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Quasigroup power sets and cyclic S�systems

Galina B. Belyavskaya

Abstract

We give new constructions of power sets of quasigroups (latin squares) based on
pairwise balanced block designs and complete cyclic S-systems of quasigroups.

1. Introduction
Let L be a �xed latin square of order n with elements of the set Q =
{0, 1, . . . , n − 1} and (α0, α1, . . . , αn−1) be an ordered set of permutations
α0, α1, . . . , αn−1, where row i of L is the image of (0, 1, . . . , n − 1) under
the permutation αi, 0 6 i 6 n − 1. We write L = (α0, α1, . . . , αn−1). If
R = (β0, β1, . . . , βn−1) is another latin square of order n, then the prod-
uct square LR is de�ned as (α0β0, α1β1, . . . . . . , αn−1βn−1), where αiβi

denotes the usual product of the permutation αi on βi.
Let L be a latin square of order n and m a positive integer greater than

one. If L2, L3, . . . , Lm are all latin squares, then {L,L2, . . . , Lm} is called a
latin power set of size m. This concept was introduced explicitly in [7] and
implicitly in [13]. In this case the latin squares L,L2, . . . , Lm are pairwise
orthogonal [15], Theorem 1.

The authors of [7] conjectured that for all n 6= 2, 6 there exists a latin
power set consisting of at least two n × n latin squares. This problem
was also put by J. Dénes in [5]. A proof of this conjecture would provide
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a new disproof of the Euler conjecture (if n = 4k + 2, then there is no
pair of orthogonal latin squares of order n). A construction in [7], based
on Mendelsohn designs, gives in�nitely many counterexamples to the Euler
conjecture but unfortunately the construction does not work when n ≡ 2
(mod 6). In [7] it was proved that for 7 6 n 6 50 and for all larger n except
possibly those of the form 6k + 2 there exists a latin power set containing
at least two latin squares of order n.

In [8] J. Dénes and P.J. Owens gave a new construction of power sets of
p× p latin squares for all primes p > 11 not based on group tables. Such
latin power sets of prime order can be used to obtain latin power sets of a
composite order by the known methods.

The main construction of [8] is based on a circular Tuscan square.

As is noted in [8], for both theoretical and practical reasons it is im-
portant to �nd latin power sets that are not based on group tables (the
sets given in [8] are constructed by using rearrangements of rows of a group
table). It is important, for example, for a ciphering device, whose algorithm
is based on latin power sets [9]. It is obvious that latin power sets based on
non-group tables are preferable to those based on group tables because the
greater irregularity makes the cipher safer.

In this article we use an algebraic approach to latin power sets. In
Section 1 some necessary information from [1, 2, 3] concerning S-systems
of quasigroups is given. In Section 2 we use cyclic S-systems (they are a
particular case of latin power sets) and pairwise balanced block designs of
index one (BIB(v, b, r, k, 1)) for the construction of quasigroup power sets
of di�erent sizes.

The suggested construction, in particular, is used to obtain power sets
of quasigroups of all orders n = 12t + 8 = 6(2l + 1) + 2, t, l > 1, i.e. for
any n = 6k + 2 where k is an odd number, k > 3.

In Section 3, there is described a composite method of constructing
quasigroup (latin) power sets based on pairwise balanced block designs of
index one of type (v; k1, k2, . . . , km) (BIB(v; k1, k2, . . . , km)). At the end
of this section the sizes of quasigroup power sets are given that can be
constructed using some known block designs and cyclic S-systems by means
of the suggested methods.
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2. Cyclic S-systems as quasigroup power sets
Let Q(A) and Q(B) be groupoids. Mann's (right) multiplication B · A of
the operation B on A is de�ned in the following way [14]:

B ·A(x, y) = B(x, A(x, y)), x, y ∈ Q.

The operation (·) on the set of all operations de�ned on the set Q is asso-
ciative, i.e. (A ·B) ·C = A · (B ·C). If Q(A) and Q(B) are quasigroups and
L,R are the latin squares corresponding to them, then

B ·A(x, y) = βxαxy,

where βxy = B(x, y), αxy = A(x, y) and βx (αx) is row x of R (L).
Thus, Mann's (right) multiplication of quasigroups corresponds to the

product of the respective latin squares and conversely.
Let A = B, then we get

A ·A = A2, A ·A ·A = A3, . . . , A ·A · · · · ·A︸ ︷︷ ︸
m

= Am.

If A,A2, . . . , Am are quasigroups, then {A,A2, . . . , Am} is called a quasi-
group power set (brie�y QPS), {L,L2, . . . , Lm} is the latin power set corre-
sponding to this QPS.

Let Σ = {A,B, C, . . . } be a system of binary operations given on Q.
De�nition 1. [1] A system of operations Q(Σ) is called an S�system if

1. Σ contains the unit operations F and E (F (x, y) = x, E(x, y) = y
∀x, y ∈ Q ) and the remaining operations de�ne quasigroups,

2. A ·B ∈ Σ′ for all A,B ∈ Σ′, where Σ′ = Σ \ F ,

3. A∗ ∈ Σ for all A ∈ Σ, where A∗(x, y) = A(y, x).
An S-system Q(Σ) is �nite if Q is a �nite set. In �nite Q(Σ) for any

A ∈ Σ is de�ned A−1 as the solution of the equation A(a, x) = b, i.e.
A−1(a, b) = x. Then A−1 = Ak ∈ Σ for some natural k, because the set of
all invertible to the right operations on Q forms a �nite group with respect
to the right multiplication of operations. In this group E is the unit and
A−1 ·A = A ·A−1 = E.

We remind the reader that two binary operations A and B de�ned
on Q are said to be orthogonal if the pair of equations A(x, y) = a and
B(x, y) = b has a unique solution for any elements a, b ∈ Q.

All operations of an S-system Q(Σ) are pairwise orthogonal and the
following properties of �nite S-systems are also important:
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1. Σ′ is a group with respect to the (right) multiplication of operations,
E is the unit of this group and A−1 is the inverse element of A.

2. All the quasigroups of Q(Σ) are idempotent, if |Σ| > 4, where |Σ| is
the number of operations of Q(Σ).

Theorem 1. (Theorem 4.3 in [1]) Let Q(Σ) be an S−system, |Q| = n,
|Σ| = k, then k − 1 divides n− 1 and r = n−1

k−1 > k or r = 1.

In [1] the number r is called an index of the S-system Q(Σ). The
number k is called order of Q(Σ).

An S-system is called complete if r = 1 (in this case n = k). It then
contains n− 2 quasigroups.

A characterization for a �nite complete S-system was given in [1], The-
orem 4.6.

De�nition 2. [3] An S-system Q(Σ) of order k is called cyclic if Σ′(·),
where Σ′ = Σ \ F and (·) represents composition of operations (called
Mann's multiplication above), is a cyclic group.

By Corollary 1 of [3] a complete S-system Q(Σ) is cyclic i� it is an
S-system over a �eld Q( ·, +), i.e. i� every operation of Σ has the form

Aa(x, y) = (1− a)x + ay, a, x, y ∈ Q, (1)

where 1 is the unit of the multiplicative group of the �eld.

Remark 1. If Q(Σ), Σ = {F, E,A, A2, . . . , Ak−2}, is a complete cyclic
S−system of order k, then

A(x, y) = (1− a)x + ay,

where the element a is a generating element of the multiplicative (cyclic)
group of a �eld. Indeed, it is easy to prove that

Al(x, y) = (1− al)x + aly, l = 1, 2, . . . , k − 2,

and Ak−1 = E i� ak−1 = 1.
Conversely, if an element a is a generating element of the multiplicative

group of a �eld, then the quasigroup Aa of (1) generates a complete cyclic
S−system.
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Every cyclic S-system of order k and index r corresponds to a quasi-
group power set of size k − 2 and consists of quasigroups of order n =
rk − r + 1.

From the results of [2, 3], the description of an arbitrary cyclic S-system
by means of a �eld and an incomplete balanced block design can be obtained.
First we need the following de�nitions.

De�nition 3. [6] A balanced incomplete block design (or BIB(v, b, r, k, λ))
is an arrangement of v elements a1, a2, . . . , av by b blocks such that

1. every block contains exactly k di�erent elements;

2. every element appears in exactly r di�erent blocks;

3. every pair of di�erent elements (ai, aj) appears in exactly λ blocks.

De�nition 4. [2] A BIB(v, b, r, k, 1) is called an S(r, k)−con�guration
if k is a prime power, i.e. k = pα.

It is known that the parameters of a BIB(v, b, r, k, 1) satisfy the follow-
ing equalities

v = rk − r + 1, b =
rk − r + 1

k
r .

In accordance with Theorem 1 of [2] a cyclic S-system of index r and
order k exists i� there exists an S(r, k)-con�guration.

Let us give a construction of an S-system of order k and index r for
the case of a cyclic S-system.

Let an S(r, k)-con�guration be given on a set Q, where |Q| = v =
rk − r + 1, and let Q1, Q2, . . . , Qb be its blocks. Let H(+, · ) be a �eld
of order k (such a �eld exists as k is a prime power) and let H(Σ̃), Σ̃ =
{F, E, A1, A2, . . . , Ak−2}, be a complete cyclic S-system over this �eld.

1. On the block Qi (i = 1, 2, . . . , b) we de�ne a quasigroup Qi(A
(i)
j ),

j = 1, 2, . . . , k − 2, isomorphic to the quasigroup H(Aj) of the S-
system H(Σ̃):

A
(i)
j (x, y) = α−1

i Aj(αix, αiy) = Aαi
j (x, y),

where αi is an arbitrary one-to-one mapping of the set Qi upon H,
i = 1, 2, . . . , b.
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2. Then, on the set Q, we de�ne the operations Bj , j = 1, 2, . . . , k − 2,
in the following way:

Bj(x, y) =

{
A

(i)
j (x, y), if x, y ∈ Qi, x 6= y,

x, if x = y.

By Theorem 1 of [2] the system Q(Σ), Σ = {F, E,B1, . . . , Bk−2}, is
an S-system of index r and order k. It is called an S−system over the
�eld H(+, · ) and the S(r, k)−con�guration. Moreover, by Theorem 3 of
[3] such an S-system is cyclic and any S-system over a �eld and an S(r, k)-
con�guration is cyclic.

If Σ̃ = {F,E, A,A2, . . . , Ak−2}, then by (1) and Remark 1

Aj(u, v) = Aj(u, v) = (1− aj)u + ajv, j = 1, 2, . . . , k − 2,

u, v ∈ H, where the element a is a generating element of the multiplicative
group of the �eld H(+, · ).

Hence,

A
(i)
j (x, y) = α−1

i ((1− aj)αix + (aj · αiy)) = α−1
i Aj(αix, αiy)

= (Aj)αi(x, y) = (Aαi)j(x, y), x, y ∈ Qi,

since it is easy to see that (A · B)α = Aα · Bα if α is an isomorphism,
(A ·B)α(x, y) = α−1[(A ·B)(αx, αy)]. Then

Bj(x, y) = Bj(x, y) =
{

(Aαi)j(x, y), if x, y ∈ Qi, x 6= y,
x, if x = y

and Σ = {F, E,B,B2, . . . , Bk−2}.
In an Appendix we give an illustrative example of this construction.

3. Direct product of quasigroup power sets
Let Q1(A1), Q2(A2) be two binary groupoids. On the set Q1 × Q2 which
consists of all pairs (a1, a2), where ai ∈ Qi, i = 1, 2, de�ne the direct product
A1 ×A2 of the operations A1 and A2:

(A1 ×A2)((x1, x2), (y1, y2)) = (A1(x1, y1), A2(x2, y2)).

If A1, A2 are quasigroup operations, then A1 × A2 also is a (binary)
quasigroup operation.
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Proposition 1. (A1 ×A2)m = Am
1 ×Am

2 for any natural number m.

Proof. Let m = 2, then

(A1 ×A2)2((x1, x2), (y1, y2)) =

= (A1 ×A2)((x1, x2), (A1 ×A2)((x1, x2), (y1, y2))) =

= (A1 ×A2)((x1, x2), (A1(x1, y1), A2(x2, y2))) =

= (A1(x1, A1(x1, y1)), A2(x2, A2(x2, y2))) =

= (A2
1(x1, y1), A2

2(x2, y2)) = (A2
1 ×A2

2)((x1, x2), (y1, y2)) .

Hence,
(A1 ×A2)2 = A2

1 ×A2
2 .

But then

(A1 ×A2)3 = (A1 ×A2)(A1 ×A2)2 = (A1 ×A2)(A2
1 ×A2

2)

since the Mann's multiplication (·) of operations is associative. Using that
we can similarly show that

(A1 ×A2)3 = A3
1 ×A3

2 .

Hence, by induction on the integer m, we may deduce that Proposition 1
is true.

Let Q1(A1), Q2(A2), . . . , Qn(An) be binary groupoids. On the set
Q1 ×Q2 × · · · ×Qn de�ne the direct product of the operations A1, . . . , An

(A1 ×A2 × · · · ×An)((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =
= (A1(x1, y1), A2(x2, y2), . . . , An(xn, yn)).

Proposition 1 at once implies

Corollary 1. (A1 ×A2 × · · · ×An)m = Am
1 ×Am

2 × · · · ×Am
n .

Now let us consider the following n QPSs:

Qi(Σi), Σi = {Ai, A
2
i , . . . , A

mi
i }, i = 1, 2, . . . , n,

and on the set Q1 ×Q2 × · · · ×Qn de�ne the set

Σ1 × Σ2 × · · · × Σn = {(A1 ×A2 × · · · ×An),
(A2

1 ×A2
2 × · · · ×A2

n), . . . , (Am
1 ×Am

2 × · · · ×Am
n )},
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where m = min{m1,m2, . . .mn}. By Corollary 1

Σ1 × Σ2 × · · · × Σn = {(A1 ×A2 × · · · ×An),
(A1 ×A2 × · · · ×An)2, . . . , (A1 ×A2 × · · · ×An)m},

and (Q1 ×Q2 × · · · ×Qn)(Σ1 × Σ2 × · · · × Σn) is a QPS of size m which
consists of quasigroups of order |Q1| · |Q2| · . . . · |Qn|. We call this QPS the
direct product of QPSs Qi(Σi), i = 1, 2, . . . , n.

Theorem 2. Let n = pu1
1 pu2

2 . . . pus
s , where for all i = 1, . . . , s, the pi are

prime numbers, the ui are natural numbers and m = min{pu1
1 , . . . , pus

s } > 4.
Then there exists a quasigroup power set containing m− 2 quasigroups of
order n.

Proof. Let
pu1
1 6 pu2

2 6 · · · 6 pus
s , where pui

i 6= 2, 3,

and Qi(Σi) =
{

F, E,Ai, A
2
i , . . . , A

p
ui
i −2

i

}

be a complete cyclic S-system of order pui
i = |Qi|, i = 1, 2, . . . , s. By

Corollary 1 of [3] such an S-system is an S-system over a �eld of order pui
i

and its binary operations have the form (1). Using the direct product of
QPSs, we deduce that (Q1 ×Q2 × · · · ×Qs)(Σ1 ×Σ2 × · · · ×Σs) is a QPS
of size pu1

1 − 2 containing quasigroups of order n.

Note that, under di�erent representations of a number n by powers of
prime numbers, the quasigroup power sets obtained by Theorem 2 are dif-
ferent. For example, if n = 7 ·52 we can construct a QPS of 5 quasigroups,
whereas for n = 5 · 5 · 7 we obtain a QPS of 3 quasigroups of order n.

As has been noted, numbers of the form 6k +2 present de�nite di�cul-
ties for the construction of latin power sets (or QPSs). As an application
of Theorem 2 let us consider numbers of this form when k is odd, i.e.

n = 6(2t + 1) + 2 = 12t + 8 = 22(3t + 2), t > 1

( n = 20, 32, 44, 56, . . . , 92, 104, . . . , 140, 152, . . . ).

Corollary 2. Let n = 12t + 8, t > 1. Then there exists a QPS containing
at least two quasigroups of order n. If t = 4k, k > 1 then there exists a
QPS containing at least three quasigroups. Moreover, if k = 1, then there
exists a QPS of �ve quasigroups. For 2 6 k 6 9 there exists a QPS of six
quasigroups.
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Proof. The number n = 22(3t + 2) is not divisible by three. This implies
that, in the factorization of n into prime powers, all pαi

i > 4 and so, accord-
ing to Theorem 2, there exists a QPS consisting of at least two quasigroups
of order n.

Let t = 4k, k > 1, then n = 23(6k + 1) where 6k + 1 is an odd
number > 7 that is not divisible by 2 and 3. Thus, the number 5 is the
least possible divisor of 6k + 1 and by Theorem 2, there exists a QPS of
three quasigroups of order n.

By Theorem 2 there exist QPSs of at least �ve quasigroups of order
n = 56 ( t = 4, k = 1). If t = 4k, 2 6 k 6 8, then 6k + 1 =
13, 19, 25, 31, 37, 43, 49 . . . and there exist QPSs of at least six quasigroups
of order n = 104 = (23 ·13), 152 = (23 ·19), 200, 248, . . . , 392 = (23 ·72).

4. Quasigroup power sets and BIB(v;k1,k2, . . . ,ks)

To obtain a further construction of QPSs, we use a generalization of the
concept of a balanced incomplete block design called by R.C. Bose and
S.S. Shrikhande a pairwise balanced block design of index unity and type
(v; k1, k2, . . . , ks) (for brevity, we shall write BIB(v; ks

1)) (see [6], page 400;
[12], page 271). Such a design comprises a set of v elements arranged in
b =

s∑
i=1

bi blocks such that there are b1 blocks each of which contains k1

elements; b2 blocks each of which contains k2 elements, ... bs blocks each of
which contains ks elements (ki 6 v for i = 1, 2, . . . , s), and in which each
pair of the v distinct elements occurs together in exactly one of the b blocks.

The latter condition implies that

v(v − 1) =
s∑

i=1

biki(ki − 1).

If k1 = k2 = · · · = ks = k, then we obtain the (pairwise) balanced incom-
plete block design (BIB(v, b, r, k, 1)).

By Theorem 11.2.2 [6] if a pairwise balanced block design of index unity
and type (v; ks

1) exists and for each ki there exists a set of qi − 1 mu-
tually orthogonal latin squares of that order then it is possible to con-
struct a set of q − 2 mutually orthogonal latin squares of order v, where
q = min{q1, q2, . . . , qs}.

We prove that an analogous statement is true for latin power sets (that
is for QPSs) using a constructing of idempotent quasigroups by means of
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BIB(v; ks
1) given in [4] (see also [10]). First, we describe brie�y the con-

struction of such quasigroups from [4].
Let Q1, Q2, . . . , Qb be blocks of BIB(v; ks

1), given on a set Q, and
Q1(A1), Q2(A2), . . . , Qb(Ab) be idempotent quasigroups. Note that, in con-
trast to [4], we assume for the sake of simplicity that these quasigroups are
given on the blocks of the BIB.

De�ne the operation (·) on the set Q in the following way:

x · y =
{

Ai(x, y), if x, y ∈ Qi, x 6= y;
x, if x = y.

(2)

The groupoid Q(·) is an idempotent quasigroup and the operation (·)
will be denoted by

(·) = A = [Ai]bi=1(v; ks
1). (3)

The quasigroup Q(·) consists of quasigroups de�ned on the blocks of the
BIB(v; ks

1).
Now we prove the following

Proposition 2. In (3), let Ai be an idempotent quasigroup for any i =
1, 2, . . . , b. Then

Ak = [Ak
i ]

b
i=1(v; ks

1) (4)
for any natural number k.

Proof. First notice that x,A(x, y) ∈ Qi where x 6= y, i� x, y ∈ Qi. Granted
this and the idempotency of A and Ai for any i = 1, 2, . . . , b, by (2) we have

A2(x, y) = A(x,A(x, y)) =

=
{

Ai(x, A(x, y)), if x,A(x, y) ∈ Qi, A(x, y) 6= x;
x, if A(x, y) = x;

=
{

Ai(x, Ai(x, y)), if x, y ∈ Qi, x 6= y;
x, if x = y;

=
{

A2
i (x, y), if x, y ∈ Qi, x 6= y;

x, if x = y.

Thus,
A2 = [A2

i ]
b
i=1(v; ks

1). (5)
Further, since A,Ai, A

2
i are idempotent quasigroups for all i = 1, 2, . . . , b,

then using (2) and (5) we have

A3(x, y) = A2(x,A(x, y)) =
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=
{

A2
i (x, A(x, y)), if x,A(x, y) ∈ Qi, A(x, y) 6= x;

x, if A(x, y) = x;

=
{

A2
i (x, Ai(x, y)), if x, y ∈ Qi, x 6= y;

x, if x = y;

=
{

A3
i (x, y), if x, y ∈ Qi, x 6= y;

x, if x = y.

Hence,
A3 = [A3

i ]
b
i=1(v; ks

1).

Extending this argument (that is, using induction on the index l) and taking
into account that Al

i, i = 1, 2, . . . , b, l = 1, 2, . . . , k − 1, and Al, l =
1, 2, . . . , k − 1, are all idempotent quasigroups we obtain equality (4).

Now it is easy to prove the following

Theorem 3. Suppose that there exists a BIB of index unity and type
(v; k1, k2, . . . , ks) and that, for every ki, i = 1, 2, . . . , s, there exists a QPS
of a size m with idempotent quasigroups of order ki. Then there exists a
QPS of m quasigroups of order v.

Proof. Let a BIB(v; ks
1) be given on a set Q and have the blocks , Q1, Q2,

. . . , Qb, |Qi| ∈ {k1, k2, . . . , ks}. Let the following quasigroup power sets of
size m on these blocks be given:

Q1(Σ1) : Σ1 = {A1, A
2
1, . . . , A

m
1 },

Q2(Σ2) : Σ2 = {A2, A
2
2, . . . , A

m
2 },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qb(Σb) : Σb = {Ab, A
2
b , . . . , A

m
b },

where Q1(A1), Q2(A2), . . . , Qb(Ab) are idempotent quasigroups (then all
their powers in the power sets are also idempotent).

Consider the following quasigroups on the set Q:

C1 = [Ai]bi=1(v; ks
1), C2 = [A2

i ]
b
i=1(v; ks

1), . . . , Cm = [Am
i ]bi=1(v; ks

1).

Using (4) we obtain that C2 = C2
1 , C3 = C3

1 , . . . , Cm = Cm
1 . Hence,

Q(Σ) : Σ = {C1, C
2
1 , . . . , Cm

1 } is a QPS of size m containing quasigroups
of order v.

Corollary 3. If there exists a BIB(v; ks
1) where ki, i = 1, 2, . . . , s are

powers of primes and t = min{k1, k2, . . . , ks} > 4, then there exists a QPS
containing t− 2 quasigroups of order v.



12 G. B. Belyavskaya

Proof. As ki, i = 1, 2, . . . , s, are prime powers then, by Corollary 1 of [3],
for every ki there exists a complete cyclic S-system (over a �eld of order ki).
This S-system contains ki − 2 (idempotent) quasigroups. Now, applying
Theorem 3 completes the proof.

Corollary 4. Let k, k + 1,m, x be prime powers, 4 6 k 6 m, 4 6 x 6 m,
t = min{k, x}. Then there exists a QPS which contains t − 2 quasigroups
of order v = km + x.

Proof. Let N(m) denote the largest possible number of mutually orthogonal
latin squares of order m which can exist in a single mutually orthogonal set
and k 6 N(m) + 1 6 m, x 6 m. Then (see [6], p. 412�413) there exists a
BIB(km + x; k, k + 1, x,m) of index unity.

Since m is a prime power then there exists a complete set of mutually
orthogonal latin squares (i.e. N(m) = m − 1) of order m. In this case the
equalities k 6 m and k 6 N(m) + 1 are equivalent. Finally use Corol-
lary 3 taking into account that under our conditions min{k, k + 1, x, m} =
min{k, x}.

Next we apply Theorem 3, Corollary 3 and Corollary 4 to construct a
number of QPSs using some known BIBs (v; b, r, k, 1) and BIBs (v; ks

1).
Let a BIB(v, b, r, k, 1) be given on a set Q, |Q| = v. By removing

one element from this BIB, we can obtain a BIB(v − 1; k − 1, k), that
contains r blocks of k−1 elements and b− r blocks of k elements. In the
table presented below we give initial BIBs (v, b, r, k, 1) (with the numbers
assigned to them in the Table of Appendix I of [12]), the corresponding
BIB(v− 1; k− 1, k), the size of QPS obtained by Corollary 3 and also that
obtained by Theorem 2 (for comparison) for the same values of v.
BIB No. BIB BIB Size QPS Size QPS
from [12] (v; b, r, k, 1) (v − 1; k − 1, k) by Cor. 3 by Th. 2

7 (21, 21, 5, 5, 1) (20; 4, 5) 2 2
11 (25, 30, 6, 5, 1) (24; 4, 5) 2 −
25 (57, 57, 8, 8, 1) (56; 7, 8) 5 5
36 (64, 72, 9, 8, 1) (63; 7, 8) 5 5
37 (73, 73, 9, 9, 1) (72; 8, 9) 6 6
42 (41, 82, 10, 5, 1) (40; 4, 5) 2 3
45 (81, 90, 10, 9, 1) (80; 8, 9) 6 3
51 (45, 99, 11, 5, 1) (44; 4, 5) 2 2
108 (61, 183, 15, 5, 1) (60; 4, 5) 2 −

[6], p.403 (22; 4, 7) 2 −
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Now we use Corollary 4 to obtain new QPSs with quasigroups of order
v = km + x, where the numbers k,m, x satisfy the conditions of the corol-
lary. In the table given below, we present some BIB(km+x; k, k+1, x,m)
with such values of k,m, x and also the sizes of the QPSs (with quasigroups
of order v = km + x ) constructed by Corollary 4 and Theorem 2 corre-
sponding to them.

BIB Size of QPS Size of QPS
(km + x; k, k + 1, x, m) v = km + x by Cor. 4 by Th. 2

(60; 7, 8, 4, 8) 60 = 22 · 3 · 5 2 −
(63; 7, 8, 7, 8) 63 = 32 · 7 5 5
(69; 8, 9, 5, 8) 69 = 3 · 23 3 −
(76; 8, 9, 4, 9) 76 = 22 · 19 2 2
(80; 8, 9, 8, 9) 80 = 24 · 5 6 3
(92; 8, 9, 4, 11) 92 = 22 · 23 2 2
(93; 8, 9, 5, 11) 93 = 3 · 31 3 −
(95; 8, 9, 7, 11) 95 = 5 · 19 5 3
(96; 8, 9, 8, 11) 96 = 25 · 3 6 −
(99; 8, 9, 11, 11) 99 = 32 · 11 6 7
(108; 8, 9, 4, 13) 108 = 22 · 33 2 2
(111; 8, 9, 7, 13) 111 = 3 · 37 5 −
(112; 8, 9, 8, 13) 112 = 24 · 7 6 5
(115; 8, 9, 11, 13) 115 = 5 · 23 6 3
(132; 8, 9, 4, 16) 132 = 22 · 3 · 11 2 −
(133; 8, 9, 5, 16) 133 = 7 · 19 3 5
(135; 8, 9, 7, 16) 135 = 33 · 5 5 3
(136; 8, 9, 8, 16) 136 = 23 · 17 6 6
(140; 8, 9, 4, 17) 140 = 22 · 5 · 7 2 2
(141; 8, 9, 5, 17) 141 = 3 · 47 3 −
(141; 8, 9, 13, 16) 141 = 3 · 47 6 −
(143; 8, 9, 7, 17) 143 = 11 · 13 5 9
(144; 8, 9, 8, 17) 144 = 24 · 32 6 7
(145; 8, 9, 9, 17) 145 = 5 · 29 6 3
(147; 8, 9, 11, 17) 147 = 3 · 72 6 −
(152; 8, 9, 16, 17) 152 = 23 · 19 6 6
(153; 8, 9, 17, 17) 153 = 32 · 17 6 7
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The parameters of the following BIBs (km + x; k, k + 1, x, m):
(20; 4, 5, 4, 4), (24; 4, 5, 4, 5), (25; 4, 5, 5, 5), (32; 4, 5, 4, 7),
(33; 4, 5, 5, 7), (35; 4, 5, 7, 7), (36; 4, 5, 4, 8), (37; 4, 5, 5, 8),
(39; 4, 5, 7, 8), (40; 4, 5, 8, 8), (40; 4, 5, 4, 9), (41; 4, 5, 5, 9),

(43; 4, 5, 7, 9), (44; 4, 5, 8, 9), (45; 4, 5, 9, 9)

also satisfy the conditions of Corollary 4. Using these BIBs one can con-
struct QPSs containing at least two quasigroups of order v.

Appendix
Now we give an illustrative example using the construction of QPSs from
Section 2.

Let H(⊕, · ), where H = {0, 1, 2, 3, 4, }, be the �nite �eld formed by the
residues modulo 5. The element 2 is a generating element of the (cyclic)
multiplicative group of this �eld, so we take the quasigroup A(x, y) =
(1− 2)x + 2y = 4x + 2y as the de�ning quasigroup for a complete (cyclic)
S−system H(Σ̃), Σ̃ = {F, E, A, A2, A3}. The Cayley table of the quasi-
group A is as follows:

A 0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

As a block design we use the following
BIB(v, b, r, k, 1) = BIB(21, 21, 5, 5, 1) = S(5, 5)

on the set Q = {1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, k, m, n, p} of 21
elements and 21 blocks:

B1 : 1, 2, 3, 4, 5, B8 : 3, 7, a, h, n, B15 : 5, 8, b, h, k,
B2 : 2, 6, a, e, k, B9 : 4, 7, d, g, k, B16 : 1, k, m, n, p,
B3 : 3, 6, b, g, p, B10 : 5, 7, c, e, p, B17 : 2, 9, d, h, p,
B4 : 4, 6, c, h,m, B11 : 1, e, f, g, h, B18 : 3, 9, c, f, k,
B5 : 5, 6, d, f, n, B12 : 2, 8, c, g, n, B19 : 4, 9, b, e, n,
B6 : 1, a, b, c, d, B13 : 3, 8, d, e, m, B20 : 5, 9, a, g, m,
B7 : 2, 7, b, f, m, B14 : 4, 8, a, f, p, B21 : 1, 6, 7, 8, 9.

This block design is isomorphic to the �nite projective plane of order 4
and corresponds to a complete set of orthogonal latin squares of order 4.
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According to the results of Section 2 it is su�cient to construct the quasi-
group Q(B):

B(x, y) =
{

Aαi , if x, y ∈ Qi, x 6= y,
x, if x = y.

Then Q(Σ), Σ = {B,B2, B3} is a QPS. The Cayley table for the quasi-
group Q(B) we �ll out by subquasigroups given on the blocks of the BIB.
These subquasigroups are isomorphic to the quasigroup H(A):
B(x, y) = α−1

i A(αix, αiy), x, y ∈ Qi or B(βix, βiy) = βiA(x, y), x, y ∈ H,

βi = α−1
i , i = 1, 2, ..., 21, αi : Qi → H, αi =

(
a0 a1 a2 a3 a4

0 1 2 3 4

)
,

if Qi = {a0, a1, a2, a3, a4 } (in the order of listing). For example

α1 =
(

1 2 3 4 5
0 1 2 3 4

)
, α15 =

(
5 8 b h k
0 1 2 3 4

)
.

The quasigroup Q(B) is de�ned by the following table.

B 1 2 3 4 5 6 7 8 9 a b c d e f g h k m n p
1 1 3 5 2 4 7 9 6 8 b d a c f h e g m p k n
2 5 2 4 1 3 a b c d k m n p 6 7 8 9 e f g h
3 4 1 3 5 2 b a d c n p k m 8 9 6 7 f e h g
4 3 5 2 4 1 c d a b p n m k 9 8 7 6 g h e f
5 2 4 1 3 5 d c b a m k p n 7 6 9 8 h g f e
6 9 k p m n 6 8 1 7 e g h f 2 5 3 4 a c d b
7 8 m n k p 1 7 9 6 h f e g 5 2 4 3 d b a c
8 7 n m p k 9 6 8 1 f h g e 3 4 2 5 b d c a
9 6 p k n m 8 1 7 9 g e f h 4 3 5 2 c a b d
a d e h f g 2 3 4 5 a c 1 b k p m n 6 9 7 8
b c f g e h 3 2 5 4 1 b d a n m p k 8 7 9 6
c b g f h e 4 5 2 3 d a c 1 p k n m 9 6 8 7
d a h e g f 5 4 3 2 c 1 b d m n k p 7 8 6 9
e h a d b c k p m n 6 9 7 8 e g 1 f 2 3 4 5
f g b c a d n m p k 8 7 9 6 1 f h e 3 2 5 4
g f c b d a p k n m 9 6 8 7 h e g 1 4 5 2 3
h e d a c b m n k p 7 8 6 9 g 1 f h 5 4 3 2
k p 6 9 7 8 e g h f 2 5 3 4 a c d b k n 1 m
m n 7 8 6 9 h f e g 5 2 4 3 d b a c 1 m p k
n m 8 7 9 6 f h g e 3 4 2 5 b d c a p k n 1
p k 9 6 8 7 g e f h 4 3 5 2 c a b d n 1 m p
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The subquasigroup on the block B15 has the following Cayley table:

5 8 b h k

5 5 b k 8 h
8 k 8 h 5 b
b h 5 b k 8
h b k 8 h 5
k 8 h 5 b k

The subquasigroup on B1 is in the left top corner of the Cayley table of
the quasigroup Q(B).

From the quasigroup Q(B) it is easy to obtain the quasigroups B2 and
B3. Thus we obtain a QPS {B, B2, B3}.
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