The abstract groups $(3,3 \mid 3, \mathrm{p})$, their subgroup structure, and their significance for Paige loops

Petr Vojtěchovský

Abstract

For most (and possibly all) non-associative finite simple Moufang loops, three generators of order 3 can be chosen so that each two of them generate a group isomorphic to $(3,3 \mid 3, p)$. The subgroup structure of $(3,3 \mid 3, p)$ depends on the solvability of a certain quadratic congruence, and it is described here in terms of generators.

1. Introduction

Moufang loops and, more generally, diassociative loops are usually an abundant source of two-generated groups. In the end, this is what diassociativity is all about: every two elements generate an associative subloop, i.e. a group. (We refer the reader not familiar with the theory of loops to [5].) This short paper emerged as an offshoot of our larger-scale program to fully describe the subloop structure of all non-associative finite simple Moufang loops, sometimes called Paige loops.

Let $M^{*}(q)$ denote the Paige loop constructed over $F=G F(q)$ as in [4]. That is, $M^{*}(q)$ consists of vector matrices

$$
M=\left(\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right)
$$

where $a, b \in F, \alpha, \beta \in F^{3}$, $\operatorname{det} M=a b-\alpha \cdot \beta=1$, and where M is identified with $-M$. The multiplication in $M^{*}(q)$ coincides with the Zorn

2000 Mathematics Subject Classification: 20D30, 20N10
Keywords: non-associative finite simple Moufang loop, Paige loop, the abstract
group (3, 3|3, p), loop generator, quadratic congruence
matrix multiplication

$$
\left(\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right)\left(\begin{array}{ll}
c & \gamma \\
\delta & d
\end{array}\right)=\left(\begin{array}{cc}
a c+\alpha \cdot \delta & a \gamma+d \alpha-\beta \times \delta \\
c \beta+b \delta+\alpha \times \gamma & \beta \cdot \gamma+b d
\end{array}\right),
$$

where $\alpha \cdot \beta$ (resp. $\alpha \times \beta$) is the standard dot product (resp. cross product).
We have shown in [6, Theorem 1.1] that every $M^{*}(q)$ is three-generated, and when $q \neq 9$ is odd or $q=2$ then the generators can be chosen as

$$
g_{1}=\left(\begin{array}{cc}
1 & e_{1} \tag{1}\\
0 & 1
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
1 & e_{2} \\
0 & 1
\end{array}\right), \quad g_{3}=\left(\begin{array}{cc}
0 & u e_{3} \\
-u^{-1} e_{3} & 1
\end{array}\right),
$$

where u is a primitive element of F (cf. [6, Proposition 4.1]). In particular, note that g_{1}, g_{2} and g_{3} generate $M^{*}(p)$ for every prime p. We find it more convenient to use another set of generators.

Proposition 1. Let $q \neq 9$ be an odd prime power or $q=2$. Then $M^{*}(q)$ is generated by three elements of order three.

Proof. Let us introduce

$$
\begin{aligned}
& g_{4}=g_{3} g_{1}=\left(\begin{array}{cc}
0 & (0,0, u) \\
\left(0, u,-u^{-1}\right) & 1
\end{array}\right), \\
& g_{5}=g_{3} g_{2}=\left(\begin{array}{cc}
0 & (0,0, u) \\
\left(-u, 0,-u^{-1}\right) & 1
\end{array}\right) .
\end{aligned}
$$

It follows from (1) that $M^{*}(q)$ is generated by g_{3}, g_{4}, and g_{5}. One easily verifies that these elements are of order 3.

The groups $\left\langle g_{3}, g_{4}\right\rangle,\left\langle g_{3}, g_{5}\right\rangle$ and $\left\langle g_{4}, g_{5}\right\rangle$ play therefore a prominent role in the lattice of subloops of $M^{*}(q)$. As we prove in Section 3, each of them is isomorphic to the group $(3,3 \mid 3, p)$, defined below.

2. The abstract groups $(3,3 \mid 3, p)$

The two-generated abstract groups $(l, m \mid n, k)$ defined by presentations

$$
\begin{equation*}
(l, m \mid n, k)=\left\langle x, y \mid x^{l}=y^{m}=(x y)^{n}=\left(x^{-1} y\right)^{k}\right\rangle \tag{2}
\end{equation*}
$$

were first studied by Edington [3], for some small values of l, m, n and k. The notation we use was devised by Coxeter [1] and Moser [2], and has a
deeper meaning that we will not discuss here. From now on, we will always refer to presentation (2) when speaking about $(l, m \mid n, k)$.

The starting point for our discussion is Theorem 2, due to Edington [3, Theorem IV and pp. 208-210]. (Notice that there is a typo concerning the order of $(3,3 \mid 3, n)$, and a misprint claiming that $(3,3 \mid 3,3)$ is isomorphic to A_{4}.). For the convenience of the reader, we give a short, contemporary proof.

Theorem 2 (Edington). The group $G=(3,3 \mid 3, n)$ exists for every $n \geqslant 1$, is of order $3 n^{2}$, and is non-abelian when $n>1$. It contains a normal subgroup $H=\left\langle x^{2} y, x y^{2}\right\rangle \cong C_{n} \times C_{n}$. In particular, $G \cong C_{3}$ when $n=1, G \cong A_{4}$ when $n=2$, and G is the unique non-abelian group of order 27 and exponent 3 when $n=3$.

Proof. Verify that $(3,3 \mid 3,1)$ is isomorphic to C_{3}. Let $n>1$. Since $x\left(x^{2} y\right) x^{-1}=y x^{-1}=y\left(x^{2} y\right) y^{-1} \in H$, and $x^{-1}\left(x y^{2}\right) x=y^{2} x=y^{-1}\left(x y^{2}\right) y \in$ H, the subgroup H is normal in G. It is an abelian group of order at most n^{2} since $x^{2} y \cdot x y^{2}=x(x y)^{2} y=x(x y)^{-1} y=x y^{2} \cdot x^{2} y$. Clearly, $G / H \cong C_{3}$ (enumeration of cosets works fine), and hence $|G|=3|H| \leqslant 3 n^{2}$.

Let $N=\langle a\rangle \times\langle b\rangle \cong C_{n} \times C_{n}$, and $K=\langle f\rangle \leqslant \operatorname{Aut}(N)$, where f is defined by $f(a)=a^{-1} b, f(b)=a^{-1}$. Let E be the semidirect product of N and K via the natural action of K on N. We claim that E is nonabelian, and isomorphic to $(3,3 \mid 3, n)$ with generators $x=(1, f)$ and $y=(a, f)$. We have $(a, f)^{2}=\left(a f(a), f^{2}\right)=\left(b, f^{2}\right),\left(b, f^{2}\right)(1, f)=(b$, id $)$, and $(1, f)\left(b, f^{2}\right)=\left(a^{-1}, \mathrm{id}\right)$. Thus E is non-abelian, and generated by $(1, f),(a, f)$. A routine computation shows that $(1, f)^{3}=(a, f)^{3}=$ $((1, f)(a, f))^{3}=\left((1, f)^{-1}(a, f)\right)^{n}=1$.

The group E proves that $|G|=3|H|=3 n^{2}$. In particular, $H \cong C_{n} \times$ C_{n}.

We would like to give a detailed description of the lattice of subgroups of $(3,3 \mid 3, p)$ in terms of generators x and y. From a group-theoretical point of view, the groups are rather boring, nevertheless, the lattice can be nicely visualized. The cases $p=2$ and $p=3$ cause troubles, and we exclude them from our discussion for the time being.

Lemma 3. Let G and H be defined as before. Then H is the Sylow psubgroup of G, and contains $p+1$ subgroups $H(i)=\langle h(i)\rangle$, for $0 \leqslant i<p$, or $p=\infty$, all isomorphic to C_{p}. We can take

$$
h(i)=x^{2} y\left(x y^{2}\right)^{i}, \text { for } 0 \leqslant i<p \text { and } h(\infty)=x y^{2} .
$$

There are p^{2} Sylow 3 -subgroups $G(k, l)=\langle g(k, l)\rangle$, for $0 \leqslant k, l<p$, all isomorphic to C_{3}. We can take

$$
g(k, l)=\left(x^{2} y\right)^{-k}\left(x y^{2}\right)^{-l} x\left(x^{2} y\right)^{k}\left(x y^{2}\right)^{l} .
$$

Proof. The subgroup structure of H is obvious. Every element of $G \backslash H$ has order 3, so there are p^{2} Sylow 3 -subgroups of order 3 in G. The subgroup H acts transitively on the set of Sylow 3 -subgroups. (By Sylow Theorems, G acts transitively on the copies of C_{3}. As $|G|=3 p^{2}$, the stabilizer of each C_{3} under this action is isomorphic to C_{3}. Since p and 3 are relatively prime, no element of H can be found in any stabilizer.) This shows that our list of Sylow 3-subgroups is without repetitions, thus complete.

For certain values of p (see below), there are no other subgroups in G. For the remaining values of p, there are additional subgroups of order $3 p$.

If $K \leqslant G$ has order $3 p$, it contains a unique normal subgroup of order p, say $L \leqslant H$. Since L is normalized by both K and H, it is normal in G. Then G / L is a non-abelian group of order $3 p$, and has therefore p subgroups of order 3. Using the correspondence of lattices, we find p subgroups of order $3 p$ containing L (the group K is one of them).
Lemma 4. The group $H(i)$ is normal in G if and only if

$$
\begin{equation*}
i^{2}+i+1 \equiv 0(\bmod p) . \tag{3}
\end{equation*}
$$

If $p \equiv 1(\bmod 3)$, there are two solutions to (3). For other values of p, there is no solution.

Proof. We have

$$
\begin{aligned}
x^{-1} h(i) x & =x^{-1} x^{2} y\left(x y^{2}\right)^{i} x=x y^{2} y^{2}\left(x y^{2}\right)^{i} x \\
& =\left(x y^{2}\right)\left(y^{2} x\right)^{i+1}=\left(x^{2} y\right)^{-(i+1)}\left(x y^{2}\right) .
\end{aligned}
$$

Thus $x^{-1} h(i) x$ belongs to $H(i)$ if and only if $\left(x^{2} y\right)^{-(i+1) i}\left(x y^{2}\right)^{i}=\left(x^{2} y\right)\left(x y^{2}\right)^{i}$, i.e. if and only if i satisfies (3). Similarly,

$$
\begin{aligned}
y^{-1} h(i) y & =y^{-1} x^{2} y\left(x y^{2}\right)^{i} y=\left(y^{2} x\right)\left(x y^{2}\right) y^{2}\left(x y^{2}\right)^{i} y \\
& =\left(y^{2} x\right)\left(x y^{2}\right)\left(y^{2} x\right)^{i}=\left(x^{2} y\right)^{-(i+1)}\left(x y^{2}\right) .
\end{aligned}
$$

Then $y^{-1} h(i) y$ belongs to $H(i)$ if and only if i satisfies (3).
The quadratic congruence (3) has either two solutions or none. Pick $a \in G F(p)^{*}, a \neq 1$. Then $a^{2}+a+1=0$ if and only if $a^{3}=1$, since $a^{3}-1=(a-1)\left(a^{2}+a+1\right)$. This simple argument shows that (3) has a solution if and only if 3 divides $p-1=\left|G F(p)^{*}\right|$.

Theorem 5 (The Lattice of Subgroups of (3, 3|3, p)). For a prime $p>3$, let $G=(3,3 \mid 3, p), H=\left\langle x^{2} y, x y^{2}\right\rangle, h(i)=x^{2} y\left(x y^{2}\right)^{i}$ for $0 \leqslant i<p$, $h(\infty)=x y^{2}, H(i)=\langle h(i)\rangle, g(k, l)=\left(x^{2} y\right)^{-k}\left(x y^{2}\right)^{-l} x\left(x^{2} y\right)^{k}\left(x y^{2}\right)^{l}$ for $0 \leqslant k, l<p$, and $G(k, l)=\langle g(k, l)\rangle$.

Then $H(\infty) \cong C_{p}, H(i) \cong C_{p}, G(k, l) \cong C_{3}$ are the minimal subgroups of G, and $H(i) \vee H(j)=H \cong C_{p} \times C_{p}$ for every $i \neq j$. When 3 does not divide $p-1$, there are no other subgroups in G. Otherwise, there are additional $2 p$ non-abelian maximal subgroups of order $3 p$; p for each $1<$ $i<p$ satisfying $i^{3} \equiv 1(\bmod p)$. These subgroups can be listed as $K(i, l)=$ $H(i) \vee G(0, l)$, for $0 \leqslant l<p$. Then $H(i) \vee G\left(k^{\prime}, l^{\prime}\right)=K(i, l)$ if and only if $l^{\prime}-l \equiv i k^{\prime}(\bmod p)$; otherwise $H(i) \vee G\left(k^{\prime}, l^{\prime}\right)=G$. Finally, let $(k, l) \neq\left(k^{\prime}, l^{\prime}\right)$. Then $G(k, l) \vee G\left(k^{\prime}, l^{\prime}\right)=H(i) \vee G(k, l)$ if and only if there is $1<i<p$ satisfying $i^{3} \equiv 1(\bmod p)$ such that $l^{\prime}-l \equiv\left(k^{\prime}-k\right) i$ $(\bmod p)$; otherwise $G(k, l) \vee G\left(k^{\prime}, l^{\prime}\right)=G$.

The group $(3,3 \mid 3,2)$ is isomorphic to A_{4}, the alternating group on 4 points, and $(3,3 \mid 3,3)$ is the unique non-abelian group of order 27 and exponent 3.

Proof. Check that $h(i)^{-1} g(k, l) h(i)=g(k+1, l+i)$, and conclude that $H(i) \vee G(k, l)=H(i) \vee G\left(k^{\prime}, l^{\prime}\right)$ if and only if $l^{\prime}-l \equiv i\left(k^{\prime}-k\right)(\bmod p)$. This also implies that, for some $1<i<p, H(i) \vee G\left(k^{\prime}, l^{\prime}\right)$ equals $K(i, l)$ if and only if $l^{\prime}-l \equiv i k^{\prime}(\bmod p)$ and $i^{3} \equiv 1(\bmod p)$.

Finally, if $S=G(k, l) \vee G\left(k^{\prime}, l^{\prime}\right) \neq G$, it contains a unique $H(i) \unlhd G$. Moreover, we have $S=H(i) \vee G(k, l)=H(i) \vee G\left(k^{\prime}, l^{\prime}\right)$ solely on the grounds of cardinality, and everything follows.

We illustrate Theorem 5 with $p=7$. The congruence (3) has two solutions, $i=2$ and $i=4$. The subgroup lattice of $(3,3 \mid 3,7)$ is depicted in the 3D Figure 1. The 49 subgroups $G(k, l)$ are represented by a parallelogram that is thought to be in a horizontal position. All lines connecting the subgroups $G(k, l)$ with $K(2,0)$ and $K(4,0)$ are drawn. The lines connecting the subgroups $G(k, l)$ with $K(2, j), K(4, j)$, for $1 \leqslant j<p$, are omitted for the sake of transparency. The best way to add these missing lines is by the means of affine geometry of $G F(p) \times G F(p)$. To determine which groups $G(k, l)$ are connected to the group $K(i, j)$, start at $G(0, j)$ and follow the line with slope i, drawn modulo the parallelogram.

The group A_{4} fits the description of Theorem 5, too, as can be seen from its lattice of subgroups in Figure 2. So does the group (3, 3|3,3).

Figure 1: The lattice of subgroups of $(3,3 \mid 3,7)$

Figure 2: The subgroup structure of A_{4}

3. Three subgroups

We promised to show that each of the subgroups $\left\langle g_{3}, g_{4}\right\rangle,\left\langle g_{3}, g_{5}\right\rangle,\left\langle g_{4}, g_{5}\right\rangle$ of $M^{*}(q)$ is isomorphic to $(3,3 \mid 3, p)$.

Proposition 3.1. Let g_{3}, g_{4}, g_{5} be defined as above, $q=p^{r}$. Then the three subgroups $\left\langle g_{3}, g_{4}\right\rangle,\left\langle g_{3}, g_{5}\right\rangle,\left\langle g_{4}, g_{5}\right\rangle$ of $M^{*}\left(p^{r}\right)$ are isomorphic to $(3,3 \mid 3, p)$, if $q \neq 9$ is odd or $q=2$.

Proof. We prove that $G_{1}=\left\langle g_{3}, g_{4}\right\rangle \cong(3,3 \mid 3, p)$; the argument for the other two groups is similar. We have $g_{3}^{3}=g_{4}^{3}=\left(g_{3} g_{4}\right)^{3}=\left(g_{4} g_{3}\right)^{3}=$ $\left(g_{3}^{-1} g_{4}\right)^{p}=\left(g_{3}^{2} g_{4}\right)^{p}=e$. Thus $G_{1} \leqslant(3,3 \mid 3, p)$. Also, $H_{1}=\left\langle g_{3}^{2} g_{4}, g_{3} g_{4}^{2}\right\rangle \cong$ $C_{p} \times C_{p}$. When $p \neq 3$, we conclude that $\left|G_{1}\right|=3 p^{2}$, since G_{1} contains an element of order 3 . When $p=3$, we check that $g_{3} \notin H_{1}$, and reach the same conclusion.

We finish this paper with a now obvious observation, that in order to describe all subloops of $M^{*}(q)$, one only has to study the interplay of the isomorphic subgroups $\left\langle g_{3}, g_{4}\right\rangle,\left\langle g_{3}, g_{5}\right\rangle$, and $\left\langle g_{4}, g_{5}\right\rangle$.

References

[1] H. S. M. Coxeter: The abstract groups $G^{m, n, p}$, Trans. Amer. Math. Soc., 45 (1939), 73 - 150.
[2] H. S. M. Coxeter and W. O. J. Moser: Generators and relations for discrete groups, fourth edition, A Series of Modern Surveys in Mathematics, vol. 14, Springer-Verlag (1980).
[3] W. E. Edington: Abstract group definitions and applications, Trans. Amer. Math. Soc., 25 (1923), 193 - 210.
[4] L. Paige: A class of simple Moufang loops, Proc. Amer. Math. Soc. 7 (1956), 471 - 482.
[5] H. O. Pflugfelder: Quasigroups and Loops: Introduction, Sigma series in pure mathematics, vol. 7, Heldermann Verlag Berlin 1990.
[6] P. Vojtěchovský: Generators for finite simple Moufang loops, submitted, available at http://www.vojtechovsky.com
[7] P. Vojtěchovský: Generators of nonassociative simple Moufang loops over finite prime fields, J. Algebra 241 (2001), 186 - 192.

Department of Mathematics
Received May 7, 2001
Iowa State University
Ames, IA 50011
U.S.A.
petr@iastate.edu

