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Product of the symmetric group with
the alternating group on seven letters

Mohammad R. Darafsheh

Abstract

We will �nd the structure of groups G = AB where A and B are subgroups of G with
A isomorphic to the alternating group on 7 letters and B isomorphic to the symmetric
group on n > 5 letters.

1. Introduction
If A and B are subgroups of the group G and G = AB, then G is called
a factorizable group and A and B are called factors of the factorization.
We also say that G is the product of its subgroups A and B. If any of
A or B is a non-proper subgroup of G, then G = AB is called a trivial
factorization of G, and by a non-trivial or a proper factorization we mean
G = AB with both A and B are proper subgroups of G. It is an interesting
problem to know the groups with proper factorization. Of course not every
group has a proper factorization, for example an in�nite group with all
proper subgroups �nite has no proper factorization, also the Janko simple
group J1 of order 175 560 has no proper factorization. In what follows
G is assumed to be a �nite group. Now we recall some research papers
towards the problem of factorization of groups under additional conditions
on A and B. In [8] factorization of the simple group L2(q) are obtained
and in [1] simple groups G with proper factorizations G = AB such that
(|A|, |B|) = 1 are given. Factorizations G = AB with A ∩ B = 1 are
called exact and in [18] such factorizations for the alternating and symmetric
groups are investigated. If A and B are maximal subgroups of G and
G = AB, then this is called a maximal factorization of G. In [11] all
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maximal factorizations of the simple groups and their automorphism groups
are obtained. Factorizations of sporadic simple groups and simple groups
of Lie type with rank 1 or 2 as the product of two simple subgroups are
obtained in [6] and [7] respectively. In [12] all groups with factorization
G = AB, with A and B simple subgroups of G such that a Sylow 2-subgroup
of A has rank 2 and a Sylow 2-subgroup of B is elementary abelian are
completely classi�ed.

Factorizations of groups involving alternating or symmetric groups have
been investigated in some papers. In [10] groups G with factorization
G = AB, where A ∼= B ∼= A5, are classi�ed and in [13] groups G = AB
where A is a non-abelian simple group and B is isomorphic to to the alter-
nating group on 5 letters are determined. In a series of papers G.L. Walls
considered factorizations G = AB of a group G with both factors simple
[14], [15]. In [16] he began the study of factorizations when one factor is
simple and the other is almost simple. To begin this study it is natural to
start with the case where one factor is isomorphic to a simple alternating
group and the other is isomorphic to a symmetric group. In [3] we classi�ed
all groups G with factorization G = AB where A ∼= A6 and B is isomorphic
to a symmetric group on n > 5 letter, and in [4] we determined all groups
G with factorization G = AB where A is a simple group and B ∼= S6. Mo-
tivated by the above results and to get a picture for the general case, in this
paper we will study groups G with factorization G = AB, where A ∼= A7

and B is isomorphic to a symmetric group on n > 5.

2. Preliminary results
In this section we obtain results which are needed in the proof of our main
Theorem. Suppose Ω is a set of cardinality m and G is a k-homogeneous,
1 6 k 6 m, group on Ω. If H is a k-homogeneous subgroup of G, then it
is easy to see that G = G(∆)H where ∆ is a subset of cardinality k in Ω.
We can give some factorization of groups using the previous observation. It
is easy to verify that the order of a subgroup of A7 is one of the numbers
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 36, 60, 72, 120, 168, 360
or 2520 and therefore the index of a proper subgroup of A7 is one of the
numbers 7,15, 21, 35, 42, 70, 105, 120, 126, 140, 210, 252, 280, 315, 360,
420, 504, 630, 840, 1260 or 2520. Therefore A7 has transitive action on
sets of cardinality equal to any of the latter numbers. Therefore we always
have the factorization Sn+1 = SnA7 where n = 6, 14, 20, 34, 41, 69, 104,
119, 125, 139, 209, 251, 279, 314, 359, 419, 503, 629, 839, 1259 or 2519. It
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is well-know that A7 has a 2-transitive action on 15 points and hence we
have the factorization S15 = S13A7. If we consider the 7-transitive action
of A7 on 7 points we also have the factorizations S7 = SnA7, 2 6 n 6 7.
Therefore we have the following Lemma.

Lemma 1.
(a) Sn+1 = A7Sn and An+1 = A7An for n = 6, 14, 20, 34, 41, 69, 104,

119, 125, 139, 209, 251, 279, 314, 359, 419, 503, 629, 839, 1259 or
2519.

(b) S15 = A7S13 and A15 = A7S13.
(c) S7 = A7Sn for 2 6 n 6 7.

In the following Lemmas we will �nd a special kind of factorizations for
the alternating and symmetric groups.

Lemma 2. Let m, r, n > 5 be natural numbers. If Am = ArAn or Am =
ArSn are proper factorizations, then either r = m − 1 and Am has a
transitive subgroup isomorphic to An or Sn which gives the factorizations
Am = Am−1An and Am = Am−1Sn, or (m, r, n) = (10, 6, 8), (15, 7, 13),
(15, 8, 13), (10, 8, 6) giving the factorizations A10 = A6A8 = A6S8,
A15 = A7A13 = A7S13, A15 = A8A13 = A8S13 and A10 = A8S6.
Moreover all the above factorizations occurs.

Proof. We use Theorem D of [11], but note that the case (ii) of this Theorem
can not happen for these special factorizations of Am stated in our Theorem.
First we assume Am = ArAn. In this case without loss of generality we
may assume Am−k E Ar 6 Sm−k × Sk for some k, 1 6 k 6 5, and An is
k-homogeneous on m letter. Since the factorization is proper hence m > r
and m > n. If m − k = 1, then from 1 6 k 6 5 we get m = 6 and we
have the factorization A6 = A5A5. Hence m − k = r. If k = 1, then
Am = Am−1An and An has a transitive action on m letters. If k > 2, then
since m > n, from [9] and [5] we get k = 2 and the 2-transitive actions of
Ar occurs if and only if (r,m) = (5, 6), (6, 10), (7, 15), (8, 15). since we have
assumed m, r, n > 5, so we obtain the triples listed in the Lemma.

Next we assume Am = ArSn. Again we use Theorem D in [11], but we
must consider two cases

Case (i). Am−k E Ar 6 Sm−k × Sk for some k, 1 6 k 6 5, and Sn is
k-homogeneous on m letters. Reasoning as above we must have m− k = r.
If k = 1, then Am = Am−1Sn and Sn must have a transitive permutation
representation on m points. Otherwise since Sn has no k > 2 transitive
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permutation representations except the trivial ones we don't get a possibil-
ity. However S6 has a 2-transitive permutation representations on 10 points
giving the factorization A10 = A8S6.

Case (ii). Am−k E Sn 6 Sm−k × Sk for some k, 1 6 k 6 5, and Ar

is k-homogeneous on m points. In this case m − k = 1 is not possible,
hence m − k = n. Since we must have m > n − 2, so k = 1 is not possi-
ble. Natural k-homogeneous permutation representation of Ar don't give
proper factorizations, therefore we must have Ar = A5,A6,A7 or A8 act-
ing 2-transitively on sets of cardinality 6, 10, 15 and 15 respectively. In this
case we obtain (m, r, n) = (6, 5, 4), (10, 6, 8), (15, 7, 13), (15, 8, 13), (10, 8, 6)
and the admissible triples are the ones listed in the Lemma.

Lemma 3. Let m, r, n > 5 be integers and Sm = ArSn be a non-trivial
factorization of Sm. Then we have one of the following possibilities:

(a) n = m− 1 and Ar has a transitive action on m points and the
factorization Sm = ArSm−1 occurs.

(b) r = m− 1 and Sn has a transitive action on r points and moreover
2m | n!.

(c) (m, r, n) = (10, 6, 8), (15, 7, 13), (15, 8, 13) and the factorizations
S10 = A6S8, S15 = A7S13, S15 = A8S13 all occurs.

(d) (m,n, r) = (10, 8, 6) and S10 = A8S6.

Proof. Again we use Theorem D of [11], knowing that case (ii) of the
Theorem does not hold in this special case. We consider two cases. Note
that m > r and m > n.

Case (i). Am−k ESn 6 Sm−k×Sk and Ar has a k-homogeneous action
on m letters. If k = 1, then n = m − 1 and we have the factorization
Sm = Sm−1Ar where Ar acts transitively on m letters. If k > 2, then by
[9] and [5] the only non-trivial k-homogeneous representation of Ar on m
letters occurs if and only if k = 2 and (m, r) = (6, 5), (10, 6), (15, 7), (15, 8)
and for these pairs we have n = 4,8,13,13 respectively. Therefore cases (a)
and (c) are proved and it is clear that the appropriate factorizations exists.

Case (ii). Am−k E Ar 6 Sm−k × Sk and Sn has a k-homogeneous
action on m letters. In this case Sn does not have a k-homogeneous action
on m letters except the trivial ones if k > 2. In the case of k = 2, S6 has
a non-trivial 2-transitive action on 10 letters. Therefore k = 1 which forces
r = m − 1 and if we have the factorization Sm = Am−1Sn, then Sn must
act on m letters transitively and order consideration yields 2m | n!. In this
way we obtain cases (b) and (d) and the Lemma is proved.
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3. Factorizations involving A7

To obtain our main result concerning groups with factorizations G = A7Sn,
n > 5 we need to know about simple primitive groups of certain degrees,
and these degrees are indices of subgroups of A7 which are greater than
1. In section 2 we listed the 21 possible numbers, and we see that ex-
cept 1260 and 2520 the rest of them are less than 1000. Simple primitive
groups of degree up to 1000 are listed in [5] and we can obtain the sim-
ple primitive groups with the degree we want. These are listed in Table I.
But we don't know about the simple primitive groups of degree 1260 and
2520 in the existing literature. The following Lemma deals with these cases.

Lemma 4. Suppose G is not an alternating simple group but G is a simple
permutation group of degree 1260 or 2520. Then it is not possible to decom-
pose G as G = A7An, for any n.

Proof. According to the classi�cation of �nite simple groups any �nite non-
abelian simple group is isomorphic to either an alternating group, a sporadic
group or a simple group of Lie type. Since G is written as the product of
two simple groups results of [6] show that G can not be a sporadic simple
group. If G is a simple group of Lie type, then by [7] the only possibility
is L2(9) = A5A5 which is not possible because L2(9) is not a permutation
group of degree 1260 or 2520. Therefore we assume that G is a simple group
of Lie type with Lie rank at least 3. Here we use results about the minimum
index of a subgroup of a group of Lie type and consider the following cases.

(i). For Ln(q), n > 4, the proper subgroups have index at least qn−1
q−1 and

form qn−1
q−1 6 2520 we get the following possibilities: L4(2), L4(3), L4(4),

L4(5), L4(7), L4(8), L4(9), L4(11), L4(13), L5(2), L5(3), L5(4), L5(5),
L5(7), L6(2), L6(3), L6(4), L7(2), L8(2), L9(2), L10(2), L11(2). L4(2) ∼=
A8 is not the case. If L4(3) = A7An, then by [2] we see thatL4(3) does
not contain a subgroup isomorphic to A7. If L4(4) = A7An, then since
17||L4(4)| we must have n > 17, but in this case we must have 13||L4(4)|
which is not the case. Now using similar argument as above we rule out all
the above possibilities.

(ii). For Un(q), n > 6, the proper subgroups have index at least (qn −
(−1)n)(qn−1 − (−1)n−1)/(q2 − 1) and for this number to be at least 2520
we get only U6(2). If U6(2) = A7An, then since 11||U6(2)| we must have
n > 11, but then from [2] we see that U6(2) does not have a subgroup
isomorphic to A11.
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(iii). For S2m(q),m > 3, the proper subgroup have index at least q2m−1
q−1

when q > 2 and at least 2m(2m−1) when q = 2 and m > 2. In this case the
following symplectic groups are the possibilities S6(2), S6(3), S6(4), S8(2),
S10(2), S12(2), and again using [2] and order consideration we rule out the
possibility G = A7An.

(iv). For Oε
2m(q),m > 4, ε ≡ ±, the proper subgroups have index at least

(qm−1)(qm−1+1)/(q−1) when ε ≡ + and at least (qm+1)(qm−1−1)/(q−1)
when ε ≡ − except for the case (q, ε) = (2, +) when a proper subgroup
has index at least 2m−1(2m − 1). For O2m+1(q), m > 3, q odd, the proper
subgroups have index at least (q2m − 1)/(q − 1) except when q = 3 and in
this latter case the minimum index is (q2m − qm)/2. Now for this index to
be at most 2520 we obtain the following orthogonal groups O7(3), O±

8 (2),
O±

8 (3), O±
10(2), O±

12(2). Again order consideration rules out the possibility
G = A7An.

(v). For G to be an exceptional simple group of Lie type we use the
argument in the proof of Theorem 9 in [5] from which only the possibilities
E6(q) or F4(q) can arise and both of them are ruled out by order consider-
ation. The Lemma is now proved.

Theorem 5. If M = A7An is a simple group, then
(a) M = An for n > 7,
(b) M = A15 = A7A13,
(c) M = An+1 = A7An for n = 14, 20, 34, 41, 69, 104, 119, 125, 139,

219, 251, 279, 314, 359, 419, 503, 629, 839, 1259 or 2519.

Proof. Case (a) corresponds to the trivial factorization of M . Now suppose
M = A7An is a non-trivial factorization of a simple group M . If C is a
maximal subgroup of M containing An, then we have [M : C]|[A7 : A7∩C].
Therefore M is a simple primitive group of degree equal to the index of a
proper subgroup of A7. If M is an alternating group, then by Lemma 2
we get cases (b) and (c). Therefore we assume M is not an altrnating
group. By Lemma 4 M can not be a primitive group of degree 1260 or
2520. Therefore we may assume M is a simple primitive group of degree
less than 1000. Simple primitive groups of these special degrees are listed
in Table I. Now using [6] and [7] the only cases that need to be considered
are S6(2), S8(2), O+

8 (2) or J2. If S6(2) = A7An, then since 29||S6(2)| we
must have n > 8 and by [2] we get n = 8. But in this case if S6(2) = A7A8,
then |A7∩A8| = 35 which is a contradiction because A7 does not contain a
subgroup of order 35. Order consideration rules out the possibilities S8(2)
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or O+
8 (2) to be factorized as A7An, for any n. By [2] the group J2 does not

contain a subgroup isomorphic to A7, and the Lemma is proved now.

Table I. Simple primitive groups of certain degrees

degree Groups

7 A7, L2(7)

15 A15,A6,A7,A8

21 A21,A7, L2(7), L3(4)

35 A35,A7,A8

42 A42

70 A70

105 A105,A15, L3(4)

120 A120,A9,A10, L2(16), L3(4), S4(4), S6(2), S8(2), O+
8 (2)

126 A126,A9,A10, L2(125), U3(5), U4(3)

140 A140, L2(139)

210 A210,A10,A21

252 A252, L2(251)

280 A280,A9, L3(4), U4(3), J2

315 A315, S6(2), J2

360 A360, L2(359)

420 A420, L2(419)

504 A504, L2(503)

630 A630,A36

840 A840,A9, L2(839), J2

Lemma 6. There is no non-trivial factorization G = A7Sn with G simple
except G = A15 = A7S13.
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Proof. Let G be a simple group with a non-trivial factorization G = A7Sn

for some natural number n. If G is isomorphic to an alternating group,
then by Lemma 2 the only possibility is G = A15 = A7S13. Hence we
assume G is not an alternating group. As in the proof of Lemmas if C is
a maximal subgroup of G containing Sn, then [M : C]|[A7 : A7 ∩ C] = d
and so G is represented as a simple primitive group of degree d where d is
the index of a proper subgroup of A7. First we consider simple primitive
groups of degree d 6 1000 which are listed in Table I. We can exclude the
linear groups L2(q) and the groups L3(4), S4(4) and J2 as by [2] they don't
contain the alternating group of degree 7. Therefore we have to examine the
groups S6(2), S8(2), O+

8 (2), U3(5) or U4(3) for appropriate decomposition. If
S8(2) = A7Sn, then since 17||S8(2)| we must have n > 17, but in this case
we must have 13||Sn| which is a contradiction. If O+

8 (2) = A7Sn. then
order consideration implies n > 12 which is a contradiction because by [2]
O+

8 (2) does not contain a subgroup isomorphic to S12. For S6(2) = A7Sn

order consideration yields n = 8, but then |A7 ∩ S8| = 70 contradicting
the fact that A7 does not have a subgroup of order 70. If U3(5) = A7Sn,
then since 53||U5(3)| we must have n > 10 which is not possible because,
by [2], the group U3(5) does not contain a subgroup isomorphic to S10. If
U4(3) = A7Sn, then order consideration will imply n > 9, which is not
possible because, by [2], U4(3) does not contain a subgroup is isomorphic
to S9.

Secondly we should consider simple primitive groups G of degree d >
1000 which can be written as G = A7Sn, and these degrees are 1260 and
2520. But by Lemma 4 we know a list of simple groups which possibly have
this property. Now case by case examination of these groups, with the same
method as used in the proof of Lemma 4, will end to a contradiction. The
Lemma is proved now.

Lemma 7. Let H = AB,A ∼= A7, B ∼= An, be a proper factorization of a
group H and H 6∼= A × B. Then H is isomorphic to an alternating group
Am for possible m.

Proof. Let N be a normal subgroup of H. Since A is a simple group
therefore N ∩ A = A or 1. If N ∩ A = A, then A ⊆ N and we will have
H = AB = NB and by [15] we must have H = B, H ∼= A × B or H =
Hol (Z2×Z2×Z2), and non of them is the case. Therefore N ∩A = 1 and
similarly N ∩B = 1.

Now assume N is a maximal normal subgroup of G. We have H
N =
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(AN
N )(BN

N ) and AN
N

∼= A ∼= A7 and BN
N

∼= B ∼= An, and hence the simple
group H

N is the product of A7 and An and by Theorem 5 we must have
H
N
∼= Am for suitable m. Now by [17] we must have N = 1 and H ∼= Am.

This completes the proof.

Now we state and prove our �nal result.
Theorem 8. Let G be a group such that G = AB, A ∼= A7 and B ∼= Sn,
n > 5, then one of the following cases occurs:

(a) G ∼= A7,
(b) G ∼= Sn, n > 7,
(c) G ∼= A7 × Sn,
(d) G ∼= A15 = A7Sn,
(e) G ∼= Sn+1 = A7Sn, n = 14, 20, 34, 41, 69, 104, 119, 125, 139, 219,

251, 279, 314, 359, 419, 503, 629, 839, 1259 or 2519,
(f) G ∼= S15 = A7S13 or G ∼= A15 × Z2 = A7S13,
(g) G ∼= (A7 ×A7)〈τ〉, τ an automorphism of order 2 of A7 and

A7 ×A7 is the minimal normal subgroup of G,
(h) G ∼= (A7 ×An)〈τ〉, n 6= 7, where τ acts as an automorphism of

order 2 on both factors (in this case A7 or An is the minimal
normal subgroup of G ).

Proof. We will use Lemma 4 of [3]. Let M be a minimal normal subgroup
of G = AB, G 6∼= A×B, where A ∼= A7 and B ∼= Sn, n > 5. Then we have
the following possibilities.

(i). M = G = AB is simple . In this case by Lemma 6 only G ∼= A15 =
A7S13 is possible which is case (d) of our Theorem.

(ii). G = MB, M = AB′ is simple, where B′ ∼= An denotes the
commutator subgroup of B. If M = A or B′, then we get trivial factor-
izations which are case (a) and case (b) of our Theorem. Therefore we
assume M = AB′, A ∼= A7, B

′ ∼= An, is a simple group with non-trivial
factorization. By Lemma 5 we must have either M ∼= A15 = A7A13 or
M ∼= An+1 = A7An for the n's speci�ed in the Theorem. In the latter case
[G : M ] = 2, hence G = M〈τ〉 where τ is an element of order 2 in Sn\An.
Now in the latter case the same reasoning as used in the proof of Theorem
4 in [16] yields G = Sn+1, which is the case (e) of the Theorem. In the case
of M ∼= A15 = A7A13 if τ acts as an inner automorphism on M we obtain
A15×Z2

∼= A7S13 and if τ acts as an outer automorphism on M we obtain
S15

∼= A7S13 which are included in case (f) of the Theorem.
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(iii). G = MB, B ∼= Sn,M ∼= A7×A7. In this case n = 7 and therefore
G ∼= (A7 × A7)〈τ〉, with τ an automorphism of order 2 and A7 × A7 a
minimal normal subgroup of G, which is the case (g) of the Theorem.

(iv). M = A or B′, AB′ ∼= A × B′ ∼= A7 × An, [G : AB′] = 2. In
this case G = (A7 ×An)〈τ〉 where τ acts as an automorphism of order 2
on both factors with A7 or An as the minimal normal subgroup of G. This
is the case (h) in our Theorem.

(v). Finally we must have M ∩ A = M ∩ B = 1, |M ||[A : A ∩ B] and
|M ||[B : A∩B], furthermore |M |.|A∩B| = |AM

M ∩ BM
M |. We will show that

no new possibilities arise in this case and the proof of our Theorem will
be completed. M is isomorphic to the direct product of isomorphic simple
groups. From |M ||[A : A∩B] it follows that if M is abelian, then |M | = 2,
3, 4, 5, 7, 8, 9 and if M is non-abelian, then M ∼= A5,A6, L2(7) or A7.

Now the groups A,B and G act on M by conjugation with the kernels
CA(M)EA,CB(M)EB and C = CG(M) respectively. If CA(M) = 1, then
A would be isomorphic to a subgroup of Aut(M) and by the structure of M
the only possibility is M = A which has been considered above. Therefore
CA(M) = A which implies A 6 CG(M) = C. Now CB(M) = 1, B′ or
B because B ∼= Sn, n > 5. Since A 6 C we must have G = AB = CB
and hence |A||C ∩ B| = |C||A ∩ B|. We have C ∩ B = CB(M), and if
CB(M) = 1, then A = C and A ∩ B = 1. Since C E G we consider the
group H = AB′ = CB′ where A and B′ are simple alternating groups and
[G : H] = 2. Now by Lemma 6 either this factorization is not proper or
H ∼= A × B′ or H isomorphic to an alternating group. If the factorization
is not proper, then either A ⊆ B′ or B′ ⊆ A contradicting A ∩B = 1. The
other cases force G to be a symmetric group which is considered above. If
CB(M) = B, then B 6 CG(M) and we will get M 6 Z(G).

Finally we will assume CB(M) = B ∩ C = B′. Now from G = AB =
CB we get [G : C] = 2. We know that [A ∩ B : A ∩ B′] = 1 or 2. If
[A ∩ B : A ∩ B′] = 2, then |AB′| = |AB| = |G| implying G = AB′ ⊆ C or
G = C which is a contradiction. Therefore A ∩B = A ∩B′ from which we
obtain |AB′| = 1

2 |G| = |C|, hence C = AB′.
Our arguments so far show that either M 6 Z(G) or C = AB′ where

A ∼= A7 and B′ ∼= An. If C = AB′ then the factorization must be proper
because M E C and A and B′ are simple groups, therefore by Lemma 7
either C ∼= A × B′ or C ∼= Am for suitable m. If C ∼= A × B′, then as
[G : C] = 2 we will obtain case (f) again. The case C ∼= Am can not
happen because M E C. Now we will deal with the case M 6 Z(G). We
have G

M
∼= (AM

M )(BM
M ) with AM

M
∼= A ∼= A7 and BM

M
∼= B ∼= Sn and by
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induction either G = MB ∼= M × B or G
M = Sn+1 for n's as in case (e) of

the Theorem. Now the same reasoning as used in the proof of Theorem 4
in [16] leads to a contradiction. The Theorem is proved now.
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