Free covering semigroups of topological *n*-ary semigroups

Wieslaw A. Dudek and Vladimir V. Mukhin

Abstract. Connections between the topology of an *n*-ary semigroup and the topology of its free covering semigroup are described.

Investigations of topological *n*-ary groups and *n*-ary semigroups were initiated by Čupona in 1970 when he studied the problem of embedding of some topological universal algebras into topological semigroups (see [4, 5] and [7]). By the way it turned out that topological *n*-ary groups may be defined in various ways. For n > 2 these definitions are equivalent, but for n = 2 some of these are not valid (for details see [14]). Properties of topological *n*-ary groups are strongly connected with the properties of their retracts [15]. On the other hand, each toplogical *n*-ary group can be embedded into some topological group (see [3] and [6]). The topology of this covering group is strongly connected with the topology of an initial *n*-ary group. Namely, Endres proved in [10] that topological properties of this topological group may be moved to its initial topological *n*-ary groups and conversely. For *n*-ary semigroups the situation is more complicated.

The topology on the *n*-ary semigroups can be defined by the systems of some maps [1]. Conditions under which a topology determined by the families of left invariant derivations is compatible with the *n*-ary operation are given in [9]. The problem of the embedding of some locally compact *n*-ary semigroups into locally compact *n*-ary groups is studied in [12]. Conditions under which an *n*-ary semigroup with a locally compact topology can be topologically embedded into a locally compact binary group as an open set were found in [11]. In [13] for topological *n*-ary semigroup is constructed in this way that the topology of an initial topological *n*-ary semigroup can be extended to a topology compatible with the semigroup operation on the covering semigroup.

Below we describe connections between the the topology of an *n*-ary semigroup and the topology of its free covering semigroup. For this we use the construction of free covering semigroup proposed in [8] and the following proposition from [2] (Chapter 1, §6, Proposition 6).

²⁰¹⁰ Mathematics Subject Classification: 20N15

 $^{{\}sf Keywords:} \ n{-}{\rm ary \ semigroup, \ covering \ semigroup, \ topological \ semigroup.}$

Proposition 1. Let ρ be an equivalence relation on a topological space X. Then a map f of X/ρ into a topological space Y is continuous if and only if $f \circ \varphi$, where φ is a cannonical map of X onto X/ρ , is continuous on X.

Let (G, []) be an *n*-ary semigroup. Further, for simplicity we will omit the operator symbol [] and instead of $[\dots [[x_1 \dots x_n]x_{n+1} \dots x_{2n-1}]x_{2n} \dots x_p]$, where p = k(n-1) + 1, we will write $[x_1, \dots, x_p]$. Additionally we put [x] = x for k = 0.

Let F be the set of non-empty words over G, i.e.,

$$F = \bigcup_{k \in \mathbb{N}} G^k = \{ (x_1, \dots, x_k) \mid k \in \mathbb{N}, x_j \in G \}.$$

On F we introduce the product $(x_1, \ldots, x_k) \diamond (y_1, \ldots, y_t) = (x_1, \ldots, x_k, y_1, \ldots, y_t)$. Then F with this product is a free semigroup.

Two elements $\alpha = (a_1, \ldots, a_p)$, $\beta = (b_1, \ldots, b_q)$ of F are strongly linked if and only if there exists an element $(d_1, \ldots, d_t) \in F$ and two sequences of non-negative integers $k_1 < k_2 < \ldots, k_p = t$, $m_1 < m_2 < \ldots < m_q = t$ such that

$$a_1 = [d_1 \dots d_{k_1}], \ a_2 = [d_{k_1+1} \dots d_{k_2}], \ \dots \ a_p = [d_{k_{p-1}+1} \dots d_{k_p}],$$

$$b_1 = [d_1 \dots d_{m_1}], \ b_2 = [d_{m_1+1} \dots d_{m_2}], \ \dots \ b_q = [d_{m_{p-1}+1} \dots d_{m_p}]$$

Two strongly linked elements $\alpha, \beta \in F$ are denoted by $\alpha \sim \beta$. The relation \sim is reflexive and symmetric. Its transitive closure \approx is a congruence on F (for details see [8]). The quotient semigroup $(F \not\approx, *)$ is called the *free covering semigroup* of an *n*-ary semigroup (G, []) and is denoted by F^* . The equivalence class of α , i.e., an element of F^* induced by α , is denoted by α^* .

The set $G^* = \{a^* \mid a \in G\}$ is an *n*-ary subsemigroup of $F \approx$ with the operation

$$[a_1^*a_2^*\dots a_n^*] = a_1^* * a_2^* * \dots * a_n^*.$$

The canonical mapping $\varphi(a) = a^*$ is an isomorphism from G onto G^* . So, we can identify the element $a \in G$ with the class a^* and G with G^* . Moreover, since $a^* = \beta^*$ if and only if $a = [b_1 \dots b_q]$, we can write F^* in the form

$$F^* = G_1 \cup G_2 \cup G_3 \cup \ldots \cup G_{n-1},$$

where $G_j = \{a_1 * a_2 * \cdots * a_j \mid a_1, \ldots, a_j \in G\}$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Let τ be a topology on G and let τ_k be a topology on the Cartesian product G^k obtained as a product of k topologies τ defined on k factors G. The sum of all topologies τ_k , (k = 1, 2, 3, ...), where $\tau_1 = \tau$, is denoted by τ_F . By τ_{F^*} we denote the factor topology on a free covering semigroup F^* .

Theorem 1. Let (G, []) be an n-ary semigroup. Then:

- 1) The semigroup (F,\diamond) endowed with a topology τ_{F} is a topological semigroup.
- 2) Each subset G^k is an open-closed subset of a topological space (F^*, τ_{F^*}) .

3) The free covering semigroup $(F^*, *)$ endowed with the topology τ_{F^*} has continuous left and right shifts.

Proof. The first statement is obvious. The second follows from the fact that

$$\varphi^{-1}(G_i) = \bigcup_{k=0}^{\infty} G^{k(n-1)+i} \in \tau_F$$

and it are saturated by the relation \approx .

To prove the third statement observe that each right shift $R_a(x) = x \diamond a$ by an element $a \in F$ is continuous on a semigroup (F, \diamond) . Therefore, the composition $\varphi \circ R_a$ is continuous. Since $\varphi \circ R_a = r_a \circ \varphi$, where $r_a(x^*) = x^* * a^*$, Proposition 1 implies that $r_a : F^* \to F^*$ also is continuous.

Similarly we can prove the continuity of each left shift of F^* .

An *n*-ary semigroup (G, []) with a topology τ is called a *topological n-ary* semigroup if (G, τ) is a topological space such that the *n*-ary operation [] is continuous (in all variables together).

Theorem 2. Let (G, []) be a topological n-ary semigroup with the topology τ . Then the restriction of the topology τ_{F^*} to G coincides with the topology τ .

Proof. Let $U \in \tau_{F^*}$ be an arbitrary non-empty subset of G. Then $\varphi^{-1}(U) \in \tau_F$. Hence, $U = \varphi^{-1}(U) \cap G \in \tau$.

Conversely, let $U \in \tau$ and $\alpha = (a_1, \ldots, a_p)$, where p = t(n-1) + 1, be an arbitrary element of $\varphi^{-1}(U)$. Then $a_1^* * a_2^* * \cdots * a_p^* \in U$. Thus $a_1^* * a_2^* * \cdots * a_p^* = [a_1 a_2 \ldots a_p]$. Since the operation [] is continuous, there are some open (in the topology τ) neighborhoods V_1, \ldots, V_p of points a_1^*, \ldots, a_p^* such that for all $x_i \in V_i$, $i = 1, \ldots, p$, we have $[x_1 \ldots x_p] \in U$. Consequently, $\varphi(x_1, \ldots, x_p) = x_1^* * \cdots * x_p^* = [x_1 \ldots x_p] \in U$, i.e., $\varphi^{-1}(U) \supset V_1 \times \cdots \times V_p \in \tau_F$. Hence, $\varphi^{-1}(U) \in \tau_F$ and $\varphi^{-1}(U)$ is saturated by the relation \approx . This implies that $U \in \tau_{F^*}$.

It is clear that the Cartesian product $F \times F$ with the operation $(x, y) \otimes (s, t) = (x \diamond s, y \diamond t)$ and the topology $\tau_{F \times F} = \tau_F \times \tau_F$ is a topological semigroup.

Consider on $F\times F$ the relation $\approx_{\scriptscriptstyle F\times F}$ defined by

$$(x,y) \approx_{F \times F} (s,t) \iff x \approx s \text{ and } y \approx t.$$

This relation is a congruence on $F \times F$ and $(F \times F)^* = F \times F/_{\approx_{F \times F}}$ with the standard factor-operation * is a semigroup. Then obviously

$$(x,y)^**(s,f)^* = ((x,y)\otimes (s,t))^* = (x\diamond s,y\diamond t)^* = (x^**s^*,y^**t^*)$$

and $(x, y)^* = (x^*, y^*)$. Therefore $(F \times F)^* = F^* \times F^*$. Hence, the canonical map ω of $F \times F$ onto $(F \times F)^*$ has the form $\omega = (\varphi, \varphi)$.

By $\tau_{(F \times F)^*}$ we denote the factor topology on the semigroup $(F \times F)^*$.

Theorem 3. The operation * from $F^* \times F^*$ with the topology $\tau_{(F \times F)^*}$ to F^* is a continuous.

Proof. Since $\diamond, \varphi, \omega$ are continuous and $(\varphi \circ \diamond)(\alpha, \beta) = (* \circ \omega)(\alpha, \beta)$ for all $\alpha, \beta \in F$, the proof follows from Proposition 1.

Corollary 1. If the topologies $\tau_{(F \times F)^*}$ and $\tau_{F^*} \times \tau_{F^*}$ coincides, then the semigroup $(F^*, *)$ endowed with the topology τ_{F^*} is a topological semigroup.

References

- H. Boujouf, The topology in the n-ary semigroups, definable by the deflection systems, (Russian), Voprosy Algebry 10 (1996), 187 - 189.
- [2] N. Bourbaki, Topologie générale. Structures topologiques, Hermann, Pais, 1965.
- [3] G. Crombez, G. Six, On topological n-groups, Abh. Math. Sem. Univ. Hamburg 41 (1974), 115 - 124.
- [4] G. Čupona, Imbeddings of topological algebras into topological semigroups, (Macedonian), Bull. Soc. Math. Phys. Macedoine 21 (1970), 37 - 42.
- [5] G. Čupona, On Cohn-Rebane's theorem, (Macedonian), Fac. Sci. Nat. Univ. Kiril et Metodij, Skopje, Annuaire, Math. Phys. Chim. 20 (1970), 5 – 14.
- [6] G. Čupona, On topological n-groups, Bull. Soc. Math. Phys. Macedoine Sci. and Arts, Contributions 6 (1974), 23 – 24.
- [7] G. Čupona, On a representation of algebras in semigroups, Makedon. Akad. Nauk. Umet. Oddel. Prirod.-Mat. Nauk. Prilozi 10 (1978), 518.
- [8] G. Čupona, N. Celakoski, On representation of n-associatives into semigroups, Maced. Akad. Sci. and Arts, Contributions 6 (1974), 23 – 24.
- [9] W. A. Dudek, V. V. Mukhin, On topological n-ary semigroups, Quasigroups and Related Systems 3 (1996), 73 – 88.
- [10] N. Endres, On topological n-groups and their corresponding groups, Discuss. Math. Algebra Stochastic Methods 15 (1995), 163 – 169.
- [11] V. V. Mukhin, On topological n-semigroups, Quasigroups and Related Systems 4 (1997), 39-49.
- [12] V. V. Mukhin, H. Boujouf, On the embedding of n-ary abelian topological semigroups into n-ary topological groups, (Russian), Voprosy Algebry 9 (1996), 157-160.
- [13] V. V. Mukhin, H. Boujouf, Topological n-ary semigroups, (Russian), Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk 1 (1999), 45 – 48.
- [14] S. A. Rusakov, Two definitions of a topological n-ary group, (Russian), Voprosy Algeby 5 (1990), 86 - 91.
- [15] M. Žižvić, A topological analogue of the Hosszú-Gluskin theorem, Mat. Vesnik 13(28) (1976), 233 - 235.

W.A. Dudek

Institute of Mathematics, Wroclaw University of Technology, 50-370 Wroclaw, Poland E-mail: wieslaw.dudek@pwr.edu.pl

V.V. Mukhin

Department of Mathematics, Cherepovets State University, 162 600 Cherepovets, Russia E-mail: mukhin@chsu.ru

Received June 21, 2013