On sheaf spaces of partially ordered quasigroups

Ján Brajerčík and Milan Demko

Abstract. The conditions under which a partially ordered quasigroup can be represented as sections of a sheaf space of partially ordered quasigroups are investigated.

1. Introduction

There are known some characterizations of representable lattice ordered groups, i.e., lattice ordered groups, shortly l-groups, which are l-isomorphic to a subdirect product of totally ordered groups; see, e.g., [2]. One of these characterizations is based on the theory of sheaf spaces of l-groups. The central theorem used for this purpose gives the conditions (using ideals of l-groups) under which an l-group can be represented as sections of a sheaf space of l-groups (see [2, Theorem 49.4]). In this paper we generalize this result for partially ordered quasigroups.

2. Preliminaries

A quasigroup is an algebra $(Q, \cdot, \backslash, /)$ with three binary operations $\cdot, \backslash, /$ satisfying the following identities

$$y \setminus (y \cdot x) = x;$$
 $(x \cdot y)/y = x;$ $y \cdot (y \setminus x) = x;$ $(x/y) \cdot y = x.$ (1)

It is easy to see that

$$x/(y\backslash x) = y; \qquad (x/y)\backslash x = y \tag{2}$$

follow from (1). Further, the identities (1) imply that, given $a, b \in Q$, the equations $b \cdot x = a$ and $y \cdot b = a$ have unique solutions $x = b \setminus a$ and y = a/b, respectively. Conversely, if G is a groupoid such that the equations $b \cdot x = a$ and $y \cdot b = a$ have unique solutions $x, y \in G$, then G is a quasigroup, where $b \setminus a$ and a/b are defined as the solution of the equation $b \cdot x = a$ or $x \cdot b = a$, respectively. Clearly, every group is a quasigroup with $x/y = x \cdot y^{-1}$ and $y \setminus x = y^{-1} \cdot x$. General information concerning the properties of quasigroups can be found, e.g., in [1], [5].

A quasigroup $(Q, \cdot, \backslash, /)$ with a binary relation \leq is called a *partially ordered* quasigroup (po-quasigroup) if

²⁰¹⁰ Mathematics Subject Classification: 06F99, 20N05, 54B40.

Keywords: sheaf space, partially ordered quasigroup.

The second author acknowledges the support of the Slovak VEGA Grant No. 1/0063/14.

- (i) (Q, \leq) is a partially ordered set,
- (ii) for all $x, y, a \in Q, x \leq y$ implies

 $ax \leq ay, \ xa \leq ya, \ x/a \leq y/a, \ a \setminus x \leq a \setminus y, \ a/y \leq a/x, \ y \setminus a \leq x \setminus a.$

For a po-quasigroup we will use the notation $\mathcal{Q} = (Q, \cdot, \backslash, /, \leq)$. Clearly, every partially ordered group is a po-quasigroup.

A partially ordered quasigroup Q is called a *lattice ordered quasigroup* (shortly *l-quasigroup*), if \leq is a lattice order. Analogously to the case of the lattice ordered groups it can be proved that for *l*-quasigroups the following identities, determining the relationship between the quasigroup operations and the lattice operations \vee , \wedge , hold

- (L1) $a(b \lor c) = ab \lor ac; (b \lor c)a = ba \lor ca,$ $a(b \land c) = ab \land ac; (b \land c)a = ba \land ca.$
- (L2) $(b \lor c)/a = (b/a) \lor (c/a); a \land (b \lor c) = (a \land b) \lor (a \land c), (b \land c)/a = (b/a) \land (c/a); a \land (b \land c) = (a \land b) \land (a \land c).$
- (L3) $a/(b \lor c) = (a/b) \land (a/c); (b \lor c) \land a = (b \land a) \land (c \land a),$ $a/(b \land c) = (a/b) \lor (a/c); (b \land c) \land a = (b \land a) \lor (c \land a).$

Here we prove only the first identity from (L3); the proofs of remaining identities are analogous. Since $b, c \leq b \lor c$, we have $a/(b \lor c) \leq a/b, a/c$, and therefore $a/(b \lor c) \leq (a/b) \land (a/c)$. On the other hand, $(a/b) \land (a/c) \leq a/b, a/c$. Using (2) we obtain $c, b \leq ((a/b) \land (a/c)) \setminus a$, which implies $b \lor c \leq ((a/b) \land (a/c)) \setminus a$. Hence $(a/b) \land (a/c) \leq a/(b \lor c)$. Therefore we can conclude that $a/(b \lor c) = (a/b) \land (a/c)$.

Let \mathcal{Q} and \mathcal{H} be the partially ordered quasigroups. We say that a mapping $\Phi: Q \to H$ is an *o-embedding* of \mathcal{Q} into \mathcal{H} if Φ is a quasigroup homomorphism and

$$\Phi(x) \leqslant \Phi(y) \Longleftrightarrow x \leqslant y.$$

In that case we say that \mathcal{Q} is o-embedded into \mathcal{H} .

Let $\mathcal{Q} = (Q, \cdot, \backslash, /, \leqslant)$ be a partially ordered quasigroup. Let θ be a congruence relation on $(Q, \cdot, \backslash, /)$. The congruence class of θ containing $a \in Q$ will be denoted by $[a]\theta$, i.e., $[a]\theta = \{x \in Q | x\theta a\}$. Clearly, every congruence class $[a]\theta$ is a partially ordered set under the relation induced by \leqslant . We say that θ is a *convex congruence relation* on \mathcal{Q} if θ is a congruence relation on $(Q, \cdot, \backslash, /)$ and there exists $a \in Q$ such that the congruence class $[a]\theta$ is a convex subset of \mathcal{Q} . We say that θ is a *directed congruence relation* on \mathcal{Q} if θ is a congruence relation on $(Q, \cdot, \backslash, /)$ and there exists $a \in Q$ such that the congruence class $[a]\theta$ is a directed subset of \mathcal{Q} (i.e., for each $x, y \in [a]\theta$ there exist $u, v \in [a]\theta$ such that $u \leqslant x, y$ and $x, y \leqslant v$).

Let \mathcal{Q} be a po-quasigroup and let θ be a convex congruence relation on \mathcal{Q} . Let us put

 $[x]\theta \leq [y]\theta$ if and only if there exist $x_0 \in [x]\theta, y_0 \in [y]\theta$ such that $x_0 \leq y_0$. (3)

A quotient-quasigroup $(Q, \cdot, \backslash, /)/\theta$ with the relation defined by (3) is a partially ordered quasigroup; it will be denoted by Q/θ (see [3, Theorem 2.6]). If Q is an *l*-quasigroup and θ is a convex directed congruence relation on Q, then Q/θ is an *l*-quasigroup with the lattice operations \lor and \land defined by (see [3])

$$[x]\theta \lor [y]\theta = [x \lor y]\theta; \ [x]\theta \land [y]\theta = [x \land y]\theta$$

3. Sheaf spaces of po-quasigroups

Let E and X be topological spaces. A continuous mapping $\sigma : E \to X$ is called a local homeomorphism, if each point $s \in E$ has a neighborhood V such that $\sigma(V)$ is an open set in X and the restricted mapping $\sigma|_V : V \to \sigma(V)$ is a homeomorphism. If $x \in X$ is a point, the set $E_x = \sigma^{-1}(x)$ is called the fibre over x. Let U be an open set in X. A continuous mapping $f : U \to E$ such that $f(x) \in \sigma^{-1}(x)$ for all $x \in U$ is called a continuous local section of σ over U. If σ is surjective and U = X, f is called a continuous global section. The basic facts on sections of a local homeomorphism can be find, e.g., in [4]. For the sake of convenience, we summarize here some results which will be frequently used.

Proposition 3.1. (cf. [4, Lemma 1])

- (i) A local homeomorphism is an open mapping.
- (ii) The restriction of a local homeomorphism to a topological subspace is a local homeomorphism.

Proposition 3.2. (cf. [4, Lemma 2]) Let $\sigma: E \to X$ be a local homeomorphism.

- (i) To each point $s \in E$ there exist a neighborhood U of $x = \sigma(s)$ and a continuous section $f: U \to E$ such that f(x) = s.
- (ii) Let f be a continuous section of E over an open subset U of X. To each point $x \in U$ and each neighborhood V of f(x) such that $\sigma(V)$ is open and $\sigma|_V$ is a homeomorphism, there exists a neighborhood U_0 of x such that $f(U_0) \subseteq V$ and $f|_{U_0} = (\sigma|_V)^{-1}|_{U_0}$.
- (iii) If U, V are open sets in X, and $f: U \to E$, $g: V \to E$ are continuous sections, then the set $\{x \in U \cap V \mid f(x) = g(x)\}$ is open.
- (iv) Every continuous section of E defined on an open set is an open mapping.

Proposition 3.3. (cf. [4, Lemma 3]) Let $\sigma: E \to X$ be a local homeomorphism.

- (i) The open sets $V \subseteq E$ such that $\sigma|_V : V \to \sigma(V)$ is a homeomorphism form a basis of the topology of E.
- (ii) The topology of E coincides with the final topology associated with the set of all continuous sections of E.

Let $\sigma: E \to X$ be a local homeomorphism. For any $U \subseteq X$ we denote

$$E_U = \bigcup_{x \in U} E_x.$$

Immediately from the definition of a local homeomorphism we obtain

Lemma 3.4. If $U \subseteq X$ is open in X, then E_U is an open set in E.

By $E\Delta E$ we denote the set $\bigcup_{x\in X} (E_x \times E_x)$ with the induced topology from $E \times E$.

Definition 3.5. Let E and X be topological spaces and let $\sigma : E \to X$ be a surjective local homeomorphism. We say that a triplet (E, X, σ) is a *sheaf space* of po-quasigroups if

- (i) each fibre E_x is a po-quasigroup,
- (ii) the mappings $(s,t) \mapsto s \cdot t$, $(s,t) \mapsto t \setminus s$ and $(s,t) \mapsto s/t$ from $E\Delta E$ to E are continuous.

Definition 3.6. A sheaf space of po-quasigroups (E, X, σ) is said to be a *sheaf* space of *l*-quasigroups if each fibre E_x is an *l*-quasigroup and the mappings

$$(s,t) \mapsto s \lor t, \qquad (s,t) \mapsto s \land t$$

from $E\Delta E$ to E are continuous.

Let (E, X, σ) be a sheaf space of po-quasigroups. Let f, g be continuous sections defined over the same open set $U \subseteq X$. Define $fg, g \setminus f$ and f/g by

$$(fg)(x) = f(x) \cdot g(x); \quad (g \setminus f)(x) = g(x) \setminus f(x); \quad (f/g)(x) = f(x)/g(x).$$

Since $\cdot, \backslash, /$ are continuous mappings from $E\Delta E$ to $E, fg, g \backslash f$ and f/g are continuous sections over U.

Lemma 3.7. Let (E, X, σ) be a sheaf space of po-quasigroups and let $f : U \to E$ be a continuous local section over an open set $U \subseteq X$. Then the mapping $\varphi_f : E_U \to E_U$; $E_x \ni s \mapsto f(x)/s$ is a homeomorphism.

Proof. By Lemma 3.4, E_U is an open set in E. Clearly, $\varphi_f : E_U \to E_U$; $E_x \ni s \mapsto f(x)/s$ is a bijection. Using (2) it is easy to verify that the inverse mapping $\varphi_f^{-1} : E_U \to E_U$ is defined by $E_x \ni s \mapsto s \setminus f(x)$.

Let $s \in E_U$, $\sigma(s) = x \in U$. Let $W \subseteq E_U$ be an open set, $f(x)/s \in W$. In view of Proposition 3.3(i) for the proof of the continuity of φ_f we may suppose that $\sigma|_W$ is a homeomorphism. Denote $(\sigma|_W)^{-1} = g$. Clearly, g is a continuous local section over $U_0 = \sigma(W)$ and g(x) = f(x)/s. Put $V = (g \setminus f)(U_0)$. Since $g \setminus f$ is a continuous local section, by Proposition 3.2(iv), V is open in E_U . Moreover, since $(g \setminus f)(x) = g(x) \setminus f(x) = (f(x)/s) \setminus f(x) = s$, we have $s \in V$. Further, if $t \in \varphi_f(V)$, then there is $u \in U_0$ such that $t = \varphi_f(g(u) \setminus f(u)) = f(u)/(g(u) \setminus f(u)) = g(u) \in W$. Thus $\varphi_f(V) \subseteq W$, and we can conclude that φ_f is continuous. The proof of the continuity of φ_f^{-1} is analogous. Let (E, X, σ) be a sheaf space of po-quasigroups. Consider the following condition:

(C) if f, g are continuous local sections over the same open set $U \subseteq X$ such that $\sup\{f(u), g(u)\}\ exists$ for each $u \in U$, then the set $\{\sup\{f(u), g(u)\} | u \in U\}\$ is open in E.

Lemma 3.8. Let (E, X, σ) be a sheaf space of po-quasigroups where fibres E_x are lattice ordered quasigroups. Then (E, X, σ) is a sheaf space of l-quasigroups if and only if (E, X, σ) satisfies the condition (C).

Proof. Suppose that (E, X, σ) satisfies the condition (C). Firstly we will show that \lor is continuous. Let (s, t) be an arbitrary point of $E\Delta E$, i.e., $s, t \in E_x$ for some $x \in X$. Let $W_{s \lor t}$ be an open set in $E, s \lor t \in W_{s \lor t}$. By Proposition 3.2(*i*) there exist an open set $U \subseteq X, x \in U$, and continuous local sections f, g over Uwith f(x) = s, g(x) = t. By (C), the set $W_{\sup} = \{f(u) \lor g(u) | u \in U\}$ is open in E. Denote $W_0 = W_{\sup} \cap W_{s \lor t}$. By Proposition 3.1(*i*), the set $U_0 = \sigma(W_0)$ is open in X which implies that $f(U_0)$ and $g(U_0)$ are open in E, and $\{(f(u), g(u)) | u \in U_0\} =$ $(f(U_0) \lor g(U_0)) \cap (E\Delta E)$ is open in $E\Delta E$ containing the point $(s, t) \in E\Delta E$. Since $f(U_0) \lor g(U_0) \equiv \{(f(u) \lor g(u)) | u \in U_0\} \subseteq W_0 \subseteq W_{s \lor t}$, we can conclude that \lor is continuous.

We are going to show that \wedge is continuous. Let $s, t \in E_x$. Let $W_{s \wedge t}$ be an open set in $E, s \wedge t \in W_{s \wedge t}$. In view of Proposition 3.3(i) for the proof of the continuity of \wedge we may suppose that $\sigma|_{W_{s \wedge t}}$ is a homeomorphism. Denote $f = (\sigma|_{W_{s \wedge t}})^{-1}$. Clearly, f is a continuous local section over $U = \sigma(W_{s \wedge t})$. By Lemma 3.7, the mapping $\varphi_f : E_U \to E_U; E_z \ni r \mapsto f(z)/r$ is a homeomorphism. Thus $W = \varphi_f(f(U))$ is open in E and $f(x)/(s \wedge t) \in W$. By (L3), $f(x)/(s \wedge t) =$ $(f(x)/s) \vee (f(x)/t)$ and since \vee is continuous, there exist neighborhoods V_s of f(x)/s and V_t of $f(x)/t, \sigma(V_s) = \sigma(V_t) \subseteq U$, such that $V_s \vee V_t \subseteq W$. Denote $W_s =$ $\varphi_f^{-1}(V_s)$ and $W_t = \varphi_f^{-1}(V_t)$. Since $\varphi_f^{-1}(f(x)/s) = (f(x)/s) \setminus f(x) = s$, we have $s \in W_s$. Analogously, $t \in W_t$. Further, if $p \in W_s, r \in W_t, \sigma(p) = \sigma(r) = z$, then $\varphi_f(p) \vee \varphi_f(r) = (f(z)/p) \vee (f(z)/r) \in V_s \vee V_t \subseteq W$, which yields $f(z)/(p \wedge r) \in W$. Hence $\varphi_f^{-1}(f(z)/(p \wedge r)) = p \wedge r \in f(U) \subseteq W_{s \wedge t}$. Thus $W_s \wedge W_t \subseteq W_{s \wedge t}$, and we can conclude that \wedge is continuous.

Conversely, let (E, X, σ) be a sheaf space of *l*-quasigroups. Suppose that f, g are continuous local sections over the same open set $U \subseteq X$. We are going to show that $W_{\sup} = \{f(u) \lor g(u) \mid u \in U\}$ is open in E. Let $x \in U$. By Proposition 3.3(*i*) there exists an open set W in $E, f(x) \lor g(x) \in W$, such that $\sigma|_W : W \to \sigma(W)$ is a homeomorphism. Since \lor is continuous, there exist an open set $U_0 \subseteq U \subseteq X$, $x \in U_0$, such that $W_0 = f(U_0) \lor g(U_0) \subseteq W$. Clearly, $W_0 \subseteq W_{\sup}$ and, since $W_0 = E_{U_0} \cap W$, by Lemma 3.4, W_0 is open. Thus we can conclude that W_{\sup} can be covered by open sets, which means that W_{\sup} is open in the topology of E. \Box

The sheaf space of *l*-groups is defined as a triplet (E, X, σ) such that each fibre E_x is an *l*-group, the mappings \cdot, \vee, \wedge are continuous from $E\Delta E$ to E and $^{-1}$ is continuous from E to E (see [2]). In view of Lemma 3.7 and Lemma 3.8 we have

Corollary 3.9. Let (E, X, σ) be a sheaf space of po-quasigroups satisfying (C). If E_x is an l-group for each $x \in X$, then (E, X, σ) is a sheaf space of l-groups.

Proof. Clearly, \cdot is continuous from $E\Delta E$ to E and, by Lemma 3.8, the lattice operations \vee and \wedge are also continuous. Consider the global section $e: X \to E$; $e(x) = e_x$, where e_x is the identity element of E_x ; e is a continuous global section (see [4]). Since for $s \in E_x$ we have $s^{-1} = e_x/s = e(x)/s$ and, by Lemma 3.7, $s \mapsto e(x)/s$ is a homeomorphism, we can conclude that $^{-1}$ is a continuous mapping from E to E.

Let (E, X, σ) be a sheaf space of po-quasigroups. Clearly, the direct product $\prod_{x \in X} E_x$ of po-quasigroups E_x is a po-quasigroup. Denote by \mathcal{R} the set of all continuous global sections of σ and define the relation \leq on \mathcal{R} by

$$g \leqslant h \iff g(x) \leqslant h(x) \text{ for all } x \in X.$$
 (4)

Let $\mathcal{R} \neq \emptyset$. Then \mathcal{R} with the operations \cdot , /, \ defined componentwise and the relation \leq defined by (4) is a po-quasigroup. Moreover, it is easy to see that

Lemma 3.10. If $\mathcal{R} \neq \emptyset$, then \mathcal{R} is a po-subquasigroup of the direct product $\prod_{x \in X} E_x$.

The following theorem generalizes the analogous result valid for lattice ordered groups (see [2, Theorem 49.4]).

Theorem 3.11. Let \mathcal{Q} be a po-quasigroup and let X be a topological space. Suppose that for each $x \in X$ there exists a convex congruence relation θ_x on \mathcal{Q} such that the following conditions are satisfied

- (i) for all $g, h \in Q$, the set $U_{gh} = \{x \in X \mid [g]\theta_x = [h]\theta_x\}$ is open in X,
- (ii) if $[g]\theta_x \leq [h]\theta_x$ for each $x \in X$, then $g \leq h$.

Then Q can be o-embedded into a po-quasigroup of the continuous global sections of some sheaf space of po-quasigroups over X. Especially, if Q is an l-quasigroup and θ_x are directed convex congruence relations on Q satisfying (i) and (ii), then Q can be o-embedded into an l-quasigroup of the continuous global sections of some sheaf space of l-quasigroups over X.

Proof. Let Q be a po-quasigroup such that (i) and (ii) are valid. We follow the idea of the construction of a sheaf space which was used for *l*-groups in the proof of Theorem 49.4 in [2]. Denote

$$E = \bigcup_{x \in X} E_x,$$

where $E_x = \mathcal{Q}/\theta_x \times \{x\}$ and define

$$\sigma: E \to X; \ ([g]\theta_x, x) \mapsto x.$$

Clearly, σ is a surjection. Further, for each $g \in Q$ we define

$$\widehat{g}: X \to E; x \mapsto ([g]\theta_x, x)$$

and consider the finest topology τ on E such that each \hat{g} is continuous. Denote

$$\mathbb{B} = \{\widehat{g}(U) \mid U \text{ is open in } X, g \in Q\}.$$

Let $\widehat{g}(U), \widehat{h}(V) \in \mathbb{B}$. By $(i), T = \{x \in X \mid \widehat{g}(x) = \widehat{h}(x)\}$ is an open set in X. Let $W = T \cap U \cap V$. Clearly, W is open in X, and $\widehat{g}(W) = \widehat{h}(W) \subseteq \widehat{g}(U) \cap \widehat{h}(V)$. Conversely, if $t \in \widehat{g}(U) \cap \widehat{h}(V)$, then $t = ([g]\theta_u, u) = ([h]\theta_u, u), u \in W$, which yields $t \in \widehat{g}(W)$. Therefore $\widehat{g}(U) \cap \widehat{h}(V) = \widehat{g}(W)$ and, since W is open in X, we can conclude that $\widehat{g}(U) \cap \widehat{h}(V) \in \mathbb{B}$. Thus \mathbb{B} is a basis for some topology τ_B on E. By (i), for any $\widehat{h}(U) \in \mathbb{B}$ and $g \in Q$ the set $(\widehat{g})^{-1}(\widehat{h}(U)) = U \cap \{x \in X \mid [g]\theta_x = [h]\theta_x\}$ is open in X, which yields $\tau_B \subseteq \tau$. On the other hand, let V be a τ -open set in E. For every $v = ([g]\theta_x, x) \in V$ the set $U = (\widehat{g})^{-1}(V)$ is open in X, $\widehat{g}(U) \subseteq V$ and $v \in \widehat{g}(U)$. Thus V is covered by τ_B -open sets. Therefore $\tau \subseteq \tau_B$ and so $\tau = \tau_B$.

Let $s \in E$, $s = ([g]\theta_x, x)$ and let U be a neighborhood of $x = \sigma(s)$ in X. Then $V = \hat{g}(U)$ is open in $E, s \in V$ and

$$\sigma \mid_V \circ \widehat{g} \mid_U = \mathrm{id}_U, \ \widehat{g} \mid_U \circ \sigma \mid_V = \mathrm{id}_V.$$

Thus $\sigma: E \to X: ([g]\theta_x, x) \mapsto x$ is a continuous mapping and $\sigma \mid_V: V \to U$ is a homeomorphism. We have that $\sigma: E \to X$ is a local homeomorphism with the fibres $E_x = \{\widehat{g}(x) \mid g \in Q\}$. Each fibre E_x is a po-quasigroup under the operations

$$\widehat{g}(x)\cdot\widehat{h}(x) = (\widehat{gh})(x); \quad (\widehat{g}(x)/\widehat{h}(x) = (\widehat{g/h})(x); \quad \widehat{g}(x)\setminus\widehat{h}(x) = (\widehat{g\setminus h})(x)$$

and the partial order

$$\widehat{g}(x) \leq \widehat{h}(x)$$
 iff there exist $g' \in [g]\theta_x, h' \in [h]\theta_x$ such that $g' \leq h'$.

For every open set W in E such that $\widehat{gh}(x) \in W$ there exists an open set U in X, $x \in U$, such that $\widehat{gh}(U) \subseteq W$. Since $V = \{(\widehat{g}(u), \widehat{h}(u)) \mid u \in U\}$ is open in $E\Delta E$ and $\widehat{g}(u) \cdot \widehat{h}(u) = \widehat{gh}(u)$ for each $u \in U$, we can conclude that the operation \cdot is continuous. Analogously, the operations $\backslash, /$ are continuous. Thus (E, X, σ) is a sheaf space of po-quasigroups.

Let \mathcal{R} be a po-quasigroup of all continuous global sections of (E, X, σ) . Define

$$\Phi: \mathcal{Q} \to \mathcal{R}; \quad g \mapsto \widehat{g}.$$

Clearly, Φ preserves the quasigroup operations. Further, by (*ii*), we have

$$g \leq h \Leftrightarrow [g]\theta_x \leq [h]\theta_x$$
 for all $x \in X \Leftrightarrow \widehat{g}(x) \leq \widehat{h}(x)$ for all $x \in X \Leftrightarrow \widehat{g} \leq \widehat{h}$.

Thus Φ is an o-embedding of \mathcal{Q} into \mathcal{R} .

If \mathcal{Q} is an *l*-quasigroup and θ_x are directed convex congruence relations on \mathcal{Q} , then \mathcal{Q}/θ_x are *l*-quasigroups, which yields that the fibres E_x are lattice ordered quasigroups under the lattice operations

$$\widehat{g}(x) \vee \widehat{h}(x) = (\widehat{g \vee h})(x); \quad \widehat{g}(x) \wedge \widehat{h}(x) = (\widehat{g \wedge h})(x).$$

By the same way as in the case of the quasigroup operations we can see that the mappings \vee and \wedge are continuous. Thus (E, X, σ) is a sheaf space of *l*-quasigroups. Clearly, \mathcal{R} is an *l*-quasigroup and $\Phi: g \mapsto \widehat{g}$ is an o-embedding of \mathcal{Q} into \mathcal{R} .

Remark. Let (E, X, σ) be the sheaf space constructed in the proof of Theorem 3.11. Let X be a Hausdorff space. Then E is a Hausdorff space if for all $g, h \in Q$, the set $U_{qh} = \{x \in X \mid [g]\theta_x = [h]\theta_x\}$ is open and also close in X. To prove this statement it suffices to use the same topological arguments as in the proof of Theorem 49.4 in [2].

References

- [1] V. D. Belousov, Foundations of the theory of quasigroups and loops, (Russian), Nauka, Moscow, 1967.
- [2] M. R. Darnel, Theory of latice-ordered groups, Marcel Dekker, Inc. New York, 1995.
- [3] M. Demko, On congruences and ideals of partially ordered quasigroups, Czech. Math. J. 58 (2008), 637 - 650.
- [4] D. Krupka, The geometry of Lagrange structures II. Elementary Sheaf Theory, Department of Mathematics, Silesian University, Opava, 1998.
- [5] H. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin, 1990.

Received March 08, 2013

Department of Physics, Mathematics and Techniques, University of Prešov, Ul. 17. novembra 1, 081 16 Prešov, Slovakia

E-mails: jan.brajercik@unipo.sk, milan.demko@unipo.sk