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Green's relations and the relation N
in Γ-semigroups

Niovi Kehayopulu

Abstract. Let M be a Γ-semigroup. For a prime ideal I of M , let σI be the relation on M

consisted of the pairs (x, y), where x and y are elements of M such that either both x and y are
elements of I or both x and y are not elements of I. Let N be the semilattice congruence on M

de�ned by xNy if and only if the �lters of M generated by x and y coincide. Then the set N
is the intersection of the relations σI , where I runs over the prime ideals of M . If R, L, I, H
are the Green's relations of M and A the set of right ideals, B the set of left ideals and I the set
of ideals of M , then we have H ⊆ R ⊆ I ⊆ N , H ⊆ L ⊆ I ⊆ N and L ◦ R ⊆ I, R =

⋂
I∈A

σI ,

L =
⋂

Ix∈B
σI , I =

⋂
I∈M

σI . The relation R ◦ L (= L ◦ R) is the least -with respect to the

inclusion relation- equivalence relation on M containing both R and L. Finally, we characterize
the Γ-semigroups which have only one L (or R)-class or only one I-class.

1. Introduction and prerequisites

An ideal I of a semigroup S is called completely prime if for any a, b ∈ I, ab ∈ I
implies that either a ∈ I or b ∈ I. Every semilattice congruence on a semigroup S
is the intersection of congruences σI where I is a completely prime ideal and for
all x, y ∈ S, we have xσIy if and only if x, y ∈ I or x, y /∈ I [6]. For semigroups, or-
dered semigroups or ordered Γ-semigroups, we always use the terminology weakly
prime, prime (subset) instead of the terminology prime, completely prime given
by Petrich. For Green's relations in semigroups we refer to [1, 6]. For Green's
relations in ordered semigroups, we refer to [2]. In the present paper we mainly
present the analogous results of [2] in case of Γ-semigroups.

The concept of a Γ-semigroup has been introduced by M.K. Sen in 1981 as
follows: If S and Γ are two nonempty sets, S is called a Γ-semigroup if the following
assertions are satis�ed: (1) aαb ∈ S and αaβ ∈ Γ and (2) (aαb)βc = a(αbβ)c =
aα(bβc) for all a, b, c ∈ S and all α, β ∈ Γ [8]. In 1986, M.K. Sen and N.K.
Saha changed that de�nition and gave the following de�nition of a Γ-semigroup:
Given two nonempty sets M and Γ, M is called a Γ-semigroup if (1) aαb ∈ M
and (2) (aαb)βc = aα(bβc) for all a, b, c ∈ M and all α, β ∈ Γ [9]. Later, in
[7], Saha calls a nonempty set S a Γ-semigroup (Γ 6= ∅) if there is a mapping
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S×Γ×S → S | (a, γ, b) → aγb such that (aαb)βc = aα(bβc) for all a, b, c ∈ S and
all α, β ∈ Γ, and remarks that the most usual semigroup concepts, in particular
regular and inverse Γ-semigroups have their analogous in Γ-semigroups. Although
it was very convenient to work on the de�nition by Sen and Saha using binary
relations [9], the uniqueness condition was missing from that de�nition. Which
means that in an expression of the form, say aγbµcξdρe or aΓbΓcΓdΓe, it was not
known where to put the parentheses. In that sense, the de�nition of a Γ-semigroup
given by Saha in [7] was the right one. However, adding the uniqueness condition
in the de�nition given by Sen and Saha in [9], we do not need to de�ne it via
mappings. The revised version of the de�nition by Sen and Saha in [9] has been
introduced by Kehayopulu in [3] as follows:

For two nonempty sets M and Γ, de�ne MΓM as the set of all elements of the
form m1γm2, where m1,m2 ∈ M , γ ∈ Γ. That is,

MΓM := {m1γm2 | m1,m2 ∈ M,γ ∈ Γ}.

De�nition 1.1. Let M and Γ be two nonempty sets. The set M is called a
Γ-semigroup if the following assertions are satis�ed:

(1) MΓM ⊆ M .
(2) If m1,m2,m3,m4 ∈ M , γ1, γ2 ∈ Γ such that m1 = m3, γ1 = γ2 and

m2 = m4, then m1γ1m2 = m3γ2m4.
(3) (m1γ1m2)γ2m3 = m1γ1(m2γ2m3) for all m1,m2,m3 ∈ M and γ1, γ2 ∈ Γ.

In other words, Γ is a set of binary operations on M such that:

(m1γ1m2)γ2m3 = m1γ1(m2γ2m3) for all m1,m2,m3 ∈ M and all γ1, γ2 ∈ Γ.

According to that "associativity" relation, each of the elements (m1γ1m2)γ2m3,
and m1γ1(m2γ2m3) is denoted by m1γ1m2γ2m3.

Using conditions (1)− (3) one can prove that for an element of M of the form

m1γ1m2γ2m3γ3m4 . . . γn−1mnγnmn+1,

or a subset of M of the form

m1Γ1m2Γ2m3Γ3m4 . . .Γn−1mnΓnmn+1,

one can put a parenthesis in any expression beginning with some mi and ending
in some mj [3, 4, 5].

The example below based on De�nition 1.1 shows what a Γ-semigroup is.

Example 1.2. [4] Consider the two-elements set M := {a, b}, and let Γ = {γ, µ}
be the set of two binary operations on M de�ned in the tables below:

γ a b

a a b

b b a

µ a b

a b a

b a b
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One can check that (xρy)ωz = xρ(yωz) for all x, y, z ∈ M and all ρ, ω ∈ Γ. So, M
is a Γ-semigroup.

Example 1.3. [5] Consider the set M := {a, b, c, d, e}, and let Γ = {γ, µ} be the
set of two binary operations on M de�ned in the tables below:

γ a b c d e

a a b c d e

b b c d e a

c c d e a b

d d e a b c

e e a b c d

µ a b c d e

a b c d e a

b c d e a b

c d e a b c

d e a b c d

e a b c d e

Since (xρy)ωz = xρ(yωz) for all x, y, z ∈ M and all ρ, ω ∈ Γ, M is a Γ-semigroup.

Let now M be a Γ-semigroup. A nonempty subset A of M is called a sub-

semigroup of M if AΓA ⊆ A, that is, if aγb ∈ A for every a, b ∈ A and every
γ ∈ Γ. A nonempty subset A of M is called a left ideal of M if MΓA ⊆ A, that
is, if m ∈ M , γ ∈ Γ and a ∈ A, implies mγa ∈ A. It is called a right ideal of
M if AΓM ⊆ A, that is, if a ∈ A, γ ∈ Γ and m ∈ M , implies aγm ∈ A. A is
called an ideal of M if it is both a left and a right ideal of M . For an element a
of M , we denote by R(a), L(a), I(a), the right ideal, left ideal and the ideal of
M , respectively, generated by a, and we have R(a) = a ∪ aΓM , L(a) = a ∪MΓa,
I(a) = a∪ aΓM ∪MΓa∪MΓaΓM . An ideal A of M is called a prime ideal of M
if a, b ∈ M and γ ∈ Γ such that aγb ∈ A, then a ∈ A or b ∈ A. Equivalently, if B
and C are subsets of M such that B 6= ∅ (or C 6= ∅), γ ∈ Γ and BγC ⊆ A, then
B ⊆ A or C ⊆ A. A subsemigroup F of M is called a �lter of M if a, b ∈ M and
γ ∈ Γ such that aγb ∈ F , implies a ∈ F and b ∈ F . For an element a of M , we
denote by N(a) the �lter of M generated by a and by N the equivalence relation
on M de�ned by N := {(x, y) | N(x) = N(y)}. An ideal A of M is a prime ideal
of M if and only if M\A = ∅ or M\A is a subsemigroup of M . A nonempty subset
F of M is a �lter of M if and only if M\F = ∅ or M\F is a prime ideal of M . An
equivalence relation σ on M is called a left congruence on M if (a, b) ∈ σ implies
(cγa, cγb) ∈ σ for every c ∈ M and every γ ∈ Γ. It is called a right congruence on
M if (a, b) ∈ σ implies (aγc, bγc) ∈ σ for every c ∈ M and every γ ∈ Γ. It is called
a congruence on M if it is both a left and a right congruence on M . A semilattice

congruence σ is a congruence on M such that
(1) (aγa, a) ∈ σ for every a ∈ M and every γ ∈ Γ and
(2) (aγb, bγa) ∈ σ for every a, b ∈ M and every γ ∈ Γ.

The relation N de�ned above is a semilattice congruence on M.

2. Main results

For a Γ-semigroup M, the Green's relations R, L, I, H are the equivalence
relations on M de�ned by:

R = {(x, y) | R(x) = R(y)}, L = {(x, y) | L(x) = L(y)},
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I = {(x, y) | I(x) = I(y)}, H = R∩ L.
The relation R is a left congruence and the relation L is a right congruence on M .
Let now M be a Γ-semigroup. For a subset I of M we denote by σI the relation
on M de�ned by

σI = {(x, y) | x, y ∈ I or x, y 6∈ I}.

Exactly as in case of semigroups, for a Γ- semigroup the following holds:

Lemma 2.1. Let M be a Γ-semigroup. If F is a �lter of M, then

(?) M\F = ∅ or M\F is a prime ideal of M.

In particular, any nonempty subset F of M satisfying (?) is a �lter of M. �

Proposition 2.2. Let M be a Γ-semigroup and I a prime ideal of M. Then the

set σI is a semilattice congruence on M.

Proof. Clearly σI is a relation on M which is re�exive and symmetric. Let (a, b) ∈
σI and (b, c) ∈ σI . Then a, b ∈ I or a, b 6∈ I and b, c ∈ I or b, c 6∈ I. If a, b ∈ I
and b, c ∈ I, then a, c ∈ I, so (a, c) ∈ σI . The case a, b ∈ I and b, c 6∈ I is
impossible and so is the case a, b 6∈ I and b, c ∈ I. If a, b 6∈ I and b, c 6∈ I, then
a, c 6∈ I, then (a, c) ∈ σI , and σI is transitive. Let (a, b) ∈ σI , c ∈ M and γ ∈ Γ.
Then (aγc, bγc) ∈ σI . Indeed: If a, b ∈ I then, since I is an ideal of M , we have
aγc, bγc ∈ I, so (aγc, bγc) ∈ σI . Let a, b 6∈ I. If c ∈ I then, since I is an ideal
of M , we have aγc, bγc ∈ I, so (aγc, bγc) ∈ σI . If c 6∈ I, then aγc, bγc 6∈ I.
This is because if aγb ∈ I then, since I is a prime ideal of M , we have a ∈ I
or c ∈ I which is impossible. For bγc ∈ I, we also get a contradiction. Thus we
obtain (aγc, bγc) ∈ σI , and σI is a right congruence on M . Similarly σI is a left
congruence on M , so σI is a congruence on M .

σI is a semilattice congruence on M . In fact: Let a ∈ M and γ ∈ Γ. Then
(aγa, a) ∈ σI . Indeed: If a 6∈ I, then aγa 6∈ I. This is because if aγa ∈ I then,
since I is a prime ideal of M , we have a ∈ I which is impossible. Since a, aγa 6∈ I,
we have (a, aγa) ∈ σI . If a ∈ I then, since I is an ideal of M , we have aγa ∈ I,
so (a, aγa) ∈ σI . Let now a, b ∈ M and γ ∈ Γ. Then (aγb, bγa) ∈ σI . In fact: If
aγb ∈ I then, since I is a prime ideal of M , we have a ∈ I or b ∈ I. Then, since
I is an ideal of M , we have bγa ∈ I. Since aγb, bγa ∈ I, we have (aγb, bγa) ∈ σI .
If aγb 6∈ I, then bγa 6∈ I. This is because if bγa ∈ I then, since I is a prime ideal
of M , we have b ∈ I or a ∈ I. Since I is an ideal of M , we have aγb ∈ I which is
impossible. Since aγb, bγa 6∈ I, we have (aγb, bγa) ∈ σI . �

Theorem 2.3. Let M be a Γ-semigroup and P(M) the set of prime ideals of M.

Then

N =
⋂

I∈P(M)

σI .

Proof. N ⊆ σI for every I ∈ P(M). In fact: Let (a, b) ∈ N and I ∈ P(M).
Then (a, b) ∈ σI . Indeed: Let (a, b) 6∈ σI . Then a ∈ I and b 6∈ I or a 6∈ I and
b ∈ I. Let a ∈ I and b 6∈ I. Since b ∈ M\I, we have ∅ 6= M\I ⊆ M . Since
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M\(M\I) = I and I is a prime ideal of M , the set M\(M\I) is a prime ideal of
M . By Lemma 2.1, M\I is a �lter of M . Since b ∈ M\I, we have N(b) ⊆ M\I.
Since N(a) = N(b), we have a ∈ M\I which is impossible. If a 6∈ I and b ∈ I, we
also get a contradiction.

Let now (a, b) ∈ σI for every I ∈ P(M). Then (a, b) ∈ N . In fact: Let
(a, b) 6∈ N . Then N(a) 6= N(b), from which a 6∈ N(b) or b /∈ N(a) (This is because
if a ∈ N(b) and b ∈ N(a), then N(a) ⊆ N(b) ⊆ N(a), so N(a) = N(b)). Let
a /∈ N(b). Then a ∈ M\N(b). Since b ∈ N(b), b /∈ M\N(b). Since a ∈ M\N(b)
and b /∈ M\N(b), we have (a, b) /∈ σM\N(b). Since N(b) is a �lter of M and
M\N(b) 6= ∅, by Lemma 2.1, M\N(b) ∈ P(M). We have M\N(b) ∈ P(M)
and (a, b) /∈ σM\N(b) which is impossible. If b /∈ N(a), by symmetry we get a
contradiction. �

For two relations ρ and σ on a set X, their composition ρ ◦ σ is de�ned by

ρ ◦ σ = {(a, b) | ∃ x ∈ X : (a, x) ∈ ρ and (x, b) ∈ σ}.

If BX is the set of relations on X, then the composition ” ◦ ” is an associative
operation on BX , and so (BX , ◦) is a semigroup.

Theorem 2.4. Let M be a Γ-semigroup, A the set of right ideals, B the set of left

ideals and M the set of ideals of M. Then we have

(1) R =
⋂

I∈A
σI , L =

⋂
I∈B

σI , I =
⋂

I∈M
σI .

(2) H ⊆ R ⊆ I ⊆ N , H ⊆ L ⊆ I (⊆ N ) and L ◦ R ⊆ I.
(3) In particular, if M is commutative, then L = R = H = I = L ◦ R.

Proof. (1). Let (x, y) ∈ R and I ∈ A. If x ∈ I, then

y ∈ R(y) = R(x) = x ∪ xΓM ⊆ I ∪ IΓM = I,

so y ∈ I. Then x, y ∈ I, and (x, y) ∈ σI . If x /∈ I, then y /∈ I. This is because
y ∈ I implies x ∈ I which is impossible. Since x, y /∈ I, we have (x, y) ∈ σI .
Let now (x, y) ∈ σI for every I ∈ A. Since x ∈ R(x) and (x, y) ∈ σR(x), we
have y ∈ R(x), then R(y) ⊆ R(x). Since y ∈ R(y) and (x, y) ∈ σR(y), we have
x ∈ R(y), so R(x) ⊆ R(y). Then R(x) = R(y), and (x, y) ∈ R. The rest of the
proof is similar.

(2). Let (x, y) ∈ R. Then R(x) = R(y), so x ∪ xΓM = y ∪ yΓM . Then

MΓ(x ∪ xΓM) = MΓ(y ∪ yΓM),

and MΓx ∪MΓxΓM = MΓy ∪MΓyΓM . Then we have

I(x) = x ∪ xΓM ∪MΓx ∪MΓxΓM = y ∪ yΓM ∪MΓy ∪MΓyΓM = I(y),

and (x, y) ∈ I. Moreover, I ⊆ N . Indeed: By Theorem 2.3, N =
⋂

I∈P(S)

σI , where

P(S) is the set of prime ideals of M . Since P(M) ⊆M, by (1), we have
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I =
⋂

I∈M
σI ⊆

⋂
I∈P(S)

σI = N .

L ◦ R ⊆ I. In fact: If (a, b) ∈ L ◦ R, then there exists c ∈ M such that (a, c) ∈ L
and (c, b) ∈ R. Then L(a) = L(c) and R(c) = R(b), a ∈ c∪MΓc and c ∈ b∪ bΓM .
Then we get a ∈ b ∪ bΓM ∪MΓ(b ∪ bΓM) = b ∪ bΓM ∪MΓb ∪MΓbΓM = I(b),
and so I(a) ⊆ I(b). Since (b, c) ∈ R and (c, a) ∈ L, we have

b ∈ c ∪ cΓM ⊆ a ∪MΓa ∪ (a ∪MΓa)ΓM = a ∪MΓa ∪ aΓM ∪MΓaΓM = I(a),

and I(b) ⊆ I(a). Then I(a) = I(b), and (a, b) ∈ I.
(3). Let now M be commutative. Then we have

(a, b) ∈ L ⇐⇒ L(a) = L(b) ⇐⇒ a ∪MΓa = b ∪MΓb

⇐⇒ a ∪ aΓM = b ∪ bΓM ⇐⇒ (a, b) ∈ R.

I ⊆ H. Indeed:

(a, b) ∈ I =⇒ I(a) = I(b)
=⇒ a ∪MΓa ∪ aΓM ∪MΓaΓM = b ∪MΓb ∪ bΓM ∪MΓbΓM

=⇒ a ∪MΓa ∪MΓMΓa = b ∪MΓb ∪MΓMΓb

=⇒ a ∪MΓa = b ∪MΓb =⇒ L(a) = L(b) =⇒ (a, b) ∈ L = R = H.

Since I ⊆ H and H ⊆ I (by (2)), we have H = I.
I ⊆ L ◦R. Indeed: If (a, b) ∈ I, then I = L = R. Since (a, b) ∈ L and (a, b) ∈ R,
we have (a, b) ∈ L ◦ R. Besides, by (2), L ◦ R ⊆ I. Thus we get I = L ◦ R. �

Corollary 2.5. Let M be a Γ-semigroup, A a right ideal, B a left ideal and I an

ideal of M. Then

A =
⋃

x∈A

(x)R, B =
⋃

x∈B

(x)L, I =
⋃

x∈I

(x)I .

Proof. Let A be a right ideal of M . If t ∈ A, then t ∈ (t)R ⊆
⋃

x∈A

(x)R. Let

t ∈ (x)R for every x ∈ A. Then, by Theorem 2.4, we have (t, x) ∈ R =
⋂

I∈A
σI .

Since (t, x) ∈ σA and x ∈ A, we have t ∈ A. The proof of the rest is similar. �

Finally, we prove that the relation R◦L, which is equal to L◦R, is the least �
with respect to the inclusion relation � equivalence relation on M containing both
R and L.

For a set X, denote by E(X) the set of equivalence relations on X and by
supE(X){ρ, σ} the supremum of ρ and σ in E(X).

Lemma 2.6. If ρ and σ are equivalence relations on a set X such that ρ◦σ = σ◦ρ,
then ρ ◦ σ is also an equivalence relation on X and ρ ◦ σ = supE(X){ρ, σ}.
Lemma 2.7. If ρ and σ are symmetric relations on a set X such that ρ◦σ ⊆ σ◦ρ,
then ρ ◦ σ = σ ◦ ρ.

Theorem 2.8. If M is a Γ-semigroup, then R ◦ L = supE(M){R,L}.
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Proof. We prove that R ◦ L = L ◦ R, then the rest of the proof is a consequence
of Lemma 2.6. According to Lemma 2.7, it is enough to prove that R◦L ⊆ L◦R.
Let (a, b) ∈ R ◦ L. Then there exists c ∈ M such that (a, c) ∈ R and (c, b) ∈ L.
Since R(a) = R(c) and L(c) = L(b), we have a ∈ c∪ cΓM and b ∈ c∪MΓc. Then
a = c or a = cγx and b = c or b = yµc for some x, y ∈ M , γ, µ ∈ Γ.

We consider the cases:
(A) Let a = c and b = c. Then (a, b) = (c, c). Since c ∈ M , (c, c) ∈ L and

(c, c) ∈ R, we have (c, c) ∈ L ◦ R. So (a, b) ∈ L ◦ R.
(B) Let a = c and b = yµc for some y ∈ M , µ ∈ Γ. Then (a, b) = (c, yµc).

Since (b, b) ∈ R, we have (b, yµc) ∈ R. Since c ∈ M , (c, b) ∈ L and (b, yµc) ∈ R,
we have (c, yµc) ∈ L ◦ R, so (a, b) ∈ L ◦ R.

(C) Let a = cγx for some γ ∈ Γ, x ∈ M and b = c. Then (a, b) = (cγx, c).
Since (a, a) ∈ L, we have (cγx, a) ∈ L. Since a ∈ M , (cγx, a) ∈ L and (a, c) ∈ R,
we have (cγx, c) ∈ L ◦ R, so (a, b) ∈ L ◦ R.

(D) Let a = cγx and b = yµc for some x, y ∈ M , γ, µ ∈ Γ. Then (a, b) =
(cγx, yµc) ∈ L ◦ R. Indeed: We have bγx = yµcγx = yµa. Since (c, b) ∈ L and L
is a right congruence on M , we have (cγx, bγx) ∈ L. Since (a, c) ∈ R and R is a
left congruence on M , we have (yµa, yµc) ∈ R, so (bγx, yµc) ∈ R. Since bγx ∈ M ,
(cγx, bγx) ∈ L and (bγx, yµc) ∈ R, we have (cγx, yµc) ∈ L ◦ R.

Each Γ-semigroup M has an L-class, an R-class, and an I-class. The set M
is nonempty and, for each x ∈ M , (x)L is a nonempty L-class of M , (x)R is a
nonempty R-class of M and (x)I is a nonempty I-class of M .

De�nition 2.9. A Γ-semigroup M is called left (resp. right) simple if M has only
one L (resp. R)-class. M called simple if M has only one I-class.

A right ideal, left ideal or ideal A of a Γ-semigroup M is called proper if A 6= M .
By Theorem 2.4, we have the following:

Corollary 2.10. A Γ-semigroup M is left (resp. right) simple if and only if M
does not contain proper left (resp. right) ideals. M is simple if and only if does

not contain proper ideals.

Proof. (⇒) Let M be left simple, A a left ideal of M and x ∈ M. Then x ∈ A.
Indeed: Suppose x 6∈ A. Take an element a ∈ A (A 6= ∅). Since (x, a) 6∈ σA,
by Theorem 2.4(1), we have (x, a) 6∈ L. Then x 6= a and (x)L 6= (a)L which is
impossible.
(⇐) Suppose M does not contain proper left ideals. Let x ∈ M (M 6= ∅). Then,
for each t ∈ M such that t 6= x, we have (t)L = (x)L. In fact: Let t ∈ M ,
t 6= x. By the assumption, we have L(x) = M and L(t) = M , then (x, t) ∈ L, so
(t)L = (x)L. Then (x)L is the only L-class of M , and M is left simple. The other
cases are proved in a similar way. �

Corollary 2.11. Let M be a Γ-semigroup. Then M is left (resp. right) simple if

and only if MΓa = M (resp. aΓM = M) for every a ∈ M . M is simple if and

only if MΓaΓM = M for every A ⊆ M .
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Proof. Let M be left simple and a ∈ M . Since MΓa is a left ideal of M , by
Corollary 2.10, we have MΓa = M . Conversely, let MΓa = M for every a ∈ M
and A a left ideal of M . Take an element x ∈ A (A 6= ∅). Then M = MΓx ⊆
MΓA ⊆ A, so A = M . By Corollary 2.10, M is left simple. �

Remark 2.12. If M is a Γ-semigroup, then we have MΓa = M for every a ∈ M
if and only if MΓA = M for every nonempty subset A of M . We have aΓM = M
for every a ∈ M if and only if AΓM = M for every nonempty subset A of M . Also
MΓaΓM = M for every a ∈ M if and only if MΓAΓM = M for every nonempty
subset A of M . Let us prove the third one: ⇒. Let a ∈ M . Since {a} ⊆ M , by
hypothesis, we have MΓ{a}ΓM = M , so MΓaΓM = M . ⇐. Let ∅ 6= A ⊆ M .
Take an element a ∈ A. By hypothesis, we have M = MΓaΓM ⊆ MΓAΓM ⊆
(MΓM)ΓM ⊆ MΓM ⊆ M , so MΓAΓM = M .

Conclusion. In this paper we mainly gave the analogous results of [3] in case of Γ-
semigroups. Analogous results of [3] for ordered Γ-semigroups can be also obtained.
If we want to get a result on a Γ-semigroup or an ordered Γ semigroup, then we
have to prove it �rst on a semigroup or on an ordered semigroup, respectively. We
never work directly in Γ-semigroups or in ordered Γ-semigroups. The paper serves
as an example to show the way we pass from semigroups to Γ-semigroups (also
from ordered semigroups to ordered Γ-semigroups).
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