## On two-sided bases of an ordered semigroup

Thawhat Changphas and Pisan Sammaprab

**Abstract**. We introduce the concept of two-sided base of an ordered semigroup, and study the structure of an ordered semigroup containing two-sided bases.

## 1. Preliminaries

Given a semigroup S, a subset A of S is called a *two-sided base* of S if it satisfies the following conditions:  $S = A \cup SA \cup AS \cup SAS$ , and if B is a subset of A such that  $S = B \cup SB \cup BS \cup SBS$  then B = A. This notion was introduced and studied by Fabrici [2]. Indeed, the author described the structure of semigroups containing two-sided bases. The purpose of this paper is to introduce the concept of two-sided base of an ordered semigroup, and extend the Fabrici's results to ordered semigroups.

A semigroup  $(S, \cdot)$  together with a partial order  $\leq$  that is *compatible* with the semigroup operation, meaning that, for any x, y, z in S,

$$x \leq y$$
 implies  $zx \leq zy$  and  $xz \leq yz$ ,

is called a partially ordered semigroup, or simply an ordered semigroup [1]. A nonempty subset T of an ordered semigroup  $(S, \cdot, \leq)$  is called a subsemigroup of S if, for any x, y in T,  $xy \in T$ .

Let  $(S, \cdot, \leq)$  be an ordered semigroup. For A, B nonempty subsets of S, we write AB for the set of all elements xy in S where  $x \in A$  and  $y \in B$ , and write (A] for the set of all elements  $x \in S$  such that  $x \leq a$  for some  $a \in A$ , i.e.,

$$(A] = \{ x \in S \mid x \leq a \text{ for some } a \in A \}$$

In particular, we write Ax for  $A\{x\}$ , and xA for  $\{x\}A$ . It was shown in [7] that the following hold:

- (1)  $A \subseteq (A];$
- (2)  $A \subseteq B \Rightarrow (A] \subseteq (B];$
- (3)  $(A](B] \subseteq (AB];$
- (4)  $(A \cup B] = (A] \cup (B];$

<sup>2010</sup> Mathematics Subject Classification: 06F05 Keywords: ordered semigroup, two-sided ideal, maximal ideal, two-sided base.

(5) ((A]] = (A].

The concepts of left, right and two-sided ideals of an ordered semigroup can be found in [3]. Let  $(S, \cdot, \leq)$  be an ordered semigroup. A nonempty subset A of S is called a *left* (respectively, *right*) *ideal* of S if it satisfies the following conditions:

- (i)  $SA \subseteq A$  (respectively,  $AS \subseteq A$ );
- (ii) A = (A], that is, for any x in A and y in S,  $y \leq x$  implies  $y \in A$ .

If A is both a left and a right ideal of S, then A is called a *two-sided ideal*, or simply an *ideal* of S. If A and B are ideals of S, then the union  $A \cup B$  is an ideal of S.

If A is a nonempty subset of an ordered semigroup  $(S, \cdot, \leq)$ , then the intersection of all ideals containing A of S, denoted by I(A), is an ideal containing A of S, and it is of the form

$$I(A) = (A \cup SA \cup AS \cup SAS].$$

In particular, we write  $I(\{a\})$  by  $I(a) = (a \cup Sa \cup aS \cup SaS]$  (this is called the *principal ideal generated by a*).

A proper ideal M of an ordered semigroup  $(S, \cdot, \leq)$  is said to be *maximal* if there is no a proper ideal A of S such that  $M \subset A$ . The symbol  $\subset$  stands for proper inclusion for sets.

## 2. Ordered semigroups containing two-sided bases

We begin this section with the definition of two-sided base of an ordered semigroup; it is more general than that of a two-sided base of a semigroup (without order).

**Definition 2.1.** Let  $(S, \cdot, \leq)$  be an ordered semigroup. A subset A of S is called a *two-sided base* of S if it satisfies the following conditions:

(i) 
$$S = I(A);$$

(ii) if B is a subset of A such that S = I(B), then B = A.

**Example 2.2.** ([6]) Let  $(S, \cdot, \leq)$  be an ordered semigroup such that the multiplication and the partial order are defined by:

The covering relation and the figure of S are given by:

$$< = \{(a, d), (c, e)\}$$

We have  $\{b\}$  is the only one two-sided base of S.

**Example 2.3.** ([5]) Let  $(S, \cdot, \leq)$  be an ordered semigroup such that the multiplication and the order relation are defined by:

$$\begin{array}{c|c|c} \cdot & a & b & c & d & e \\ \hline a & a & a & c & a & c \\ b & a & a & c & a & c \\ c & a & a & c & a & c \\ c & a & a & c & a & c \\ d & d & e & d & e \\ e & d & d & e & d & e \\ \hline \leqslant = \{(a,a), (a,b), (a,c), (a,d), (a,e), (b,b), (b,c), \\ (b,d), (b,e), (c,c), (c,e), (d,d), (d,e), (e,e)\}. \end{array}$$

The covering relation and the figure of S are given by:

$$< = \{(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, e), (d, e)\}$$

The two-sided bases of S are  $\{a\}$ ,  $\{b\}$ ,  $\{c\}$ ,  $\{d\}$  and  $\{e\}$ .

**Example 2.4.** ([9]) Let  $(S, \cdot, \leq)$  be an ordered semigroup such that the multiplication and the order relation are defined by:

$$\leq = \{(a, a), (a, b), (a, c), (a, d), (b, b), (c, c), (d, d)\}.$$

The covering relation and the figure of S are given by:



The two-sided base of S is  $\{c, d\}$ .

Beside the partial order  $\leq$  on an ordered semigroup  $(S, \cdot, \leq)$ , we define  $\leq_I$  a quasi-order on S as follows: for any a, b in S, let

$$a \preceq_I b$$
 if and only if  $I(a) \subseteq I(b)$ .

The symbol  $a \prec_I b$  stands for  $a \preceq_I b$ , but  $a \neq b$ . It is clear that, for any a, b in S,  $a \leq b$  implies  $a \preceq_I b$ . The following example shows that the converse statement is not valid in general.

**Example 2.5.** ([4]) Let  $(S, \cdot, \leq)$  be an ordered semigroup such that the multiplication and the order relation are defined by:

$$\leq = \{(a, a), (b, b), (b, c), (b, e), (c, c), (d, a), (d, d), (d, e), (e, e)\}.$$

The covering relation and the figure of S are given by:



We have  $b \leq_I a$ , but  $b \leq a$  is false.

**Theorem 2.6.** A subset A of an ordered semigroup  $(S, \cdot, \leq)$  is a two-sided base of S if and only if it satisfies the following conditions:

- (i) for any x in S there exists a in A such that  $x \leq_I a$ ;
- (ii) for any  $a, b \in A$ , if  $a \neq b$ , then neither  $a \preceq_I b$  nor  $b \preceq_I a$ .

*Proof.* Assume that A is a two-sided base of S. If  $x \in S$ , then  $x \in I(A)$ ; hence  $x \preceq_I a$  for some a in A. This shows that (i) holds. Let a, b be elements of A such  $a \neq b$ . Suppose  $a \preceq_I b$ . We set  $B = A \setminus \{a\}$ . Then  $b \in B$ . Let x be an element of S. By (i), there exists c in A such that  $x \preceq_I c$ . There are two cases to consider. If  $c \neq a$ , then  $c \in B$ ; thus  $I(x) \subseteq I(c) \subseteq I(B)$ . Hence S = I(B). This is a contradiction. If c = a, then  $x \preceq_I b$ ; hence  $x \in I(B)$  since  $b \in B$ . We have S = I(B). This is a contradiction. The case  $b \preceq_I a$  is proved similarly. Thus (ii) holds true.

Conversely, assume that the conditions (i) and (ii) hold. It follows from (i) that S = I(A). Suppose that S = I(B) for some a proper subset B of A. Let a be an element of  $A \setminus B$ . We have  $a \in I(B)$ . By (iii),  $a \in (SB \cup BS \cup SBS]$ . This implies that  $a \preceq_I b$  for some b in B. This contradicts to (ii). Hence A is a two-sided base of S.

**Lemma 2.7.** Let A be a two-sided base of an ordered semigroup  $(S, \cdot, \leq)$ . For any a, b in A, if  $a \in (Sb \cup bS \cup SbS]$ , then a = b.

*Proof.* Let a, b be any elements of A such that  $a \in (Sb \cup bS \cup SAS]$  and  $a \neq b$ . We set  $B = A \setminus \{a\}$ . Then  $b \in B$ . Since

$$I(a) \subseteq (Sb \cup bS \cup SbS] \subseteq I(b) \subseteq I(B),$$

it follows that  $I(A) \subseteq I(B)$ , and so S = I(B). This is a contradiction since A is a two-sided base of S. Hence a = b.

**Theorem 2.8.** Let A be a two-sided base of an ordered semigroup  $(S, \cdot, \leq)$  such that I(a) = I(b) for some a in A and b in S. If  $a \neq b$ , then S contains at least two two-sided bases.

*Proof.* Assume that  $a \neq b$ . Suppose  $b \in A$ . Since  $a \leq_I b$ , it follows by Theorem 2.6 that  $a \in (Sb \cup bS \cup SbS]$ ; hence a = b by Lemma 2.7. This is a contradiction. Thus  $b \in S \setminus A$ . We set  $A_1 = (A \setminus \{a\}) \cup \{b\}$ . If  $A_1$  is a two-sided base of S, then we obtain the assertion since  $A_1 \neq A$ . This is proved using Theorem 2.6 as follows.

Let  $x \in A \setminus \{a\}$ . If  $x \leq_I b$ , then by I(b) = I(a) it follows that  $I(x) \subseteq I(a)$ . By Lemma 2.7, x = a. This is a contradiction. Thus  $x \leq_I b$  is false. Similarly, if  $b \leq_I x$ , then  $b \leq_I x$  is false. Let x be an element of S. Then there exists  $c \in A$  such that  $x \leq_I c$ . If  $c \neq a$ , then  $c \in A_1$ . If c = a, then I(c) = I(b); hence  $x \leq_I b$ .

The following corollary follows directly from Theorem 2.8.

**Corollary 2.9.** Let A be a two-sided base of an ordered semigroup  $(S, \cdot, \leq)$ , and let  $a \in A$ . If I(a) = I(x) for some x in S, then x is in a two-sided base which is different from A.

**Theorem 2.10.** Any two two-sided bases of an ordered semigroup  $(S, \cdot, \leq)$  have the same cardinality.

*Proof.* Let A and B be two two-sided bases of an ordered semigroup  $(S, \cdot, \leq)$ . Let  $a \in A$ . Since B is a two-sided base of S, we have  $a \preceq_I b$  for some b in B. Similarly, since A is a two-sided base of S we have  $b \preceq_I a'$  for some a' in A. By  $a \preceq_I a'$ , a = a'. This implies I(a) = I(b). Define a mapping

$$\varphi: A \to B$$
 by  $\varphi(a) = b$  for all  $a$  in  $A$ .

If  $a_1, a_2 \in A$  such that  $\varphi(a_1) = \varphi(a_2)$ , then  $I(a_1) = I(a_2)$ ; hence  $a_1 = a_2$  by Theorem 2.6. This shows that  $\varphi$  is one to one. Let  $b \in B$ . Then there exists a in A such that  $b \preceq_I a$ . Similarly, there exists b' in B such that  $a \preceq_I b'$ . Then  $b \preceq_I b'$ . Since I(b) = I(b'), so I(a) = I(b). Thus  $\varphi$  is onto.

In Example 2.3, it is easy to see that  $\{b\}$  is a two-sided base of S, but it is not a subsemigroup of S. This shows that a two-sided base of an ordered semigroup need not to be a subsemigroup in general. An element e of an ordered semigroup  $(S, \cdot, \leq)$  is called an *idempotent* if  $e^2 = e$ . The following theorem gives necessary and sufficient conditions of a two-sided base of S to be a subsemigroup of S.

**Theorem 2.11.** Let A be a two-sided base of an ordered semigroup  $(S, \cdot, \leq)$ . Then A is a subsemigroup of S if and only if  $A = \{a\}$  where  $a^2 = a$ .

*Proof.* Assume that A is a subsemigroup of S. Let a, b be elements of A. Then  $ab \in A$ . Since  $ab \in (Sb \cup bS \cup SbS]$ , it follows by Lemma 2.7 that a = b. By  $ab \in (Sa \cup aS \cup SaS]$ , we have ab = a. Hence a = b. The converse statement is obvious.

This is a consequence of Theorem 2.11.

**Corollary 2.12.** Any ordered semigroup  $(S, \cdot, \leq)$  containing a two-sided base which is a subsemigroup contains an idempotent element.

**Theorem 2.13.** Let  $(S, \cdot, \leq)$  be an ordered semigroup, and let A be the union of all two-sided bases of S. If  $S \setminus A$  is nonempty, then it is an ideal of S.

*Proof.* Assume that  $S \setminus A$  is nonempty. Let  $a \in S \setminus A$ , and let  $x \in S$ . To show that  $xa \in S \setminus A$ , we assume that  $xa \in A$ . Then  $xa \in A_1$  for some a two-sided base  $A_1$  of S. Let xa = b for some b in  $A_1$ . Then  $b \in Sa$ ; thus  $I(b) \subseteq I(a)$ . If I(b) = I(a), then by Corollary 2.9 we have  $a \in A$ . This is a contradiction. Hence  $b \prec_I a$ . Since  $A_1$  is a two-sided base, there exists c in  $A_1$  such that  $a \preceq_I c$ . We have  $b \prec_I a \preceq_I c$ . This is a contradiction. Hence  $xa \in S \setminus A$ . Let  $x \in S \setminus A$  and  $y \in S$  such that  $y \leq x$ . If  $y \in A$ , then  $y \in A_2$  for some a two-sided base  $A_2$  of S. Let  $z \in A_2$  be such that  $x \preceq_I z$ . Since  $y \preceq_I x$ , so  $y \preceq_I z$ . This is a contradiction. Hence  $S \setminus A$  is an ideal of S.

**Theorem 2.14.** Let A be the union of all two-sided bases of an ordered semigroup  $(S, \cdot, \leq)$  such that  $\emptyset \neq A \subset S$ . Let  $M^*$  be a proper ideal of S containing every proper ideal of S. The following statements are equivalent:

- (1)  $S \setminus A$  is a maximal ideal of S;
- (2)  $A \subseteq I(a)$  for every a in A;
- (3)  $S \setminus A = M^*;$
- (4) Every two-sided bases of S is a singleton set.

*Proof.* The proof is a modification of the proof of Theorem 6 in [2].

(1)  $\Leftrightarrow$  (2). If there is an element a of A such that  $A \subseteq I(a)$  is false, then  $(S \setminus A) \cup I(a)$  is a proper two-sided ideal of S. This contradicts to the maximality of  $S \setminus A$ . Conversely, assume that for every element a in  $A, A \subseteq I(a)$ . By Theorem 2.13,  $S \setminus A$  is an ideal of S. Let M be an ideal of S such that  $S \setminus A \subset M \subset S$ . Then  $M \cap A$  is nonempty, i.e., there is an element c in  $M \cap A$ . We have

$$(Sc] \subseteq (SM] \subseteq M, (cS] \subseteq (MS] \subseteq M, (ScS] \subseteq (SMS] \subseteq (SM] \subseteq M.$$

Thus

$$S = (S \setminus A) \cup A \subseteq (S \setminus A) \cup I(c) \subseteq M.$$

This is a contradiction. Hence  $S \setminus A$  is a maximal ideal of S.

(3)  $\Leftrightarrow$  (4). Assume that  $S \setminus A = M^*$ . Let  $a \in A$ . Then  $S \setminus A \subseteq I(a)$ . Since  $A \subseteq I(a)$ , so S = I(a). Hence  $\{a\}$  is a two-sided base of S. Conversely, assume that every two-sided base of S is a singleton set. Then S = I(a) for all a in A. Let M be an ideal of S such that M is not contained in  $S \setminus A$ . Then there exists x in  $A \cap M$ . Since

$$(Sx] \subseteq (SM] \subseteq M, (xS] \subseteq (MS] \subseteq M \text{ and } (SxS] \subseteq (SMS] \subseteq M,$$

we have  $S = I(x) \subseteq M$ , and so S = M.

(1)  $\Leftrightarrow$  (3). Assume that  $S \setminus A$  is a maximal ideal of S. Let M be an ideal of S such that M is not contained in  $S \setminus A$ . Then  $M = A \cup X$  for some  $X \subseteq S \setminus A$ . This implies that M = S. Thus  $S \setminus A = M^*$ . The converse is obvious.  $\Box$ 

## References

- G. Birkhoff, Lattice Theory, 25, Rhode Island, American Mathematical Society Colloquium Publications, Am. Math. Soc, Providence, 1984.
- [2] I. Fabrici, Two-sided bases of semigroups, Matematicky casopis, 25 (1975), 173-178.
- [3] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japonica, 35 (1990), 1051-1056.
- [4] N. Kehayopulu, M. Tsingelis, A note on ordered groupoids-semigroups, Scientiae Math., 3 (2000), 251 - 255.

- [5] N. Kehayopulu, On completely regular ordered semigroups, Scinetiae Math., 1 (1998), 27-32.
- [6] N. Kehayopulu and M. Tsingelis, On subdirectly irreducible ordered semigroups, Semigroup Forum, 50 (1995), 161 - 177.
- [7] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math., 25 (2002), 609 - 615.
- [8] T. Tamura, One sided-bases and translations of a semigroup, Math. Japan, 3 (1955), 137-141.
- [9] X. Y. Xie and J. Tang, Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets, Iranian J. Fuzzy Systems, 7 (2010), 121-140.

Received January 14, 2014

Department of Mathematics Faculty of Science Khon Kaen University Khon Kaen 40002 Thailand E-mail: thacha@kku.ac.th