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Filter theory on hyper residuated lattices

Rajabali Borzooei, Mahmud Bakhshi and Omid Zahiri

Abstract. We apply the hyper structures to residuated lattices and introduce the notion of
hyper residuated lattice which is a generalization of the residuated lattice and veri�ed some
related results. Finally, we state and prove some theorems about �lters and deductive systems.

1. Introduction

Residuated lattices, introduced by Ward and Dilworth [12], are a common struc-
ture among algebras associated with logical systems. In this de�nition to any
bounded lattice (L,∨,∧, 0, 1), a multiplication `∗' and an operation `→' are equp-
ped such that (L, ∗, 1) is a commutative monoid and the pair (∗,→) is an adjoint
pair, i.e.,

x ∗ y 6 z if and only if x 6 y → z, ∀x, y, z ∈ L.

The main examples of residuated lattices are MV -algebras introduced by Chang
[4] and BL-algebras introduced by Hájek [9]. The hyperstructure theory was
introduced by Marty [10], at the 8th Congress of Scandinavian Mathematicians.
In his de�nition, a function f : A×A −→ P ∗(A), of the set A×A into the set of
all non-empty subsets of A, is called a binary hyperoperation, and the pair (A, f)
is called a hypergroupoid. If f is associative, A is called a semihypergroup, and it is
said to be commutative if f is commutative. Also, an element 1 ∈ A is called the
unit or the neutral element if a ∈ f(1, a), for all a ∈ A. Since then many researchers
have worked on this area. R. A. Borzooei et al. introduced and studied hyper K-
algebras [2] and S. Ghorbani et al. [8], applied the hyperstructures to MV -algebras
and introduced the concept of hyper MV -algebra, which is a generalization of
MV -algebra. In [11], Mittas et al. applied the hyperstructures to lattices and
introduced the concepts of a hyperlattice and supperlattice: A superlattice is a
partially ordered set (S;6) endowed with two binary hyperoperations ∨ and ∧
satisfying the following properties: for all a, b, c ∈ S,

(SL1) a ∈ (a ∨ a) ∩ (a ∧ a),
(SL2) a ∨ b = b ∨ a, a ∧ b = b ∧ a,
(SL3) (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c),
(SL4) a ∈ ((a ∨ b) ∧ a) ∩ ((a ∧ b) ∨ a),
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(SL5) a 6 b implies b ∈ a ∨ b and a ∈ a ∧ b,

(SL6) if a ∈ a ∧ b or b ∈ a ∨ b then a 6 b.

Hyperstructures have many applications to several sectors of both pure and
applied sciences. A short review of the theory of hyperstructures appear in [5].
In [6] a wealth of applications can be found, too. There are applications to the
following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy set and
rough sets, automata, cryptography, combinatorics, codes, arti�cial intelligence
and probabilities.

It is well know, the class of MV -algebras, BL-algebras, and Heyting algebras
are proper subclass of the class of residuated lattices. In this paper, as an applica-
tion of hyperstructures to residuated lattices, we introduce the notion of a hyper
residuated lattice. We de�ne the concepts of (weak) �lter and (weak) deductive
system, and verify their properties, as mentioned in the abstract. In fact, we want
to construct a hyper structure, which is more general than hyper MV -algebra and
hyper K-algebra.

2. Hyper residuated lattices

Throughout this paper, L will denote a hyper residuated lattice, unless otherwise
stated.

Let (X,6) be a partially ordered set and A,B be two subsets of X. Then we
write

• A � B, if there exist a ∈ A and b ∈ B such that a 6 b.

• A 6 B if for any a ∈ A, there exists b ∈ B such that a 6 b.

De�nition 2.1. [13] By a hyper residuated lattice we mean a non-empty set L
endowed with four binary hyperoperations ∨, ∧, �, → and two constants 0 and 1
satisfying the following conditions:

(HRL1) (L,≤,∨,∧, 0, 1) is a bounded superlattice,

(HRL2) (L,�, 1) is a commutative semihypergroup with 1 as the identity,

(HRL3) a� c � b if and only if c � a → b.

L is called nontrivial if 0 6= 1. An element a ∈ L is called scalar if |a� x| = 1, for
all x ∈ L.

Example 2.2. (i) Let S = [0, 1]. Then S with the natural ordering is a partially
ordered set. De�ne the hyperoperations ∨, ∧, �, and → on S as follows:

a� b = a ∧ b = min{a, b}, b ∨ a = a ∨ b =

 S, a = b,
S − {a}, a < b,
S − {b}, b < a
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a → b =
{

1, a 6 b,
b, a > b.

Then, it is easy to check that (S,∨,∧,�,→, 0, 1) satis�es the properties (HRL1)
−(HRL3) and so is a hyper residuated lattice.

(ii) Let L = [0, 1] and �, ∨ be the hyperoperations in (i). De�ne two hyperop-
erations ∧ and → on L as follows:

a ∧ b = {x ∈ L|x 6 a, x 6 b}, a → b =
{
{1}, a 6 b,
[b, 1], a > b.

It is not di�cult to check that (L,∨,∧,�,→, 0, 1) is a hyper residuated lattice.
(iii) Let (L = {0, a, b, 1},≤) be a chain such that 0 < a < b < 1. De�ne the

hyperoperations ∨ and ∧ on L as given in the tables 1 and 2:

Table 1 Table 2
∨ 0 a b 1
0 {0,a,b,1} {a,b,1} {b,1} {1}
a {a,b,1} {a,1,b} {b,1} {1}
b {b,1} {b,1} {b,1} {1}
1 {1,0} {1} {1} {1}

∧ 0 a b 1
0 {0} {0} {0} {0}
a {0} {0,a} {0,a} {0,a}
b {0} {0,a} {0,b,a} {0,b,a}
1 {0} {0,a} {0,b,a} {0,a,b,1}

Then (L,∨,∧, 0, 1) is a bounded hypper lattice. Let x � y = ∧ and de�ne the
hyperoperations → and  on L as given in the tables 3 and 4.

Table 3 Table 4
→ 0 a b 1
0 {1} {1} {1} {1}
a {a,b,1} {1,a} {1} {1}
b {a,1} {a} {b,1} {1}
1 {0,1} {a} {1,b} {1}

 0 a b 1
0 {1} {1,b} {1,b} {1,b}
a {a,b,1} {1} {1} {1}
b {a,b,1} {a} {1,b} {1,b}
1 {0,a,1} {1,a} {1} {1}

Routine calculations show that (L,∨,∧,�,→, 0, 1) and (L,∨,∧,�, , 0, 1) are hy-
per residuated lattices.

Proposition 2.3. In any hyper residuated lattice L, for all x, y, z ∈ L and

A,B,C ⊆ L, the following hold:

(1) 1 � A implies 1 ∈ A, for all non-empty subsets A of L,

(2) x 6 y implies 1 ∈ x → y, and if 1 is a scalar, the converse hold,

(3) 1 ∈ x → x, 1 ∈ x → 1, 1 ∈ 0 → x, if 1 is a scalar, x ∈ 1 → x,

(4) A � B → C if and only if A�B � C if and only if B � A → C,

(5) 0 ∈ x� 0, x � ¬¬x, where ¬x = x → 0,

(6) x� (x → y) � y, x� (x → y) � x,
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(7) x � y → (x� y),

(8) x� y � x, x� y � y. Particularly, 0 ∈ x� 0,

(9) A�B � A, A�B � B,

(10) A � x � B implies A � B. Moreover, if A ∩ B 6= ∅, then A � B and

B � A.

(11) x 6 y implies x� z � y � z,

(12) x 6 y implies z → x � z → y,

(13) x 6 y and x 6 z imply x � y ∧ z,

(14) y 6 x and z 6 x imply y ∨ z � x,

(15) x → y ⊆ {u |u� x � y},

(16) x 6 y implies y → z � x → z,

(17) If y′ is a scalar of L, then (x → y′)� (y′ → z) � x → z,

(18) x → (y → z) � (x� y) → z,

(19) (x� y) → z � x → (y → z).

Proof. The proofs of (3)− (7), (9), (11), (14), (15) and (19) are straightforward.
(1). If A ⊆ L is such that 1 � A, then 1 � a, for some a ∈ A whence

1 = a ∈ A.
(2). Assume that a 6 b. From a ∈ a � 1 it follows that a � 1 � b whence

1 � a → b. Thus, 1 ∈ a → b, by (1). Conversely, if 1 is a scalar, 1 ∈ a → b implies
that {a} = a� 1 � b, i.e., a 6 b.

(8). Since, y 6 1 ∈ x → x, so x� y � x. Similarly, it follows that x� y � y.
(10). Assume A � x and x � B. Then a � x and x � b, for some a ∈ A and

b ∈ B, whence a 6 b, i.e., A � B. The proof of other part is easy.
(12). Let x 6 y. Since, z � (z → x) � x, by (6), z � (z → x) � y and so

z → x � z → y.
(13). From x 6 a and x 6 b it follows that x ∈ x ∧ a and x ∈ x ∧ b whence

x ∈ x ∧ b ⊆ (x ∧ a) ∧ b = x ∧ (a ∧ b). Hence, there exists u ∈ a ∧ b such that
x ∈ x ∧ u and so x 6 u means that x � a ∧ b.

(16). Let x 6 y and z ∈ L. By (15), we have

y → z ⊆ {u ∈ L | y � u � z} = {u ∈ L | y � u → z} ⊆ {u ∈ L |x � u → z}
= {u ∈ L |u � x → z},

whence y → z � x → z.
(17). Let y′ be a scalar element of L, u ∈ x → y′ and v ∈ y′ → z. Then

u � x → y′ and so u� x � y′. By a similar way, v � y′ � z. Hence there exists
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a ∈ u�x such that a 6 y′ and so by (11), a�v � y′�v. Hence v�(u�x) � v�y′.
Since v� y′ � z and |v� y′| = 1, then we get that (v� u)� x = v� (u� x) � z.
Hence there exists b ∈ u � v such that x � b � z and so b � x → z. Since
b ∈ u� v ⊆ (x → y′)� (y′ → z), then (x → y′)� (y′ → z) � x → z.

(18). Let u ∈ x → (y → z). Then there exists a ∈ y → z such that u ∈ x → a.
Then we get that

u � x → a ⇒ u� x � a

⇒ u� x � y → z,

⇒ (u� x)� y � z, by (4),

⇒ u� (x� y) � z,

⇒ u � (x� y) → z, by (4).

Hence, x → (y → z) � (x� y) → z.

The next theorem shows that if there exists a hyper residuated lattice of order
n, then there exists a hyper residuated lattice of order n + 1.

Theorem 2.4. Each hyper residuated lattice of order n can be extend to a hyper

residuated lattice of order n + 1, for any n ∈ N.

Proof. Let L be a hyper residuated lattice of order n, for n ∈ N and e /∈ L. Set
L = L ∪ {e} and de�ne a relation 6′ on L by

z 6′ y ⇔ z 6 y, for all z, y ∈ L,

x 6′ e for all x ∈ L′.

Then (L,6′) is a poset and 0 and e are the minimum and the maximum elements
of L, respectively. We de�ne the binary hyperoperations ∨′,∧′,�′ and →′ on L
by

a∨′b =
{

a ∨ b if a, b ∈ L,
{e} if a = e or b = e.

a →′ b =


(a → b)∪{e} if a, b ∈ L, 1 ∈ a → b,
a → b if a, b ∈ L, 1 /∈ a → b,
{e} if b = e,
{b} if a = e.

a�′ b =


a� b if a, b ∈ L,
{a} if a ∈ L and b = e,
{b} if b ∈ L and a = e,
{e} if a = b = e.

a ∧′ b =


a ∧ b if a, b ∈ L,
{b} if b ∈ L and a = e,
{a} if a ∈ L and b = e,
{e} if a = b = e.

Routine calculation shows that (HRL1) and (HRL2) hold. We shall prove (HRL3).
Let x, y, z ∈ L.

(1). Let x, y, z ∈ L and 1 /∈ y → z. Then by de�nitions of �′ and 6′, we get

x�′ y �′ z ⇔ x� y � z ⇔ x � y → z ⇔ x �′ y →′ z.
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(2). Let x, y, z ∈ L and 1 ∈ y → z. If x �′ y �′ z, then by de�nition of →′,
e ∈ y →′ z and so x �′ y →′ z. Now, let x �′ y →′ z. Since 1 ∈ y → z, then
x � y → z and so x� y � z. Hence x�′ y = x� y �′ z.

(3). Let x, y ∈ L and z = e. Since y →′ z = {e} and u �′ e, for all u ∈ L′,
then x �′ y �′ z implies x �′ y →′ z. Now, let x �′ y →′ z. Since z = e, then
clearly, x�′ y �′ z.

(4). Let x, z ∈ L and y = e. Then x�′ y = {x} and y →′ z = {z}. Therefore,
x�′ y �′ z if and only if x �′ y →′ z.

(5). Let y, z ∈ L and x = e. Then x �′ y = {y}. If x �′ y = {y} �′ z, then
y �′ z. Since y, z ∈ L we get y � z and so 1 ∈ y → z. Hence e ∈ y →′ z and so
x �′ y →′ z. Now, let x �′ y →′ z. Then by de�nition of ≤′, we have e ∈ y →′ z
and so 1 ∈ y → z or z = e. Since y ∈ L, then y 6= e and so 1 ∈ y → z. Therefore,
x�′ y �′ z.

(6). Let x = y = e and z ∈ L. Then x �′ y = {e} and y →′ z = {z}. Hence
x�′ y = {e} �′ z and x �′ y →′ z = {z} are impossible.

(7). Let x = z = e and y ∈ L. Then x�′ y = {y} and y →′ z = {e}. Therefore,
x�′ y �′ z if and only if x �′ y →′ z.

An analogous result holds for y = z = e.
(8). For x = y = z = e, it is obvious.
Therefore, (L,∨′,∧′,�′,→′, 0, e) is a hyper residuated lattice of order n+1.

Corollary 2.5. For any n > 4 and n ∈ N, there exists at least one hyper residuated
lattice of order n.

Proof. By Example 2.2 and Theorem 2.4, the proof is clear.

3. (Weak) Filters and deductive systems

In this section, we introduce the concepts of (weak) �lters and (weak) deductive
systems in hyper residuated lattices and we give some related results. Then we
introduced special kinds of weak deductive systems in hyper residuated lattices
and verify the relation between them.

De�nition 3.1. [13] Let F be a non-empty subset of L satisfying
(F) x 6 y and x ∈ F imply y ∈ F .

then F is called a

• �lter if x� y ⊆ F , for all x, y ∈ F ,

• weak �lter if F � x� y, for all x, y ∈ F .

A �lter F of L is said to be proper if F 6= L and this is equivalent to that 0 /∈ F

Remark 3.2. Clearly, any �lter is a weak �lter. Moreover, 1 ∈ F , for any (weak)
�lter F of L.
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Example 3.3. In any hyper residuated lattice L, {1} is a weak �lter and L is a
�lter of L. Of course, in Example 2.2(i), {1} is a �lter and in Example 2.2(iii),
{a, b, 1} and {b, 1} are weak �lters of L. But, {1, b} is not a �lter.

The next theorem gives an equivalent condition for weak �lters.

Theorem 3.4. A non-empty subset F of L is a weak �lter if and only if it satis�es
(F) and (x� y) ∩ F 6= ∅, for all x, y ∈ F .

Proof. Straightforward.

De�nition 3.5. Let D be a non-empty subset of L. D is called a

• deductive system if for all x, y ∈ L,

(DS) 1 ∈ D,

(HDS) x ∈ D and x → y ⊆ D imply y ∈ D,

• weak deductive system if (DS) holds and for all x, y ∈ L,

(WHDS) x ∈ D and D � x → y imply y ∈ D.

A deductive system D is said to be proper if D 6= L.

Example 3.6. In Example 2.2(ii), for any a ∈ (0, 1], D = [a, 1] is a deductive
system of L, which is not a weak deductive system of L, since [a, 1] � a → y, for
any y 6 a and y /∈ [a, 1]). Moreover, in Example 2.2(i), for any a ∈ S, D = [a, 1]
is a weak deductive system of S.

Proposition 3.7. Let L be a hyper residuated lattice. Then

(i) every weak deductive system satis�es (F );
(ii) if D is a non-empty subset of L satisfying (F ), then D is a weak deductive

system of L if and only if (x → y) ∩D 6= ∅ and x ∈ D imply y ∈ D.

Proof. (i). Let F be a weak hyper deductive system of L, x 6 y and x ∈ F , for
x, y ∈ L. Then by Proposition 2.3(2), 1 ∈ x → y, and so F � x → y. Now, from
(WHDS) it follows that y ∈ F . Thus, (F) holds.

(ii). (⇒) It follows from Proposition 2.3,(10).
(⇐) Let D be a non-empty subset of L satisfying the given conditions. Ob-

viously, 1 ∈ D. Now, let x ∈ D and D � x → y. Then there exist d ∈ D and
u ∈ x → y such that d 6 u and so by (F), u ∈ D. Hence D ∩ (x → y) 6= ∅ and so
y ∈ D. Therefore, D is a weak hyper deductive system of L.

Now, we give the connection between (weak) �lters and (weak) deductive sys-
tems.

Theorem 3.8. Let L be a hyper residuated lattice. Then

(i) every weak deductive system is a weak �lter,

(ii) every �lter is a deductive system.
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Proof. (i). Let F be a weak deductive system of L. Then by Proposition 3.7(i),
(F) holds. Now, let x, y ∈ F . By Proposition 2.3(7), y � x → (x � y) and so
y 6 u, for some u ∈ x → (x� y). Hence u ∈ F . But u ∈ x → (x� y) implies that
u ∈ x → v, for some v ∈ x � y, and hence F � x → v. Since, x ∈ F , so v ∈ F
and hence, F � x� y.

(ii). Assume that F is a �lter of L. Since, F is non-empty, then there exists
x ∈ L such that x ∈ F . From x � 1 and (F), it follows that 1 ∈ F . Thus, (DS)
holds. Now, let x ∈ F and x → y ⊆ F , for x, y ∈ L. Then, x � (x → y) =
∪u∈x→yx � u ⊆ F . On the other hand, from Proposition 2.3(6), we know that
x� (x → y) � y. Hence, there exists v ∈ x� (x → y) such that v 6 y, and since
v ∈ F , so y ∈ F .

Example 3.9. Consider the residuated lattice L given in the Example 2.2(iii). It
is not di�cult to check that F = {b, 1} is a weak �lter of L but it is not a weak
deductive system. Because F � {a, b} = b 0, b ∈ F while 0 6∈ F .

De�nition 3.10. A non-empty subset A of L is said to be

• S�-re�exive if (x� y) ∩A 6= ∅ implies x� y ⊆ A, for all x, y ∈ L,

• S→-re�exive if (x → y) ∩A 6= ∅ implies x → y ⊆ A, for all x, y ∈ L.

Clearly, any S�-re�exive weak �lter of L is a �lter.

Example 3.11. (i) Let (L,∨,∧,�,→, 0, 1) be the hyper residuated lattice in
Example 2.2(iii). Then A = {0} is a S→-re�exive subset of (L,∨,∧,�,→, 0, 1).

(ii) Let (L;≤,∨,∧, 0, 1) be the bounded super lattice de�ned in Example 2.2(iii).
Consider the following tables:

Table 5 Table 6
� 0 a b 1
0 {0} {0} {0} {0}
a {0} {a,0} {a} {a}
b {0} {a} {b} {b}
1 {0} {a} {b} {1}

→ 0 a b 1
0 {1} {1} {1} {1}
a {0,a} {1} {1} {1}
b {0} {0,a} {1} {1}
1 {0} {a} {b} {1}

It is not di�cult to check that (L,∨,∧,�,→, 0, 1) is a hyper residuated lattice.
Let F1 = {1}, F2 = {1, b}. Then F1 and F2 are S�-re�exive (weak) �lters of L
and F1 is a S→-re�exive deductive system of L.

Theorem 3.12. Every S�-re�exive weak �lter is a weak deductive system.

Proof. Let F be an S�-re�exive weak �lter of L. Obviously 1 ∈ F . Now, let
x, y ∈ L be such that x ∈ F and F � x → y. Then there exist a ∈ F and
b ∈ x → y such that a 6 b. Hence b ∈ F and so by Theorem 3.4, (x� b) ∩ F 6= ∅.
Since F is S�-re�exive, we get x�b ⊆ F . From b ∈ x → y it follows that b�x � y
and so u 6 y, for some u ∈ b � x. Since x � b ⊆ F , then u ∈ F whence y ∈ F .
Therefore, F is a weak deductive system of L.
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Theorem 3.13. Every S→-re�exive deductive system is a �lter.

Proof. Let D be a S→-re�exive deductive system, x ∈ D and x 6 y, for some
y ∈ L. By Proposition 2.3(2), 1 ∈ x → y and so (x → y) ∩ D 6= ∅. Since D is
a S→-re�exive, we get x → y ⊆ D whence y ∈ D. Hence D satis�es (F). Now,
let x, y ∈ D. If u ∈ x � y, then x � y � u and so x � y → u. From x ∈ D it
follows that D � y → u and so D ∩ (y → u) 6= ∅. Since D is S→-re�exive, then
y → u ⊆ D whence u ∈ D. Hence, x� y ⊆ D means that D is a �lter of L.

Proposition 3.14. Let {Fi | i ∈ I} be a family of non-empty subsets of L.

(i) If Fi is a �lter (deductive system, weak deductive system), for all i ∈ I, then
∩Fi is a �lter (deductive system, weak deductive system) of L.

(ii) Assume that {Fi | i ∈ I} be a chain. If Fi is a �lter (weak �lter, weak deduc-

tive system), for all i ∈ I, then ∪Fi is a �lter (weak �lter, weak deductive

system) of L.

Proof. We only prove the case of weak deductive systems. The proof of the other
cases is easy.

(i). Assume that Fi is a weak deductive system of L, for all i ∈ I. Clearly,
1 ∈ ∩Fi. Let x ∈ ∩Fi and ∩Fi � x → y, for some y ∈ L. Then x ∈ Fi and
Fi � x → y, for all i ∈ I. Hence y ∈ Fi, for all i ∈ I and so y ∈ ∩Fi. Therefore,
∩Fi is a weak deductive system of L.

(ii). Let {Fi | i ∈ I} be a chain of weak deductive systems of L. Clearly,
1 ∈ ∪Fi. Let x ∈ ∪Fi and ∪Fi � x → y, for some y ∈ L. Then, there exist
j, k ∈ I such that x ∈ Fj and Fk � x → y. Since Fi's forms a chain, so we can
assume that Fj ⊆ Fk. Thus, Fk � x → y and x ∈ Fk imply that y ∈ Fk ⊆ ∪Fi

proving ∪Fi is a weak deductive system of L.

The next example shows that Proposition 3.14(ii) may not be true for deductive
systems, in general.

Example 3.15. Let L = {xi | i ∈ N} ∪ {0, 1} be a lattice, whose Hasse diagram
is below (see Figure 1).
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Figure 1: The Hasse diagram of L
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De�ne binary hyperoperations ∨,∧,� and → on L as follows:

a ∨ b = {c ∈ L | a 6 c and b 6 c}, a ∧ b = {c ∈ L | c 6 a and c ≤ b}

a� b = a ∧ b and

a → b =


{1} if a 6 b,
{xi | i ∈ N} if a = 1, b ∈ L− {1}.
{xj | j ∈ N, j 6 i} ∪ {1} if a, b ∈ {xi | i ∈ N}, a = xi, a 6= b,
{xj | j ∈ N, j 6 i} ∪ {1} if a ∈ {xi | i ∈ N}, b = 0

for all a, b ∈ L. Routine calculations show that (L,∨,∧,�,→, 0, 1) is a hyper
residuated lattice. Let Di = {1, x1, . . . , xi}, for all i ∈ N. It is easy to verify that
Di is a deductive system of L and Di ⊆ Di+1, for all i ∈ N. But, 1 ∈ ∪i∈IDi,
1 → 0 = {xi | i ∈ N} ⊆ ∪i∈IDi and 0 /∈ ∪i∈IDi. Therefore, ∪i∈IDi is not a
deductive system of L.

De�nition 3.16. Let F be a proper (weak) �lter of L. Then F is said to be
maximal if F ⊆ J ⊆ L, implies F = J or J = L, for all (weak) �lters J of L.

Maximal (weak) deductive systems are de�ned analogously.

Example 3.17. Let (L,∨,∧,�,→, 0, 1) be the hyper residuated lattice de�ned in
the Example 3.11. Then F = {1, b} is a maximal �lter and {1, a, b} is a maximal
weak �lter of L.

Theorem 3.18. In a hyper residuated lattice

(i) every proper (weak) �lter of L is contained in a maximal (weak) �lter of L,

(ii) every proper weak deductive system of L is contained in a maximal weak

deductive system of L.

Proof. (i). Let F be a proper (weak) �lter of L and S be the collection of all
proper (weak) �lters of L containing F . Then F ∈ S and (S,⊆) is a poset. Let
{Fi | i ∈ I} be a chain in S. Then by Proposition 3.14(ii), ∪Fi is a (weak) �lter
of L containing F . If 0 ∈ ∪Fi, then there exists i ∈ I such that 0 ∈ Fi, which is
impossible. Hence ∪Fi is a proper (weak) �lter of L containing F and so ∪Fi ∈ S.
Hence any chain of elements of S has an upper bound in S. By Zorn's lemma, S
has a maximal element such as M . We show that M is a maximal (weak) �lter of
L. Let M ⊆ J ⊆ L, for some (weak) �lter J of L. If J 6= L, then J ∈ S. Since
M is a maximal element of S we get M = J . Therefore, M is a maximal (weak)
�lter of L.

(ii). Similar to (i).

From the fact that {1} is a weak �lter of any hyper residuated lattice, we
conclude that

Corollary 3.19. Every nontrivial hyper residuated lattice has a maximal weak

hyper �lter.
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4. (Positive) Implicative weak deductive systems

De�nition 4.1. Let (L,∨,∧,�,→, 0, 1) be a hyper residuated lattice and D be a
non-empty subset of L containing 1. Then D is called

• an implicative weak deductive system or simply IWDS if for all x, y, z ∈ L

x → (y → z) ∩D 6= ∅ and x → y ∩D 6= ∅ imply x → z ∩D 6= ∅,

• a positive implicative weak deductive system or simply PIWDS if

x → ((y → z) → y)) ∩D 6= ∅ and x ∈ D imply y ∈ D, for all x, y, z ∈ L.

Note: Clearly, if L is a residuated lattice, then the concept of implicative (positive
implicative) �lters are coincide by the concept of implicative (positive implicative)
weak deductive systems.

Example 4.2. Let L = {a, b, c, 0, 1} be a partially ordered set whose Hasse dia-
gram depicted in Figure 2.
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Figure 2: The Hasse diagram of L

Let x ∧ y = {u ∈ L |u 6 x, u 6 y} and x ∨ y = {u ∈ L |x 6 u, y 6 u}, for all
x, y ∈ L. Now, consider the following tables:

Table 7 Table 8
→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {c} {1} {1} {c} {1}
b {c} {a,b,c} {1} {c} {1}
c {a,b} {a,b} {b,a} {1} {1}
1 {0} {a} {b,a} {c} {1}

� 0 a b c 1
0 {0} {0} {0} {0} {0}
a {0} {a} {a} {0} {a}
b {0} {a} {b,a} {0} {a,b}
c {0} {0} {0} {c} {c}
1 {0} {a} {b,a} {c} {1}

It is easy to show that (L,∨,∧,�,→, 0, 1) is a hyper residuated lattice. Moreover,
easy calculations show that

(i) {1, a}, and {1, a, b} are implicative weak deductive systems.
(ii) {1, a} is not a positive implicative weak deductive systems (since 1 ∈ 1 →

({a, c} → b) ⊆ 1 → ((b → a) → b) and b /∈ {1, a}).
(iii) {1, a, b} is a positive implicative weak deductive system.
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Lemma 4.3. Let (L,∨,∧,�,→, 0, 1) be a hyper residuated lattice. Then L satis�es

the following conditions: for all a, b, c ∈ L,

(i) a → (b → c) 6 b → (a → c),

(ii) x 6 y implies z → x 6 z → y,

(iii) a → b 6 (b → c) → (a → c).

Proof. (i). Let u be an arbitrary element of a → (b → c). Then u � (a → (b → c))
and so u � a → x, for some x ∈ b → c. Hence u� a � x and so y � x, for some
y ∈ u � a. Since x ∈ b → c, then we get y � b → c and so y � b � c. Hence
(u � b) � a = (u � a) � b � c and by Proposition 2.3(4), we get u � b � a → c.
Therefore, by Proposition 2.3(4), u � b → (a → c) and so a → (b → c) 6 b →
(a → c).

(ii). Let u ∈ z → x. Then u � z → x, so u� z � x. Since x 6 y, then we get
u� z � y and so u � z → y. Therefore, z → x 6 z → y.

(iii). We know that (b → c) → (a → c) ⊆ ∪{u → v|u ∈ b → c, and v ∈ a → c}.
Let u ∈ b → c. Then u � b → c. Thus u � b � c. Hence b � u → c
and so there exists t ∈ u → c such that b 6 t. Now, by (i) and (ii), we get
a → b 6 a → t ⊆ (a → (u → c)) 6 u → (a → c). Since u ∈ b → c, we conclude
that a → b 6 (b → c) → (a → c).

Note that, in the proof of Lemma 4.3(iii) we proved that a → b 6 u → (a → x),
for all u ∈ b → x.

From now on, in this section, (L,∨,∧,�,→, 0, 1) or simply L will denote a
hyper residuated lattice satis�es 1 � x = {x}, for all x ∈ L, unless otherwise
stated.

Proposition 4.4. Let D be a non-empty subset of L. Then

(i) for all x ∈ L, x ∈ 1 → x and x is a maximum element of 1 → x,

(ii) if D is a PIWDS of L, then D is a weak deductive system,

(iii) if D is an IWDS of L is an upset, then D is a weak deductive system.

Proof. (i). Let x ∈ L. For any u ∈ 1 → x, we have u � 1 → x and so {u} =
1 � u � x. Since x ∈ 1 � x, then we get 1 � x � x. It follows that x � 1 → x.
Hence there exists u ∈ 1 → x such that x 6 u. So, x 6 u 6 x. Therefore,
x ∈ 1 → x.

(ii). Assume that D is a PIWDS of L. Clearly, (DS) holds. Let (x →
y) ∩ D 6= ∅ and x ∈ D. Then by Proposition 2.3(3), we have x → (1 → y) ⊆
x → ((y → 1) → y). Now, by (i) we get x → y ⊆ x → (1 → y) and so
(x → ((y → 1) → y)) ∩D 6= ∅. Since x ∈ D and D is a positive implicative weak
deductive system of L, we conclude that y ∈ D. Therefore, D is a weak deductive
system of L.

(iii). Assume that D is an IWDS of L. Clearly, (DS) holds. Let (x → y)∩D 6=
∅ and x ∈ D. Then by (i), (1 → (x → y)) ∩D 6= ∅ and (1 → x) ∩D 6= ∅. Since D
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is an implicative weak deductive system of L, then (1 → y) ∩D 6= ∅. Since by (i)
y is a maximum element of 1 → y and D is an upset, then we get y ∈ D.

Theorem 4.5. Let D be a non-empty subset of L. Then

(i) D is a PIWDS of L if and only if D is a weak deductive system such

that ((x → y) → x) ∩D 6= ∅ implies x ∈ D, for all x, y ∈ L,

(ii) D is an IWDS of L if and only if Dx = {u ∈ L | (x → u) ∩D 6= ∅} is a

weak deductive system of L, for all x ∈ L.

Proof. (i). Let D be a PIWDS. Then by Proposition 4.4(ii), D is a weak deduc-
tive system. Now, let and ((x → y) → x) ∩D 6= ∅. Then there exists u ∈ ((x →
y) → x) ∩ D. By Proposition 4.4(i), u ∈ 1 → u ⊆ (1 → ((x → y) → x)) ∩ D.
Since 1 ∈ D and D is a PIWDS, then we get x ∈ D. Conversely, let D be a weak
deductive system such that ((x → y) → x)∩D 6= ∅ implies x ∈ D, for all x, y ∈ L.
Let (x → ((y → z) → y))∩D 6= ∅ and x ∈ D. Since D is a weak deductive system
and x ∈ D, then ((y → z) → y)∩D 6= ∅ and so y ∈ D. Therefore, D is a PIWSD.

(ii). Let D be an IWDS of L and x ∈ L. By Proposition 2.3(3), 1 ∈ Dx.
Now, let (a → b) ∩Dx 6= ∅ and a ∈ Dx, for some a, b ∈ L. Then (x → a) ∩D 6= ∅
and (x → (a → b)) ∩ D 6= ∅. Since D is an IWDS, we get (x → b) ∩ D 6= ∅
and so b ∈ Dx. Hence Dx is a weak deductive system. Conversely, let Dx =
{u ∈ L|(x → u) ∩ D 6= ∅} is a weak deductive system of L, for all x ∈ L. If
(x → (y → z)) ∩D 6= ∅ and (x → y) ∩D 6= ∅, for some x, y, z ∈ L, then y ∈ Dx

and (y → z)∩Dx 6= ∅. Since Dx is a weak deductive system of L, then we conclude
that z ∈ Dx and so (x → z) ∩D 6= ∅. Therefore, D is an IWDS of L.

Example 4.6. Let P = {1, 0, a, b}, P ′ = {1, 0, a, c} and 6 be the partially relation
was de�ned in Example 4.2. Then (P,6) and (P ′,6) are two partially ordered
sets. Consider the following tables.

Table 9 Table 10
→ 0 a b 1
0 {1} {1} {1} {1}
a {0} {1,a} {1} {1}
b {0} {a} {1,b} {1}
1 {0} {a} {b,a} {1}

 0 a c 1
0 {1} {1} {1} {1}
a {c} {1,c} {c} {1}
c {a} {a} {1,a} {1}
1 {0} {a} {c} {1}

Easy calculations show that (P,∨,∧,�,→ 0, 1) and (P ′,∨,∧,�, , 0, 1) are two
hyper residuated lattices, where ∨, � and ∧ are the same as in L (Example 4.2)
except restricted to P and P ′, respectively.

(i) Consider the hyper residuated lattice (P,∨,∧,�,→ 0, 1). If D = {1}, then
D1 = {1}, Da = {1, a, b}, Db = {1, b} and D0 = P . Since D0, Da, Db and D1 are
weak deductive systems of (P,∨,∧,�,→ 0, 1), then by Theorem 4.5(ii), {1} is an
IWDS of (P,∨,∧,�,→ 0, 1). Moreover, a /∈ {1} and ((a → a) → a) ∩ {1} 6= ∅.
Hence by Theorem 4.5(i), {1} is not PIWDS of (P,∨,∧,�,→ 0, 1).

(ii) {1, a, b} is a PIWDS of P .
(iii) {1} is a PIWDS of (P ′,∨,∧,�, , 0, 1).
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Open Problem: Is there a PIWDS which is not IWDS?

Example 4.7. Let (S,∨,∧,�,→, 0, 1) be the hyper residuated lattice in Example
2.2(ii). It is easy to show that [a, 1] is a weak deductive system of S, for any
a ∈ [0, 1). Let D = [a, 1]. Then by de�nition of → we get

Dx =
{

[x,1] if x 6 a,
D if a 6 x

Hence Dx is a weak deductive system of S and so by Theorem 4.5(ii), D is an
IWDS of S. Now, let D = (0, 1]. Since (0 → y) → 0 = 1 → 0 = {0}, for all
y ∈ [0, 1], then we get D is a PIWDS of L. We show that (0, 1] is the only
proper PIWDS of S. Let F be a PIWDS of S. Then by Proposition 4.4 and
Theorem 3.8, F is an upset. So F = (a, 1] or F = [a, 1], for some a ∈ S − {0}.
Let e, f ∈ (0, a) such that f < e. Then (e → f) → e = f → e = {1} and
((e → f) → e) ∩ F 6= ∅. Since e ∈ S − F , then by Theorem 4.5(i), D is not
PIWDS of S.

Theorem 4.8. Let D be a weak deductive system of L. Then the following are

equivalent:

(i) D is an IWDS of L,

(ii) (y → (y → x)) ∩D 6= ∅ implies (y → x) ∩D 6= ∅, for all x, y ∈ L,

(iii) (z → (y → (y → x))) ∩D 6= ∅ and z ∈ D imply (y → x) ∩D 6= ∅, for all

x, y ∈ L,

(iv) (x → u) ∩D 6= ∅ for any x ∈ L and any u ∈ x� x.

Proof. (i)⇒ (ii). Let D be an IWDS of L and (y → (y → x)) ∩ D 6= ∅. By
Proposition 2.3(3), (y → y) ∩ D 6= ∅. Since D is an IWDS of L, then (y →
x) ∩D 6= ∅.

(ii)⇒ (iii). Let (ii) holds, (z → (y → (y → x))) ∩D 6= ∅ and z ∈ D. Since D
is a weak deductive system, then (y → (y → x)) ∩D 6= ∅ and so y → x ∈ D.

(iii)⇒ (i). Let (iii) holds, (x → (y → z)) ∩D 6= ∅ and (x → y) ∩D 6= ∅. Since
x → (y → z) 6 y → (x → z) (by Lemma 4.3) and D is an upset (by Theorem
3.8), then we get there exists u ∈ (y → (x → z)) ∩D. Now,

u � y → (x → z) ⇒ u� y � x → z, by Proposition 2.3(4)

⇒ y � u → (x → z), by Proposition 2.3(4)

⇒ y 6 a, for some a ∈ u → (x → z)
⇒ x → y 6 x → a, by Lemma 4.3(ii)

⇒ x → y 6 x → (u → (x → z))
⇒ (x→(u→(x→z)))∩D 6=∅, since x → y ∩D 6= ∅
⇒ (u → (x → (x → z))) ∩D 6= ∅, by Lemma 4.3(i).
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Since u ∈ D, then by (iii), we conclude that (x → z)∩D 6= ∅. Therefore, D is an
IWDS of L.

(ii) ⇒ (iv). Suppose that x ∈ L and u ∈ x � x. Then x � x � u and
so x � x → u. Hence by Proposition 2.3(3), 1 ∈ (x → (x → u)) ∩ D and
1 ∈ (x → x) ∩D. Since D is an IWDS of L, then (x → u) ∩D 6= ∅.

(iv) ⇒ (ii). Let (y → (y → x)) ∩D 6= ∅, for some x, y ∈ L. Then there exists
u ∈ (y → (y → x)) ∩ D. By Proposition 2.3(3), 1 ∈ u → (y → (y → x)) and so
by Lemma 4.3(i), 1 ∈ y → (y → (u → x)). It follows that 1 � y → (y → t),
for some t ∈ u → x and so {y} = 1 � y � y → t. Hence y � y � t, whence
a 6 t, for some a ∈ y � y. Since y → a 6 y → t, then by Lemma 4.3, we
obtain ∅ 6= D ∩ (y → t) ⊆ y → (u → x) 6 u → (y → x). Since D is a weak
deductive system of L by Theorem 3.8, u → (y → x)∩D 6= ∅. Now, u ∈ D implies
(y → x) ∩D 6= ∅. Therefore, D is an IWDS of L.

Theorem 4.9. Let F and G be two weak deductive system of L such that F ⊆ G.

If F is an IWDS of L, then G is an IWDS of L, too.

Proof. It follows from Theorem 4.8.

Corollary 4.10. Any weak deductive systems of L is an IWDS of L if and only

if {1} is an IWDS of L, or equivalently, if and only if x 6 u, for any u ∈ x� x.

Proof. (i). Let (x → y)∩{1} 6= ∅ and x ∈ {1}. Then 1 � 1 → y and so 1�1 � y.
Since 1� u = {u}, for all u ∈ L, we get 1 � y and so y = 1. Hence {1} is a weak
deductive system of L, Now, by using of Theorem 4.9, we get {1} is an IWDS if
and only if any weak deductive system of L is an IWDS of L.

(ii). By Proposition 2.3(2), we have x 6 y if and only if 1 ∈ x → y. Suppose
that {1} is an IWDS of L. Then by Theorem 4.8, 1 ∈ x → u, for any u ∈ x� x
and so x 6 u, for any u ∈ x2. Conversely, suppose that x 6 u, for all u ∈ x2 and
(a → (a → b)) ∩ {1} 6= ∅, for some a, b ∈ L. Then 1 ∈ a → (a → b) and so by
Proposition 2.3(4), {a} = 1 � a � a → b. Hence a � a � b. By assumption we
get a 6 b and so 1 ∈ a → b. Therefore, (a → b)∩ {1} 6= ∅ and so {1} is an IWDS
of L.

We note that, if {1} is an IWDS of L, then Corollary 4.10 and Proposition
2.3(8), imply x ∈ x� x, for all x ∈ L.

Theorem 4.11. Let D be a weak deductive system of L. Then D is a maximal

and implicative weak deductive system of L if and only if x → y ∩ D 6= ∅ and

y → x ∩D 6= ∅, for all x, y ∈ L−D.

Proof. Suppose that D is a maximal and implicative weak deductive system and
x, y ∈ L − D. By Proposition 2.3(3) and (8), we get that x ∈ Dx, y ∈ Dy,
D ⊆ Dx ⊆ L and D ⊆ Dy ⊆ L. Moreover, Theorem 4.5(ii) implies Dx and Dy are
weak deductive systems of L. Hence by assumption Dx = L = Dy and so y ∈ Dx,
x ∈ Dy. Therefore, x → y ∩ D 6= ∅ and y → x ∩ D 6= ∅. Conversely, let D be
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a weak deductive system such that x → y ∩ D 6= ∅ and y → x ∩ D 6= ∅, for all
x, y ∈ L−D. If there exists a ∈ L such that Da is not weak deductive systems of
L, then there are x, y ∈ L such that x → y ∩Da 6= ∅, x ∈ Da and y /∈ Da. Hence
a → x∩D 6= ∅ and a → u∩D 6= ∅, for some u ∈ x → y. But a → y∩D = ∅. From
Proposition 2.3(8) and Theorem 3.8, we get that y /∈ D. Hence by assumption
a ∈ D. Since a → x ∩D 6= ∅ and a → x ∩D 6= ∅, then we get x ∈ D and u ∈ D.
It follows that x → y ∩ D 6= ∅. That is y ∈ D, which is contradiction. Hence
Da is a weak deductive system of L, for any a ∈ L. By Theorem 4.5(ii), D is an
implicative deductive system. Now, we show that, Da is the least weak deductive
system of L containing D ∪ {a}, for any a ∈ L −D. Let a ∈ L −D and D′ be a
weak deductive system of L containing D ∪ {a} and u be an arbitrary element of
Da. Then a → u ∩ D 6= ∅ and so a → u ∩ D′ 6= ∅. Since a ∈ D′, then u ∈ D′.
Hence Da ⊆ D′. That is Da is the least weak deductive system of L containing
D∪{a}. Assume that D  E ⊆ L, for some weak deductive system E of L. Then
there exists a ∈ E −D. It follows that Da ⊆ E. Since a ∈ L−D, by assumption
of Proposition 2.3(8) and Theorem 3.8, we get Da = L and so E = L. Therefore,
D is a maximal weak deductive system of L.

5. Relation between hyper MV -algebras
and hyper residuated lattices

De�nition 5.1. [8] A hyper MV -algebra is a non-empty set M endowed with a
binary hyper operation ⊕, a unary operation ∗ and a constant 0 satisfying the
following conditions: for all x, y, z ∈ M

(hMV 1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

(hMV 2) x⊕ y = y ⊕ x,

(hMV 3) (x∗)∗ = x,

(hMV 4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,

(hMV 5) 0∗ ∈ x⊕ 0∗,
(hMV 6) 0∗ ∈ x⊕ x∗,

(hMV 7) if x � y and y � x, then x = y,

where x � y is de�ned by 0∗ ∈ x∗ ⊕ y.

For every A,B ⊆ M , we de�ne A � B if and only if there exist a ∈ A and
b ∈ B such that a � b and A⊕B = ∪{a⊕b | a ∈ A, b ∈ B}. Also, we de�ne 0∗ = 1
and A∗ = {a∗ | a ∈ A}.

Lemma 5.2. Let (L,∨,∧,�,→, 0, 1) be a hyper residuated lattice and ¬¬x = {x},
for all x ∈ L. Then |¬x| = 1, for all x ∈ L.

Proof. Let x ∈ L and a, b ∈ ¬x. Then ¬a ⊆ ¬¬x = {x} and so ¬a = {x}.
Similarly, ¬b = {x}. It follows that ¬a = ¬b and so {a} = ¬¬a = ¬¬b = {b}.
Hence a = b. Therefore, |¬x| = 1.
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Theorem 5.3. Let (L,∨,∧,�,→, 0, 1) be a hyper residuated lattice satisfying the

following conditions:

(i) ¬¬x = {x}, for all x ∈ L,

(ii) ¬(x� ¬y)� ¬y = ¬(y � ¬x)� ¬x), for all x, y ∈ L.

Let x+y = ¬(¬x�¬y). Then (M,+,¬, 0) is a hyper MV -algebra (since |¬x| = 1,
we use ¬x to denote the only element of ¬x).

Proof. Let x, y, z ∈ L.

(1). Since (L,�, 1) is a commutative semihypergroup, then we have

(x + y) = ¬(¬x� ¬y) = ¬(¬y � ¬x) = (y + x).

(2). (x + y) + z = ∪{a + z|a ∈ x + y} = ∪{¬(¬a� ¬z) | a ∈ x + y}
= ∪{¬(¬a� ¬z) | a ∈ ¬(¬x� ¬y)}
= ∪{¬(¬¬b� ¬z) | b ∈ (¬x� ¬y)}
= ∪{¬(b� ¬z) | b ∈ (¬x� ¬y)}
= ¬((¬x� ¬y)� ¬z)

By the similar way, we can show that ¬((¬x�¬y)�¬z) = x+(y + z). Therefore,
x + (y + z) = (x + y) + z.

(3). By Proposition 2.3(5), we get x + 1 = x + ¬0 = ¬(¬x� ¬¬0) ⊇ ¬0 = 1.
(4). By Proposition 2.3(6), (x� ¬x � 0, so 0 ∈ x� ¬x. Hence

(x + ¬x) = ¬(¬x� ¬¬x) = ¬(¬x� x) ⊇ ¬0 = 1.

(5). Let 1 ∈ (¬x + y) ∩ (x + ¬y). Then 1 ∈ ¬(¬¬x� ¬y) ∩ ¬(¬x� ¬¬y) and
so 0 ∈ (x � ¬y) ∩ (¬x � y). It follows that x � ¬y � 0 and ¬x � y � 0. Hence
x � ¬¬y and y � ¬¬x and so x = y.

(6). ¬(¬x + y) + y = (¬¬(x� ¬y)) + y = (x� ¬y) + y

= ¬(¬(x� ¬y)� ¬y)
= ¬(¬(y � ¬x)� ¬x), by assumption

= ¬(¬y + x) + x.

From (i) and (1)− (6), it follows that, (M,+,¬, 0) is a hyper MV -algebra.

Example 5.4. Let (P ′,∨,∧,�, , 0, 1) be a hyper residuated lattice in Example
4.6. Then P ′ satis�es the conditions of Theorem 5.3.

Open problem: Under what conditions we can obtain a hyper residuated lattice

from a hyper MV -algebra?
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6. Conclusions and future works

In this paper, we introduce the concept of hyper residuated lattice which is a
generalization of the concept of residuated lattice, and we give some properties
and related results. The category of hyper residuated lattices, quotient structure,
�lter theory, lattice structures of �lters and hyper residuated lattices could be
topics for future researchs.
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