ is a nonempty \mathcal{L}-class of $M,(x)_{\mathcal{R}}$ is a nonempty \mathcal{R}-class of M and $(x)_{\mathcal{I}}$ is a nonempty \mathcal{I}-class of M.

Definition 2.9. A Γ-semigroup M is called left (resp. right) simple if M has only one \mathcal{L} (resp. \mathcal{R})-class. M called simple if M has only one \mathcal{I}-class.
A right ideal, left ideal or ideal A of a Γ-semigroup M is called proper if $A \neq M$.
By Theorem 2.4, we have the following:
Corollary 2.10. A Γ-semigroup M is left (resp. right) simple if and only if M does not contain proper left (resp. right) ideals. M is simple if and only if does not contain proper ideals.
Proof. (\Rightarrow) Let M be left simple, A a left ideal of M and $x \in M$. Then $x \in A$. Indeed: Suppose $x \notin A$. Take an element $a \in A(A \neq \emptyset)$. Since $(x, a) \notin \sigma_{A}$, by Theorem 2.4(1), we have $(x, a) \notin \mathcal{L}$. Then $x \neq a$ and $(x)_{\mathcal{L}} \neq(a)_{\mathcal{L}}$ which is impossible.
(\Leftarrow) Suppose M does not contain proper left ideals. Let $x \in M(M \neq \emptyset)$. Then, for each $t \in M$ such that $t \neq x$, we have $(t)_{\mathcal{L}}=(x)_{\mathcal{L}}$. In fact: Let $t \in M$, $t \neq x$. By the assumption, we have $L(x)=M$ and $L(t)=M$, then $(x, t) \in \mathcal{L}$, so $(t)_{\mathcal{L}}=(x)_{\mathcal{L}}$. Then $(x)_{\mathcal{L}}$ is the only \mathcal{L}-class of M, and M is left simple. The other cases are proved in a similar way.
Corollary 2.11. Let M be a Γ-semigroup. Then M is left (resp. right) simple if and only if $M \Gamma a=M$ (resp. $a \Gamma M=M$) for every $a \in M . M$ is simple if and only if $M \Gamma a \Gamma M=M$ for every $A \subseteq M$.

Proof. Let M be left simple and $a \in M$. Since $M \Gamma a$ is a left ideal of M, by Corollary 2.10, we have $M \Gamma a=M$. Conversely, let $M \Gamma a=M$ for every $a \in M$ and A a left ideal of M. Take an element $x \in A(A \neq \emptyset)$. Then $M=M \Gamma x \subseteq$ $M \Gamma A \subseteq A$, so $A=M$. By Corollary $2.10, M$ is left simple.

Remark 2.12. If M is a Γ-semigroup, then we have $M \Gamma a=M$ for every $a \in M$ if and only if $M \Gamma A=M$ for every nonempty subset A of M. We have $a \Gamma M=M$ for every $a \in M$ if and only if $A \Gamma M=M$ for every nonempty subset A of M. Also $M \Gamma a \Gamma M=M$ for every $a \in M$ if and only if $M \Gamma A \Gamma M=M$ for every nonempty subset A of M. Let us prove the third one: \Rightarrow. Let $a \in M$. Since $\{a\} \subseteq M$, by hypothesis, we have $M \Gamma\{a\} \Gamma M=M$, so $M \Gamma a \Gamma M=M$. \Leftarrow. Let $\emptyset \neq A \subseteq M$. Take an element $a \in A$. By hypothesis, we have $M=M \Gamma a \Gamma M \subseteq M \Gamma A \Gamma M \subseteq$ $(M \Gamma M) \Gamma M \subseteq M \Gamma M \subseteq M$, so $M \Gamma A \Gamma M=M$.
Conclusion. In this paper we mainly gave the analogous results of [3] in case of Γ semigroups. Analogous results of [3] for ordered Γ-semigroups can be also obtained. If we want to get a result on a Γ-semigroup or an ordered Γ semigroup, then we have to prove it first on a semigroup or on an ordered semigroup, respectively. We never work directly in Γ-semigroups or in ordered Γ-semigroups. The paper serves as an example to show the way we pass from semigroups to Γ-semigroups (also from ordered semigroups to ordered Γ-semigroups).

References

[1] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc., Math. Surveys no. 7, Providence, Rh. Island 1961.
[2] N. Kehayopulu, Note on Green's relations in ordered semigroups, Math. Japon. 36 (1991), 211 - 214.
[3] N. Kehayopulu, On prime, weakly prime ideals in po-Г-semigroups, Lobachevskii J. Math. 30 (2009), $257-262$.
[4] N. Kehayopulu, On ordered Γ-semigroups, Sci. Math. Jpn. 71 (2010), 179 - 185.
[5] N. Kehayopulu, On regular duo po-Г-semigroups, Math. Slovaca 61 (2011), 871 884.
[6] M. Petrich, Introduction to Semigroups, Merrill Research and Lecture Series, Charles E. Merrill Publishing Co., Columbus, Ohio 1973.
[7] N.K. Saha, The maximum idempotent separating congruence on an inverse Γ-semigroup, Kyungpook Math. Soc. J. 34 (1964), 59-66.
[8] M.K. Sen, On Γ-semigroups, Algebra and its applications, New Delhi, 1981, p. 301; Lecture Notes in Pure and Appl. Math., Dekker, New York, Vol. 91, 1984.
[9] M.K. Sen, N.K. Saha, On Г-semigroup I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.

Received November 29, 2013

[^0]: 2010 Mathematics Subject Classification: 20F99, 06F99; 20M10; 06F05
 Keywords: Γ-semigroup; right (left) ideal; ideal; prime ideal; filter; semilattice congruence; Green's relations; left (right) simple; simple.

