On multiplicative conjugate loops

Shumaila Ambreen and Asif Ali

Abstract

The objective of this paper is twofold. Firstly to define MC-loops and show that every conjugate of subloops of such loops also are subloops Secondly to investigate various properties of MC-loops and its relation with numerous other already existing loops, moreover number of examples and counter examples are provided to make these relations more clearer.

1. Introduction

A loop L is an inverse property loop [2] if every $x \in L$ has a unique two-sided inverse, denoted by x^{-1}, and if, for all $x, y \in L$ the loop satisfies

$$
x^{-1}(x y)=y=(y x) x^{-1} .
$$

A loop L is said to be a conjugate loop [1] if it satisfies the following identity $x\left(y x^{-1}\right)=(x y) x^{-1}$, for all $x, y \in L$. A loop is IP-conjugate [1] if it satisfies inverse property and conjugate property. Smallest non-associative $I P$-conjugate loop is of order 7.

Following [1], flexible C-loops are conjugate $I P$-loops. Every diassociative loop is a conjugate $I P$-loop. Conjugate $I P$-loop L is commutative iff every element in L is self conjugate.

An $I P$-conjugate loop L is called a multiplicative conjugate loop (MC-loop) iff for all $x, y, g \in L$, we have

$$
(x y)^{g}=x^{g} y^{g}
$$

Proposition 1.1. An IP-conjugate loop L is MC-loop iff $T_{g}(x y)=T_{g}(x) T_{g}(y)$ for $T_{g} \in I N N(L)$.

Proof. Indeed,

$$
\begin{aligned}
(x y)^{g}=x^{g} y^{g} & \Leftrightarrow g^{-1}(x y) g=\left(g^{-1} \cdot x g\right)\left(g^{-1} \cdot y g\right) \\
& \Leftrightarrow(x y) R_{g} L_{g^{-1}}=(x) R_{g} L_{g^{-1}} \cdot(y) R_{g} L_{g^{-1}} \\
& \Leftrightarrow(x y) R_{g} L_{g}^{-1}=(x) R_{g} L_{g}^{-1} \cdot(y) R_{g} L_{g}^{-1} \quad \text { because } L \text { is an IP-loop. } \\
& \Leftrightarrow(x y) T_{g}=(x) T_{g} \cdot(y) T_{g}
\end{aligned}
$$

2010 Mathematics Subject Classification: 20N05
Keywords: Multiplicative conjugate loop, conjugate of a subloop, conjuagate loop.

2. Counting of multiplicative conjugate loops

In [8] J. Slaney and A. Ali enumerated $I P$-loops up to order 13 by using finite domain enumerator FINDER. Using that enumeration and our following GAP code we have counted multiplicative conjugate loops.
function $(L):=$ IsMCLoop
local x, y, z;
if not IsConjugateIPLoop (L) then return false;
for x in L do
for y in L do
for z in L do
if $z^{\wedge}-1 *(x * y) * z<>\left(z^{\wedge}-1 * x * z\right) *\left(z^{\wedge}-1 * y * z\right)$ then return false;
fi;
od;od;od;
return true;
end;

Size	IP	Conjugate IP	MC
7	2	1	1
8	8	0	0
9	7	0	0
10	47	7	6
11	49	3	3
12	2684	27	17
13	10600	16	10

Number of $I P$, conjugate $I P$ and $M C$-loops of order $n=7, \ldots, 13$.
Example 2.1. The smallest non-associative $M C$-loop has the form.

.	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	3	1	6	7	5	4
3	3	1	2	7	6	4	5
4	4	7	6	5	1	2	3
5	5	6	7	1	4	3	2
6	6	4	5	3	2	7	1
7	7	5	4	2	3	1	6

3. Properties of MC-loops

We start with the following obvious lemma.
Lemma 3.1. In an MC-loop L every $T \in I N N(L)$ is pseudo-automorphism with companion 1.

Theorem 3.2. The nucleus of an MC-loop L is a normal subloop.

Proof. As L is $M C$-loop so L is also an $I P$-loop. Moreover let $T: L \rightarrow L$ be pseudo-automorphism as described in Lemma 3.1. The restriction of a pseudoautomorphism T from Lemma $3.1 T$ to the nucleus N of L is an automorphism of N. Hence $a N=N a$ for all $a \in L$ and $N(x y)=(N x) y,(x y) N=x(y N)$ from the definition of a nucleus.

Theorem 3.3. A homomorphic image of an MC-loop is an MC-loop.
Proof. Obvious.
Proposition 3.4. If L is an MC-loop, then $\left[x^{y}, z^{y}\right]=[x, z]^{y}$ for all $x, y, z \in L$.
Proof. Indeed,

$$
\begin{aligned}
{\left[x^{y}, z^{y}\right] } & =\left(x^{y}\right)^{-1}\left(z^{y}\right)^{-1} \cdot x^{y} z^{y}=\left(x^{-1}\right)^{y}\left(z^{-1}\right)^{y} \cdot x^{y} z^{y} \\
& =\left(x^{-1} z^{-1}\right)^{y} \cdot\left(x^{y} z^{y}\right)=\left(x^{-1} z^{-1} \cdot x z\right)^{y}=[x, z]^{y} .
\end{aligned}
$$

Theorem 3.5. Let L be an MC-loop, then $[L, L]=\langle[x, y] ; x, y \in L\rangle$ is a weak normal subloop of L.

Proof. In fact, we have $[L, L]^{l}=\left[L^{l}, L^{l}\right]=[L, L]$ for every $l \in L$.
Theorem 3.6. If L is an MC-loop and $H \leqslant L$, then $H^{x}=\left\{x^{-1} h x: \forall h \in H\right\}$ is a subloop of L.

Proof. For $x \in L$ and $a, b \in H^{x}$, there exists $h_{1}, h_{2} \in H$ such that $a=x^{-1} h_{1} x$ and $b=x^{-1} h_{2} x$. Thus, $a b=\left(x^{-1} h_{1} x\right)\left(x^{-1} h_{2} x\right)=h_{1}^{x} h_{2}^{x}=\left(h_{1} h_{2}\right)^{x} \in H^{x}$. Analogously, $a^{-1}=\left(x^{-1} h x\right)^{-1}=x^{-1} h^{-1} x=\left(h^{-1}\right)^{x} \in H^{x}$. Thus, $H^{x} \leqslant L$.

Theorem 3.7. In an MC-loop the conjugate of a maximal subloop is also maximal.
Proof. Let M be a maximal subloop of an $M C$-loop L. Then M^{g} is its conjugate subloop. If there is a subloop H such that $M^{g} \leqslant H \leqslant L$, then $M \leqslant H^{g^{-1}} \leqslant L^{g^{-1}}$. Hence, $M \leqslant H^{g^{-1}} \leqslant L$ which is a contradiction. So, M is maximal.

Recall that an intersection of all maximal subloops is again a subloop. It is known as the Frattini subloop. For a loop L, the Frattini subloop is denoted by $\Phi(L)$.

Theorem 3.8. If L is an MC-loop, then $\Phi(L)$ is a weak normal in L.
Proof. Let $\left\{M_{i}: i \in I\right\}$ be the family of all maximal subloops of L and $\Phi(L)=$ $\cap_{i \in I} M_{i}$. Then $x \in \Phi(L)$ implies $x^{g} \in \Phi(L)$ for all $g \in L$. Hence, $\Phi(L)$ is weakly normal in L.

The subloop generated by all the nilpotent normal subloops of L is called the Fitting subloop of L and is denoted by $\operatorname{Fit}(L)$. Below we prove that in $M C$-loops it is normal.

Lemma 3.9. If M and N be normal subloops of an $M C$-loop L, then the product $M N=\{m n: m \in M, n \in N\}$ is also a normal subloop of L.

Proof. Let L be an $M C$-loop and M, N be its two normal subloops. Then for any $m \in M, n \in N$ and $l \in L$ we have $(m n)^{l}=m^{l} n^{l} \in M N$. Moreover,

$$
(m n \cdot y) z=\left(m\left(n_{1} y\right)\right) z=m_{1}\left(n_{1} y \cdot z\right)=m_{1}\left(n_{2} \cdot y z\right)=m_{2} n_{2}(y z)
$$

Similarly, we can prove that $(y z)(M N)=y(z(M N)$. Hence, $M N$ is normal.
Remark 3.10. It can be shown by induction that the product of a finite family of normal subloops of any $M C$-loop is its normal subloop.

Theorem 3.11. If L be an $M C$-loop, then $\operatorname{Fit}(L)$ is normal in L.
Proof. Let $\operatorname{Fit}(L)=\left\langle N_{1}, N_{2}, N_{3}, \ldots, N_{m}\right\rangle$, where all $N_{1}, N_{2}, \ldots, N_{m}$ are nilpotent normal subloops of L. Since, all subloops are normal therefore we can express $\operatorname{Fit}(L)$ alternatively as, $\operatorname{Fit}(L)=N_{1} N_{2} \cdots N_{m}$. This completes the proof.

Theorem 3.12. In an MC-loop the centralizer of any its non-empty subset is a subloop.

Proof. The centralizer of X has the form $C_{L}(X)=\{a \in L: a x=x a, \forall x \in X\}$.
Let $a, b \in C_{L}(X)$ and $x \in X$,then

$$
(a b) x=x\left(x^{-1}(a b . x)\right)=x(a b)^{x}=x\left(a^{x} b^{x}\right)=x(a b),
$$

which implies $a b \in C_{L}(X)$. Now, for $b \in C_{L}(X)$ we have $b x=x b$. Thus, $b^{-1} x b=x$. Hence, $x=b\left(b^{-1} x b\right) b^{-1}=b x b^{-1}$, i.e., $b^{-1} x=x b^{-1}$. So, $b^{-1} \in C_{L}(X)$.

Corollary 3.13. The commutant $C(L)$ of an MC-loop L is its subloop.
Corollary 3.14. Let L_{1}, L_{2} be a subloop of a MC-loop L. If $L=L_{1} \times L_{2}$, then $C(L)=C\left(L_{1}\right) \times C\left(L_{2}\right)$.

The following fact is obvious.
Proposition 3.15. For an MC-loop L the map $\delta_{x}: L \rightarrow L$ defined by $(a) \delta_{x}=$ $x^{-1} a x$ is its automorphism.

4. Relation of MC-loops with other loops

In this section we describe connections of $M C$-loops with other types of loops. The following fact is well known but we give a short proof of this fact.

Theorem 4.1. Every commutative IP-loop L is an MC-loop.

Proof. Let L be an arbitrary commutative $I P$-loop. Then for all $x, x^{-1}, y \in L$ we have $x^{-1} \cdot y x=x^{-1} \cdot x y=x^{-1} x \cdot y=y$. On the other hand, $x^{-1} y \cdot x=y x^{-1} \cdot x=$ $y \cdot x^{-1} x=y$. Hence, we get $x^{-1} \cdot y x=x^{-1} y \cdot x$. So, L is an $I P$-conjugate loop.

Moreover, $x^{g} y^{g}=\left(g^{-1} \cdot x g\right)\left(g^{-1} \cdot y g\right)=\left(g^{-1} \cdot g x\right)\left(g^{-1} \cdot g y\right)=\left(g^{-1} g \cdot x\right)\left(g^{-1} g \cdot y\right)=$ $x y$ and $(x y)^{g}=g^{-1} .(x y) g=g^{-1} . g(x y)=\left(g^{-1} g\right)(x y)=x y$. So, $(x y)^{g}=x^{g} y^{g}$.

Hence, L is an MC-loop.
Corollary 4.2. Every Steiner loop, every commutative C-loop and every commutative Moufang loop are MC-loops but the converse is not true.

Example 4.3. The following loop

.	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	1	4	3	6	5	8	7	12	11	10	9
3	3	6	5	2	1	4	9	10	11	12	7	8
4	4	5	6	1	2	3	10	9	8	7	12	11
5	5	4	1	6	3	2	11	12	7	8	9	10
6	6	3	2	5	4	1	12	11	10	9	8	7
7	7	8	11	10	9	12	1	2	5	4	3	6
8	8	7	12	9	10	11	2	1	4	5	6	3
9	9	12	7	8	11	10	3	4	1	6	5	2
10	10	11	8	7	12	9	4	3	6	1	2	5
11	11	10	9	12	7	8	5	6	3	2	1	4
12	12	9	10	11	8	7	6	5	2	3	4	1

is a noncommutative Moufang loop which is not an $M C$-loop since $(x y)^{g}=x^{g} y^{g}$ is not true for $x=2, y=3$ and $g=7$.
Example 4.4. This is a non-commutative C-loop which is not an $M C$-loop.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	2	1	5	6	3	4	8	7	10	9	16	14	15	12	13	11
3	3	8	1	7	6	5	4	2	11	13	9	15	10	16	12	14
4	4	6	7	1	8	2	3	5	12	14	15	9	16	10	11	13
5	5	7	2	8	4	3	6	1	13	11	14	16	12	15	10	9
6	6	4	8	2	7	1	5	3	14	12	13	10	11	9	16	15
7	7	5	4	3	2	8	1	6	15	16	12	11	14	13	9	10
8	8	3	6	5	1	7	2	4	16	15	10	13	9	11	14	12
9	9	10	11	12	16	14	15	13	1	2	3	4	8	6	7	5
10	10	9	13	14	15	12	16	11	2	1	8	6	3	4	5	7
11	11	16	9	15	10	13	12	14	3	5	1	7	6	8	4	2
12	12	14	15	9	13	10	11	16	4	6	7	1	5	2	3	8
13	13	15	10	16	9	11	14	12	5	3	6	8	1	7	2	4
14	14	12	16	10	11	9	13	15	6	4	5	2	7	1	8	3
15	15	13	12	11	14	16	9	10	7	8	4	3	2	5	1	6
16	16	11	14	13	12	15	10	9	8	7	2	5	4	3	6	1

It is not an $M C$-loop because $(2.3)^{9} \neq 2^{9} 3^{9}$.

Example 4.5. Consider the following commutative loop.

\cdot	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	1	4	3	6	5	8	7	10	9
3	3	4	1	2	7	9	5	10	6	8
4	4	3	2	1	10	8	9	6	7	5
5	5	6	7	10	1	2	3	9	8	4
6	6	5	9	8	2	1	10	4	3	7
7	7	8	5	9	3	10	1	2	4	6
8	8	7	10	6	9	4	2	1	5	3
9	9	10	6	7	8	3	4	5	1	2
10	10	9	8	5	4	7	6	3	2	1

It is a commutative $M C$-loop but not C-loop.
Since in $M C$-loops the inverses are unique, we will use unique inverses instead of right or left inverses.

Theorem 4.6. An MC-loop is a group iff it is conjugacy closed loop (CC loop).
Proof. If L is a $C C$-loop, then

$$
\begin{aligned}
x(y z) & =(x \cdot y z)\left(x^{-1} x\right)=\left((x \cdot y z) x^{-1}\right) x=(y z)^{x^{-1}} \cdot x=\left(y^{x^{-1}} \cdot z^{x^{-1}}\right) x \\
& =\left(y^{x^{-1}} \cdot x\right)\left(x^{-1}\left(z^{x^{-1}} \cdot x\right)\right)=\left(x y x^{-1} \cdot x\right)\left(x^{-1}\left(x z x^{-1} \cdot x\right)\right)=(x y) z .
\end{aligned}
$$

Hence, L is a group. The converse statement is obvious.
Corollary 4.7. An MC-loop is a group iff it is an extra loop.
Proof. Since every extra loop is a conjugacy closed loop so the corollary follows from the last theorem.

Theorem 4.8. Every MC-loop is three power associative.
Proof. Every $M C$-loop is conjugate $I P$-loop. Every conjugate $I P$ loop is flexible. Flexible loops are always three power associative. Hence, $M C$-loop is three power associative.

Example 4.9. This loop

\cdot	1	2	3	4	5
1	1	2	3	4	5
2	2	1	5	3	4
3	3	4	1	5	2
4	4	5	2	1	3
5	5	3	4	2	1

is three power associative but it is not an $M C$-loop.

Example 4.10. Consider the following multiplicative conjugate loop.

\cdot	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	1	4	3	6	5	8	7	11	12	9	10
3	3	4	1	2	9	11	10	12	5	7	6	8
4	4	3	2	1	11	9	12	10	6	8	5	7
5	5	6	10	12	1	2	9	11	7	3	8	4
6	6	5	12	10	2	1	11	9	8	4	7	3
7	7	8	9	11	10	12	1	2	3	5	4	6
8	8	7	11	9	12	10	2	1	4	6	3	5
9	9	11	7	8	3	4	5	6	12	1	10	2
10	10	12	5	6	7	8	3	4	1	11	2	9
11	11	9	8	7	4	3	6	5	10	2	12	1
12	12	10	6	5	8	7	4	3	2	9	1	11

It is neither diassociative nor alternative loop.
The above example shows that "Moufang theorem" is not always applicable in $M C$-loops. Indeed, in the above loop

$$
11(6.12)=(11.6) 12
$$

But the subloop $<11,6,12>$ is a loop which is not associative. From this, we can conclude that in $M C$-loops three elements associate with each other generata a subloop which is not a group, in general.

Example 4.11. This loop is a multiplicative conjugate loop but it is not power associative.

\cdot	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	1	5	6	3	4	9	10	7	8
3	3	5	7	1	9	2	10	4	8	6
4	4	6	1	8	2	10	3	9	5	7
5	5	3	9	2	8	1	6	7	10	4
6	6	4	2	10	1	7	8	5	3	9
7	7	9	10	3	6	8	5	1	4	2
8	8	10	4	9	7	5	1	6	2	3
9	9	7	8	5	10	3	4	2	6	1
10	10	8	6	7	4	9	2	3	1	5

Indeed, the subloop $\langle 3\rangle=\{1,2,3,4,5,6,7,8,9,10\}$ is not associative.
Power associative loops are not $M C$-loop because Moufang loops are power associative but not $M C$-loop.

The relationship of $M C$-loops with other loops is illustrated by the following diagram.

References

[1] A. Batool, A. Shaheen and A. Ali, Conjugate loops: An Introduction, Intern. Math. Forum 8 (2013), 223-228.
[2] R. H. Bruck, Pseudo-automorphism and Moufang loops, Proc. Amer. Math. Soc. 2 (1951), 66-71.
[3] M. K. Kinyon and K. Kunen, The structure of extra loops, Quasigroups and Related Systems 12 (2004), 39-60.
[4] G. P. Nagay and P. Vojtechovsky, LOOPS: Computing with quasigroups and loops in GAP, version 2.0.0 (2008), http://www.math.du.edu/loops.
[5] J. D. Philips, P. Vojtechovsky, C-loops: An Introduction, Pupl. Math. (Debrecen) 68 (2006), $115-137$.
[6] J. Slaney, FINDER, finite domain enumerator: System description, Lecture Notes Computer Sci. 814 (1994), $798-801$.
[7] J. Slaney and A. Ali, IP loops of small orders, (2007), http://users.rsise.anu.edu.au/~jks/IPloops/.
[8] J. Slaney and A. Ali, Generating loops with the inverse property, Proc. Empirically Successful Automated Reasoning in Math. 378 (2008), $55-66$.

Received October 05, 2013

S. Ambreen

Quaid-e-Azam University, Pakistan
E-mail: shumaila.ambreen@ymail.com
A. Ali

Department of Mathematics and Natural Sciences, Prince Muhammad Bin Fahd University, POBox: 1664, Al Khobar 31952, Saudi Arabia
E-mail: dr_asif_ali@hotmail.com

