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On δ-primary co-ideals of a commutative semiring

Shahabaddin Ebrahimi Atani, Saboura Dolati Pish Hesari

and Mehdi Khoramdel

Abstract. We introduce the notion of a δ-primary co-ideal of a commutative semiring R and
study some of it properties. Here δ is a mapping that assigns to each co-ideal J a co-ideal δ(J)

of the same semiring. We investigate the relationship between the minimal prime co-ideals of
R/I and δ(I)/I, when I is a δ-primary Q-co-ideal. We also prove that every identity summand
of R/I is contained in δ(I)/I and δ(I) contains all minimal prime co-ideals which contains I.

1. Introduction

The most trivial example of a semiring which is not a ring is the �rst algebraic
structure we encounter in life: the set of nonnegative integers N, with the usual ad-
dition and multiplication. Similarly, the set of nonnegative real numbers R+ with
the usual addition and multiplication is a semiring which is not a ring. The non-
trivial examples of semirings �rst appear in the work of Richard Dedekind in 1894,
in connection with the algebra of ideals of a commutative ring and were later stud-
ied independently by algebraists, especially by H. S. Vandiver, who worked very
hard to get them accepted as a fundamental algebraic structure, being basically
the best structure which includes both rings and bounded distributive lattices.
Semirings have been found useful for solving problems in di�erent areas of applied
mathematics and information sciences, since the structure of a semiring provides
an algebraic framework for modelling and studying the key factors in these applied
areas and, hence, ought to be in the literature [9, 11].

In this paper, we introduce the notion of co-ideal expansion and δ-primary
co-ideals that is motivated from the notion of δ-primary ideals in semirings (resp.
rings) [2] (resp. [7]). A number of results concerning of these class of co-ideals are
given. For example, we investigate the relationship between the minimal prime
co-ideals of R/I and δ(I)/I, when I is a δ-primary Q-co-ideal. We also prove that
I is δ-primary if and only if every identity-summand element of R/I is contained
in δ(I)/I.

In order to make this paper easier to follow, we recall various notions which
will be used in the sequel. A commutative semiring R is de�ned as an algebraic
system (R,+, ·) such that (R,+) and (R, ·) are commutative semigroups, connected
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by a(b+c) = ab+ac for all a, b, c ∈ R, and there exist 0, 1 ∈ R such that r+0 = r,
r0 = 0r = 0 and r1 = 1r = r for each r ∈ R. In this paper all semirings
considered will be assumed to be commutative semirings with non-zero identity.

De�nition 1.1. Let R be a semiring.

• A nonempty subset I of R is called co-ideal, denoted by I Ec R, if it is closed
under multiplication and satis�es the condition r + a ∈ I for all a ∈ I and r ∈ R
(clearly, 0 ∈ I if and only if I = R) [4].

• A co-ideal I of R is called subtractive if x, xy ∈ I, then y ∈ I (so every
subtractive co-ideal is a strong co-ideal) [4].

• A proper co-ideal P of R is called prime if x + y ∈ P , then x ∈ P or y ∈ P .
A proper co-ideal I of R is called primary if x+y ∈ I, then x ∈ I or y ∈ co-rad(I)
= {r ∈ R : nr ∈ I for some positive integer n} [4].

• A semiring R is called co-semidomain, if a + b = 1 (a, b ∈ R), then either
a = 1 or b = 1 [4].

• We say that a subset T ⊆ R is additively closed if 0 ∈ T and a + b ∈ T for
all a, b ∈ T .

• If D is an arbitrary nonempty subset of R, then the set F (D) consisting of
all elements of R of the form d1d2 · · · dn + r (with di ∈ D for all 1 6 i 6 n and
r ∈ R) is a co-ideal of R containing D [4, 11].

• A semiring R is called an I-semiring if r + 1 = 1 for all r ∈ R [6].

A strong co-ideal I of a semiring R is called a partitioning strong co-ideal (Q-

strong co-ideal) if there exists a subset Q of R such that R = ∪{qI : q ∈ Q}, where
qI = {qt : t ∈ I} and if q1, q2 ∈ Q, then (q1I) ∩ (q2I) 6= ∅ if and only if q1 = q2

[4]. Let I be a Q-strong co-ideal of a semiring R and let R/I = {qI : q ∈ Q}.
Then R/I forms a semiring under the binary operations ⊕ and � de�ned as follows:
(q1I)⊕(q2I) = q3I, where q3 is the unique element in Q such that (q1I+q2I) ⊆ q3I,
and (q1I)�(q2I) = q3I, where q3 is the unique element in Q such that (q1q2)I ⊆ q3I
[4]. If qe is the unique element in Q such that 1 ∈ qeI, then qeI = I is the identity
of R/I [4]. Note that every Q-strong co-ideal is subtractive [4].

Throughout this paper we shall assume unless otherwise stated, that q0I (resp.
qeI) is the zero element (resp. the identity element) of R/I.

2. De�nition and basic structure

We begin with the key de�nition of this paper.

De�nition 2.1. Let R be a semiring with co-Id(R) its set of co-ideals.
(i) A co-ideal expansion is a function δ : co-Id(R) −→ co-Id(R), which satis�es

the following conditions:

(1) I ⊆ δ(I) for each co-ideal I of R;

(2) I ⊆ J implies δ(I) ⊆ δ(J) for all co-ideals I, J of R.
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(ii) A Q-co-ideal (resp. subtractive co-ideal) expansion is a co-ideal expansion
which assigns to each Q-co-ideal (resp. subtractive co-ideal) I of a semiring R to
another Q-co-ideal (resp. subtractive co-ideal) δ(I) of the same semiring.

Remark 2.2. Since the intersection of any collection of co-ideals is a co-ideal of
R, the intersection of any collection of co-ideal expansions is a co-ideal expansion.

The proof of the following lemma is well-known, but we give the details for
convenience.

Lemma 2.3. If I is a Q-strong co-ideal of R and qeI is the identity element in

R/I, then qeI ⊕ qI = qeI and qI ⊕ qI = qI for each qI ∈ R/I.

Proof. Let qeI⊕qI = q′I, where q′ is the unique element in Q such that qeI +qI ⊆
q′I. Since I is co-ideal, qeI + qI ⊆ I = qeI which gives q′I = qeI = I. Finally,
qI ⊕ qI = qI � (qeI ⊕ qeI) = qI � qeI = qI.

Proposition 2.4. Let I be a co-ideal of a semiring R.

(1) The set cl(I) = {a ∈ R : ac = d for some c, d ∈ I} is a co-ideal of R

(we call cl(I) the co-closure of I).
(2) I is subtractive if and only if cl(I) = I.

Proof. (1). Let a1, a2 ∈ cl(I); we show that a1a2 ∈ cl(I). By assumption, there
exist c1, c2, d1, d2 ∈ I such that a1c1 = d1, a2c2 = d2, hence (a1a2)(c1c2) = d1d2.
Since I is a co-ideal of R, we have a1a2 ∈ cl(I). Now, let a ∈ cl(I) and r ∈ R; we
show that a+ r ∈ cl(I). Since a ∈ cl(I), there exist c, d ∈ I such that ac = d. As I
is a co-ideal of R, (a + r)c = ac + cr ∈ I; so a + r ∈ cl(I). Thus cl(I) is a co-ideal
of a semiring R.

(2). Assume that I is a subtractive co-ideal of R (so it is a strong co-ideal) and
let x ∈ I. Then x = x1 ∈ I gives I ⊆ cl(I). For the reverse incusion, let y ∈ cl(I).
Then yc ∈ I for some c ∈ I; hence y ∈ I since I is subtractive, and so we have
equality. The other implication is clear.

Example 2.5. (1) For each I ∈ co-Id(R), de�ne δ1(I) = I, δ2(I) = co-rad(I) and
δ3(I) = cl(I). Then δ1, δ2 and δ3 are expansions of co-ideals.

(2) By [4, Proposition 2.1], if I is a proper co-ideal of R, then there exists a
maximal co-ideal M of R such that I ⊆ M . Now for each proper co-ideal I, let
δ4(I) be the intersection of all maximal co-ideals containing I, and δ4(R) = R.
Then δ4 is an expansion of co-ideals.

Theorem 2.6. Let R be a semiring.

(1) δ1(I) ⊆ δ2(I) ⊆ δ3(I) ⊆ δ4(I) for each strong co-ideal I of R.

(2) If I is a subtractive co-ideal of R, then δ1(I) = δ2(I) = δ3(I).
(3) δ1, δ2 and δ3 are Q-co-ideal expansions.
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Proof. (1). It is clear that δ1(I) ⊆ δ2(I). Let x ∈ δ2(I) = co-rad(I). So there
exists n ∈ N such that nx ∈ I; hence x ∈ cl(I), and so δ2(I) ⊆ δ3(I). Now, let
x ∈ δ3(I) = cl(I). So there exists a ∈ I such that ax ∈ I. It su�ces to show
that x ∈ ∩M , where M is a maximal co-ideal of R containing I. Let x /∈ M
for some maximal co-ideal M of R containing I. So F (M ∪ {x}) = R, which
implies 0 = axn + r for some a ∈ M . Since x ∈ cl(I), there exists b ∈ I such that
bx ∈ I ⊆ M . As M is a co-ideal of R, 0 = abnxn + rbn ∈ M , a contradiction.
Thus δ3(I) ⊆ δ4(I).

(2). Suppose that I is a subtractive co-ideal of R and let x ∈ δ2(I). So there
exists n ∈ N such that nx ∈ I; hence x ∈ I, and so δ1(I) = δ2(I) by (1). Now,
let x ∈ cl(I). Then ax ∈ I for some a ∈ I, so x ∈ I since I is subtractive. Thus
δ2(I) = δ3(I).

(3). It is clear that δ1 is a Q-co-ideal expansion. We show that δ2 is Q-co-
ideal expansion. For this lLet I be a Q-co-ideal. Since we have I ⊆ co-rad(I),
R = ∪{qI : q ∈ Q} ⊆ ∪{q(co-rad(I)) : q ∈ Q}, so R = ∪{q(co-rad(I)) : q ∈ Q}.
Let x ∈ q1(co-rad(I))∩q2(co-rad(I)), so x = q1a1 = q2a2, where a1, a2 ∈co-rad(I).
Thus there exist positive integer elements n, m such that na1,ma2 ∈ I. Suppose,
without loss of generality, n > m. Hence nx = q1(na1) = q2(na2) ∈ q1I ∩ q2I. So
q1 = q2 which gives co-rad(I) is a Q-strong co-ideal of R.

Now, we show that δ3 is a Q-co-ideal expansion. It is clear that we have
R = ∪{q(cl(I)) : q ∈ Q}. Let x ∈ q1(cl(I)) ∩ q2(cl(I)). So x = q1a1 = q2a2 for
some a1, a2 ∈ cl(I). Since I is a Q-co-ideal of R, there exists q ∈ Q such that
xI ⊆ qI. Since a1, a2 ∈ cl(I), there exist b1, b2 ∈ I such that a1b1, a2b2 ∈ I. Hence
xb1 = q1a1b1 ∈ q1I ∩ qI and xb2 = q2a2b2 ∈ q2I ∩ qI for some b1, b2 ∈ I. Thus
q1 = q = q2.

3. δ-primary co-ideals

In this section, we investigate δ-primary co-ideals of a commutative semiring R
which unify prime co-ideals and primary co-ideals of R.

De�nition 3.1. Let R be a semiring and δ be a co-ideal expansion. A proper
co-ideal I of a semiring R is called δ-primary if a+ b ∈ I and a /∈ I, then b ∈ δ(I).

One can easily show that I is δ1-primary if and only if it is a prime co-ideal of
R and I is δ2-primary if and only if I is a primary co-ideal of R.

Remark 3.2. Let I, J be co-ideals of the semiring R. The co-ideal quotient of I, J ,
denoted by (I : J), is the set {r ∈ R : r+J ⊆ I} = {r ∈ R : r+x ∈ I for all x ∈ J}
such that (I : J) is closed under multiplication. For each a ∈ R, (I : a) denotes
the set {r ∈ R : r + a ∈ I} such that (I : a) is closed under multiplication. By [4,
Lemma 2.4], (I : J) is a co-ideal of R with I ⊆ (I : J), and (I : a) is a co-ideal of
R for each a ∈ R. Also, by [4, Example 2.2], the condition "(I : J) is closed under
multiplication" is not super�cial in the above de�nition.
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Theorem 3.3. Let R be a semiring and δ be a co-ideal expansion.

(1) If P is a δ-primary co-ideal of R and I * δ(P ), then (P : I) = P .

(2) For any δ-primary co-ideal P and any subset T of R, (P : T ) is δ-primary

co-ideal of R.

(3) The union of any directed collection of δ-primary co-ideals is δ-primary.

(4) If δ(I) ⊆ co-rad(I) for every δ-primary co-ideal I, then δ(I) = co-rad(I).

Proof. (1). It is clear that P ⊆ (P : I). Let x ∈ (P : I) and a ∈ I \ δ(P ). So
x+a ∈ P . Since P is δ-primary and a /∈ δ(P ), x ∈ P . So (P : I) ⊆ P , which gives
(P : I) = P .

(2). Let a + b ∈ (P : T ) and a /∈ (P : T ) for some a, b ∈ R. So a + t /∈ P
and a + b + t ∈ P for some t ∈ T . This implies b ∈ δ(P ) ⊆ δ(P : T ) since P is
δ-primary. Thus (P : T ) is a δ-primary co-ideal of R.

(3). Let
∑

= {Ii : i ∈ D} be a directed collection of primary co-ideals and
I = ∪i∈DIi. Let a + b ∈ I and a /∈ I. So there is i ∈ D such that a + b ∈ Ii and
a /∈ Ii. So b ∈ δ(Ii) ⊆ δ(I). Hence I is δ-primary.

(4). If I = co-rad(I), then δ(I) = I = co-rad(I). Suppose I 6= co-rad(I). Let
x ∈ co-rad(I). Then nx ∈ I for some the least positive integer n > 1. Now nx ∈ I
and (n− 1)x /∈ I gives x ∈ δ(I), and so we have equality.

De�nition 3.4. Let R be a semiring. A co-ideal expansion δ is said to be
intersection preserving if δ(I ∩ J) = δ(I) ∩ δ(J) for all co-ideals I, J of R.

Theorem 3.5. Let R be a semiring.

(1) δ1, δ2, δ3 and δ4 are intersection preserving co-ideal expansions.

(2) Assume that δ is an intersection preserving co-ideal expansion and let

Q1, . . . , Qn be δ-primary co-ideals of R with P = δ(Qi) for all 1 6 i 6 n.

Then Q =
n⋂

i=1

Qi is δ-primary.

Proof. (1). It is clear that δ1 is intersection preserving co-ideal expansion. By
[4, Lemma 2.2], δ2 is intersection preserving co-ideal expansion. We show that
cl(I∩J) = cl(I)∩cl(J). It is clear that cl(I∩J) ⊆ cl(I)∩cl(J). Let x ∈ cl(I)∩cl(J).
So there exist a ∈ I and b ∈ J such that ax ∈ I and bx ∈ J . Since I, J are co-
ideals of R, a + b ∈ I ∩ J . Hence x(a + b) = xa + xb ∈ I ∩ J , so x ∈ cl(I ∩ J).
Thus cl(I ∩ J) = cl(I) ∩ cl(J). By an argument like that in [2, Lemma 2.2],
δ4(I ∩ J) = δ4(I) ∩ δ4(J).

(2). Let x + y ∈ Q and x /∈ Q. So x /∈ Qi for some 1 6 i 6 n. Since
x + y ∈ Qi and Qi is δ-primary, y ∈ δ(Qi). As δ is intersection preserving,

δ(Q) = δ(
n⋂

i=1

Qi) =
n⋂

i=1

δ(Qi) = P , we have y ∈ δ(Q). Thus Q is δ-primary.

De�nition 3.6. Let R be a semiring with co-ideal expansion δ. An element x of
R is called δ-co-nilpotent if x ∈ δ(F ({1})).
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Remark 3.7. Let I be a Q-strong co-ideal of a semiring R with a subtractive co-
ideal expansion δ. Then an inspection will show that δ : Id(R/I) → Id(R/I) is a
subtractive co-ideal expansion of R/I, where δ̄(J/I) = δ(J)/I for each co-ideal J/I
of R/I (see [4, Theorem 3.4 and Theorem 3.5]). So δ̄({qeI}) = δ̄({I}) = δ(I)/I.

Theorem 3.8. Let I be a Q-strong co-ideal of a semiring R with a subtractive

co-ideal expansion δ. If J is a subtractive co-ideal of R with J ⊇ I, then J/I is a

δ-primary co-ideal of R/I if and only if J is a δ-primary co-ideal of R.

Proof. Suppose that J/I is a δ-primary co-ideal of R/I; we show J is a δ-primary
co-ideal of R. Let a + b ∈ J and a /∈ J . Since I is a Q-strong co-ideal of R, there
exist q1, q2 ∈ Q such that a ∈ q1I and b ∈ q2I. Let q1I⊕q2I = q3I, where q3 is the
unique element of Q such that q1I + q2I ⊆ q3I. It follows that a + b = q3d ∈ J for
some d ∈ I; so q3 ∈ J since J is subtractive; hence q1I⊕ q2I = q3I ∈ J/I. Clearly,
q1I /∈ J/I. Now J/I δ-primary gives, q2I ∈ δ(J/I) = δ(J)/I; so q2 ∈ δ(J). Hence
b ∈ δ(J).

Conversely, assume that J is a δ-primary co-ideal of R. We show J/I is δ̄-
primary. Let q1I ⊕ q2I ∈ J/I and q1I 6∈ J/I (so q1 6∈ J). Let q3 be the unique
element of Q such that q1I ⊕ q2I = q3I, where q1I + q2I ⊆ q3I. Since q3I ∈ J/I,
q3 ∈ J . Therefore q1 + q2 = q3j ∈ J for some j ∈ I. As J is δ-primary and q1 6∈ J ,
q2 ∈ δ(J). Therefore q2I ∈ δ̄(J/I) = δ(J)/I. Thus J/I is a δ-primary co-ideal of
a semiring R.

An element r of a commutative semiring R with identity is said to be identity-

summand if there exists 1 6= a ∈ R such that r + a = 1. The set of all identity-
summand elements of R is denoted by S(R).

Theorem 3.9. Let I be a Q-strong co-ideal of a semiring R with a subtractive

co-ideal expansion δ. Then the following statements are equivalent:

(1) I is δ-primary,

(2) S(R/I) ⊆ {qI : q ∈ Q ∩ δ(I)} = δ(I)/I,
(3) every identity-summand of R/I is δ̄-co-nilpotent,
(4) P/I ⊆ δ(I)/I for every P/I ∈ min(R/I), where min(R/I) is the set of

all minimal prime ideals of R/I.

Proof. (1) ⇒ (2). Let I be a δ-primary and qI ∈ S(R/I). Hence there exists
I 6= q′I ∈ R/I such that qI ⊕ q′I = qeI = I; so q + q′ ∈ I. Since I is δ-primary
and q′ /∈ I, q ∈ δ(I). Thus qI ∈ δ(I)/I.

(2) ⇒ (3). If qI ∈ S(R/I), then qI ∈ δ(I)/I by (2). By Remark 3.7, δ(I)/I =
δ̄({qeI}), which gives qI is δ̄-co-nilpotent.

(3) ⇒ (1). Let a + b ∈ I, a /∈ I. Since I is a Q-co-ideal of R, there exist
q1, q2 ∈ Q such that a ∈ q1I, b ∈ q2I. Let q1I ⊕ q2I = q3I, where q3 is the unique
element of Q such that q1I + q2I ⊆ q3I. So a + b ∈ q3I ∩ I, which gives q3 = qe.
Hence q1I ⊕ q2I = qeI = I. So q2I is an identity summand element of R/I. Thus
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q2I is δ-co-nilpotent, hence q2I ∈ δ̄({qeI}) = δ(I)/I, which implies q2 ∈ δ(I).
Hence b ∈ q2I ⊆ δ(I).

(1) ⇒ (4). Let P/I ∈ min(R/I). At �rst, we show that R/I \ P/I = (P/I)c is
a maximal additively closed subset of R/I with qeI /∈ (P/I)c. Set∑

= {S : (P/I)c ⊆ S, S is an additively closed subset of R/I and qeI /∈ S}

by Zorn's Lemma, has a maximal element M . Obviously, (P/I)c ⊆ M .
Consider the set

∆ = {L : L/I is a co−ideal of R/I and L/I ∩M = ∅}.

Since {I} is a co-ideal of R/I and {I} ∩M = ∅, ∆ 6= ∅. By Zorn's Lemma, ∆ has
maximal element T/I.

We show that T/I is prime. Let q1I ⊕ q2I ∈ T/I and q1I, q2I /∈ T/I. Then
T/I $ Ji = F (T/I ∪ {qiI}). Thus Ji ∩M 6= ∅ for each i = 1, 2. Let Xi ∈ Ji ∩M
for each i = 1, 2. We show J1 ∩ J2 = T/I. It is clear that T/I ⊆ J1 ∩ J2. For
qI ∈ J1 ∩ J2 we have

qI = r1I ⊕ c1I � (q1I)n = r2I ⊕ c2I � (q2I)m

for some r1I, r2I ∈ R/I, c1I, c2I ∈ T/I and n, m ∈ N. Since

c1I � (q1I ⊕ q2I)n = c1I � (q1I)n ⊕ (q2I)� (tI) ∈ T/I

for some tI ∈ R/I, we have

qI ⊕ q2I � tI = r1I ⊕ c1I � (q1I)n ⊕ (q2I)� (tI) ∈ T/I.

Hence (q2I)� (tI) ∈ (T/I : qI).
It can be easily checked that (T/I : qI) is a co-ideal of R. So q2I � tI ⊕ q2I ∈

(T/I : qI). By Lemma 2.3, qeI ⊕ tI = tI, hence

q2I = q2I(qeI ⊕ tI) = q2I � tI ⊕ q2I ∈ T/I.

Therefore (c2I) � (q2I)m ∈ (T/I : qI). So qI = r2I ⊕ c2I � (q2I)m ∈ (T/I : qI),
because (T/I : qI) is a co-ideal of R/I. Thus qI ⊕ qI = qI ∈ T/I. Therefore
J1 ∩ J2 = T/I. Hence X1 + X2 ∈ T/I ∩ M , a contradiction. Thus q1I ∈ T/I
or q2I ∈ T/I, which gives T/I is a prime co-ideal of R/I. Since T/I ∩ M = ∅,
M ⊆ (T/I)c. So (P/I)c ⊆ M ⊆ (T/I)c, which implies T/I ⊆ P/I. Since
P/I ∈ min(R/I), T/I = P/I. Thus (P/I)c is a maximal additively closed subset
of R/I which I /∈ (P/I)c.

Now, let qI ∈ P/I. Then

T = {q′I ⊕ n(qI) : I 6= q′I ∈ (P/I)c, n ∈ N ∪ {0}}
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is an additively closed subset of R/I which properly contains (P/I)c. But we
showed that (P/I)c is a maximal additively closed subset of R/I which I /∈ (P/I)c.
So I ∈ T . Hence q′I ⊕ n(qI) = I for some q′I ∈ (P/I)c, n ∈ N. Thus q′I ⊕ qI = I
by Lemma 2.3. So q+q′ ∈ I. Since q′ /∈ I and I is δ-primary, q ∈ δ(I) we conclude
that qI ∈ δ(I)/I.

(4) ⇒ (1). Let a + b ∈ I and a /∈ I. Since I is a Q-strong co-ideal of R,
there exist q1, q2 ∈ Q such that a ∈ q1I, b ∈ q2I. Let q1I ⊕ q2I = q3I. Since
a + b ∈ qeI ∩ q3I, q3 = qe. So q1I ⊕ q2I = I. It is clear that I ∈ P/I. So
q1I ⊕ q2I ∈ P/I. Hence q1I ∈ P/I or q2I ∈ P/I. Since P/I ⊆ δ(I)/I, q1 ∈ δ(I)
or q2 ∈ δ(I).

Theorem 3.10. Let I be a Q-strong co-ideal of a semiring R with a subtractive co-

ideal expansion δ. If I is δ-primary, then P ⊆ δ(I) for every subtractive co-ideal

P ∈ min(I). The converse holds if min(R/I) is �nite.

Proof. At �rst we show that if P is subtractive and P ∈ min(I), then P/I ∈
min(R/I). Let T/I be a prime co-ideal of R/I and T/I ⊆ P/I. Since R/I
is I-semiring, T/I is a subtractive co-ideal of R/I by [6, Proposition 2.5]. So
T/I = L/I where L is a subtractive prime co-ideal of R and I ⊆ L by [4, Theorem
3.6, Theorem 3.7]. We show L ⊆ P . Let x ∈ L. Since I is a Q-co-ideal of R, x = qa
for some q ∈ Q and a ∈ I. Because L is subtractive, q ∈ L. Thus qI ∈ L/I ⊆ P/I.
Hence q ∈ P . So x ∈ P . Thus L ⊆ P which implies L = P because P ∈ min(I).
Therefore P/I = L/I = T/I. Now, let x ∈ P . Since I is a Q-co-ideal of R, x = qa
for some q ∈ Q and a ∈ I. Since P is subtractive q ∈ P . Hence qI ∈ P/I, where
P/I ∈ min(R/I) by the above argument. Hence qI ∈ δ(I)/I by Theorem 3.9.
Thus q ∈ δ(I), which gives x ∈ δ(I).

Conversely, by [6,Theorem 2.8], I = ∩ΛPα/I, where Pα/I ∈ min(R/I). By
[6, Proposition 2.5], Pα/I is a subtractive co-ideal of R/I for each α ∈ Λ. So
Pα/I = Qα/I, where Qα is a subtractive co-ideal of R and I ⊆ Qα. We show that
I = ∩ΛQα. It is clear that I ⊆ ∩ΛQα. Let x ∈ ∩ΛQα. Since I is a Q-co-ideal of
R, x = qa for some q ∈ Q and a ∈ I. So q ∈ ∩ΛQα, because Q,

α s are subtractive
co-ideals of R. Thus qI ∈ ∩Qα/I = ∩Pα/I = {qeI}, hence q = qe and x ∈ I.
Therefore I = ∩ΛQα. Let L ∈ min(I). Hence I = ∩ΛQα ⊆ L. Since min(R/I)
is �nite, Λ is �nite, which gives Qα ⊆ L, because Qα is prime by [4, Theorem
3.7]. Thus Qα = L. Now, we show that I is δ-primary. Let a + b ∈ I for some
a, b ∈ R. Hence a + b ∈ Qα, where Qα is a subtractive co-ideal and Qα ∈ min(I).
By assumption, Qα ⊆ δ(I). Because Qα is prime a ∈ Qα ⊆ δ(I) or b ∈ Qα ⊆ δ(I),
which gives I is δ-primary.

De�nition 3.11. A co-ideal I of a semiring R with a co-ideal expansion δ is called
a δ-weakly primary if 1 6= a + b ∈ I, then a ∈ I or b ∈ δ(I) for each a, b ∈ R.

Theorem 3.12. Let J be a subtractive co-ideal of an I-semiring R with a sub-

tractive co-ideal expansion δ. Then the following are equivalent.

(1) J is δ-weakly primary.
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(2) For each a ∈ R \ δ(J), (J : a) = J ∪ (1 : a).
(3) (J : a) = J or (J : a) = (1 : a).

Proof. (1) ⇒ (2). Let a ∈ R \ δ(J) and b ∈ (J : a). Then a + b ∈ J . If
a + b = 1, then b ∈ (1 : a). If a + b 6= 1, then J δ-weakly primary gives b ∈ J . So
(J : a) ⊆ J ∪ (1 : a). The converse inclusion is clear.

(2) ⇒ (3). Let (J : a) 6= J and (J : a) 6= (1 : a). Then there exists d ∈ (J : a)
and c ∈ (J : a) such that d /∈ J and c /∈ J . Since J is subtractive, (J : a) is a
subtractive co-ideal of R, cd ∈ (J : a). Therefore cd ∈ J or cd ∈ (1 : a). This
implies that c = cd + c ∈ J or d = cd + d ∈ (1 : a), a contradiction.

(3) ⇒ (1). Let 1 6= a + b ∈ J and a /∈ δ(J). Then b ∈ (J : a) = J .

Theorem 3.13. Let R be an I-semiring with a subtractive co-ideal expansion δ.
If J is a subtractive δ-weakly primary co-ideal of R which is not δ-primary, then

J = {1}.

Proof. Let {1} 6= J . We show that J is δ-primary co-ideal of R. Let a + b ∈ J . If
a + b 6= 1, then J δ-weakly primary gives a ∈ J or b ∈ δ(J). So we may assume
that a + b = 1. As J 6= {1}, there exists 1 6= c ∈ J . So 1 6= c = ac + bc ∈ J implies
that ac ∈ J or bc ∈ δ(J). As J and δ(J) are subtractive, a ∈ J or b ∈ δ(J). Hence
J is δ-primary, a contradiction.
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