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Representations of positional algebras

Valentin S. Trokhimenko

Abstract

In the paper we consider representations of positional algebras in the sense of V. D. Be-
lousov [1] by partial multiplace functions. We prove that any such representation has a
special construction.

On the sets of multiplace functions of several arities one often considers
the binary operations of superpositions, which are called positional superpo-
sitions. Such operations are used in the theory of functional equations and
in the theory of n-ary quasigroups [1]. Thus the study of positional algebras
and their representations by multiplace functions has the particular inter-
est. For descriptions of such representations we use the generalization of the
method of determining pairs, which B. M. Schein considered for semigroups
of transformations [2].

A positional algebra is a partial algebra of the form

G = (G;
1
+,

2
+, . . . ,

n
+, . . . ),

where
1
+,

2
+, . . . ,

n
+, . . . are partial binary operations on a set G satisfying

the Axioms A1 −A5.

A1 {x} 1
+ {y} 6= ∅ for all x, y ∈ G.

A2 For every x ∈ G there exists n ∈ N such that

i 6 n ⇐⇒ {x} n
+ {y} 6= ∅

for all i ∈ N and y ∈ G.
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Let α be the binary relation on G×N such that (x, n) ∈ α if and only
if

(∀i ∈ N) (∀y ∈ G) ( i 6 n ⇐⇒ {x} i
+ {y} 6= ∅ ). (1)

Proposition 1. The relation α is single valued.

Proof. Let (x, n) ∈ α and (x,m) ∈ α for some x ∈ G, n,m ∈ N. Assume
that n 6= m, then we suppose, without restricting generality, that n < m.
According to (1) we have

(∀i ∈ N) (∀y ∈ G) ( i 6 n ⇐⇒ {x} i
+ {y} 6= ∅ ), (2)

(∀i ∈ N) (∀y ∈ G) ( i 6 m ⇐⇒ {x} i
+ {y} 6= ∅ ). (3)

As it is not di�cult to see (2) is equivalent to

(∀i ∈ N) (∀y ∈ G) ( i > n ⇐⇒ {x} i
+ {y} = ∅ ). (4)

From (3) it follows {x} m
+ {y} 6= ∅ for all y ∈ G. Since m > n, then, from

(4), for each y ∈ G we obtain {x} m
+ {y} = ∅. The obtained contradiction

proves that n = m.

Further by the arity of an element x ∈ G we mean the value α(x) and
we denote it by |x|. Thus, |x| = α(x). From the de�nition of α it follows
that for x, y ∈ G and i ∈ N the result of x

i
+ y is de�ned if and only if

i 6 |x|.

A3 For all x, y ∈ G, i ∈ N, if i 6 |x| , then

|x i
+ y| = |x|+ |y| − 1.

A4 For x, y, z ∈ G and n,m ∈ N such that n 6 |x|, m 6 |y| , we have

x
n
+ (y

m
+ z) = (x

n
+ y)

n+m−1
+ z .

A5 For x, y, z ∈ G and n,m ∈ N such that m < n 6 |x| , holds

(x
n
+ y)

m
+ z = (x

m
+ z)

n+|z|−1
+ y.
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Let Tn(A) = T (An, A) be the set of all full multiplace functions (i.e.
operations) on a set A. For all f, g ∈ T (A) =

⋃
n∈NFn(A) such that

|f | = n, |g| = m we de�ne a positional superposition
i
+ (i ∈ N ) putting:

(f
i
+ g)(an+m−1

1 ) = f(ai−1
1 , g(ai+m−1

i ), an+m−1
i+m ) (5)

where a1, . . . , an+m−1 ∈ A and aj
i denotes the sequence ai, ai+1, . . . , aj if

i 6 j, and the empty symbol if i > j.
An algebra (T (A),

1
+,

2
+, . . .) is called a symmetrical positional algebra

of operations, its subalgebras � positional algebras of operations.
Let Fn(A) be the set of all partial n-place transformations on A and let

Θn be an empty mapping from An into A. On the set

F(A) =
⋃

n∈N
Fn(A) ∪ {Θn}

we consider partial binary operations
i
+ (i ∈ N ) de�ned for f ∈ Fn(A),

g ∈ Fm(A) and a1, . . . , an+m−1, b, c ∈ A by the formula

(an+m−1
1 , c) ∈ f

i
+ g ⇐⇒ (∃b)

(
(ai+m−1

i , b) ∈ g ∧ (ai−1
1 ban+m−1

i+m , c) ∈ f
)
.

(6)
If f

i
+ g is an empty transformation, then we put f

i
+ g = Θn+m−1.

We assume that Θn

i
+ Θm = Θn+m−1 for all n, m ∈ N and i 6 n.

We assume also that f
i
+ Θm = Θn

i
+ g = Θn+m−1. It is clear that

the system (F(A),
1
+,

2
+, . . .) is a positional algebra. This algebra is called

a symmetrical positional algebra of multiplace functions, its subalgebras �
positional algebras of multiplace functions.

Let G1 = (G1,
1
+,

2
+, . . .) and G2 = (G2,

1
+,

2
+, . . .) be two positional

algebras. The mapping P : G1 → G2 such that

1. |g| = |P (g)| for each g ∈ G1,

2. P (g1

i
+ g2) = P (g1)

i
+ P (g2) for all g1, g2 ∈ G1 and i 6 |g1|,

We put n = |f | if and only if f ∈ T (An, A).
Analougously we de�ne the operations

i
+ on the set of all relations.
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is called a strong homomorphism of G1 into G2. A strong homomorphism
of a positional algebra G into a symmetrical positional algebra of operations
(multiplace functions) is called a representation of G by operations (or by
multiplace functions). A representation which is an isomorphism is called
faithful (or isomorphic).

Let G = (G,
1
+,

2
+, . . .) be a positional algebra, e � an element not be-

longing to G, G∗ = G ∪ {e}. We put |e| = 1, e
1
+ e = e, e

1
+ g = g,

g
i
+ e = g for every g ∈ G and i 6 |g|. It is not di�cult to see that

G∗ = (G∗,
1
+,

2
+, . . .) is a positional algebra.

The following theorem was proved by V. D. Belousov (cf. [1]).

Theorem 1. Every positional algebra is isomorphic to some positional al-
gebra of operations.

Corollary 1. Every positional algebra is isomorphic to some positional
algebra of multiplace functions and to some positional algebra of relations.

Let G = (G,
1
+,

2
+, . . .) be a positional algebra, A � a non-empty set,

Ω(A) � the set of all words on it. If ω1, . . . , ωn ∈ Ω(A), then the word
ω = ω1ω2 . . . ωn is the sum of words ω1, ω2, . . . , ωn. By l(ω) we denote
the length of ω ∈ Ω(A). For each word ω ∈ Ω(A) of length l(ω) = n by
εω we denote some equivalence relation on Gn = {g ∈ G | |g| = n}, which
corresponds to ω. So, εω ⊂ Gl(ω) ×Gl(ω).

Let E = (εω)ω∈B, where B ⊂ Ω(A), be a family of equivalence relations.

De�nition 1. A family E is called permissible for positional algebra G, if
for all g, xi, yi ∈ G, i = 1, . . . , n and n = |g|

x1 ≡ y1(εω1) ∧ . . . ∧ xn ≡ yn(εωn) =⇒ g
1
+
n

x1
n ≡ g

1
+
n

y1
n(εω1···ωn),

where g
1
+
n

x1
n denotes (. . . ((g

n
+ xn)

n−1
+ xn−1) . . .)

1
+ x1.

De�nition 2. A family W = (Wω)ω∈B, where Wω is a subset of Gl(ω),
is an l-ideal, if for all g, xk ∈ G, k 6= i, k, i = 1, . . . , n, where |g| = n and
l(ω1) = l(ω) +

∑n
k=1,k 6=i |xk| the following implication is valid:

h ∈ Wω =⇒ ((g
i+1
+
n

xi+1
n )

i
+ h)

1
+
i−1

x1
i−1 ∈ Wω1 .
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De�nition 3. By a determining pair of a positional algebra G we mean an
ordered pair (E ,W), where E is a family of equivalence relations permissible
for a positional algebra G∗, W is an l-ideal of a family of subsets Wω such
that Wω is either empty or an εω-class.

By (Hω
a )a∈Iω , where Wω 6= Hω

a for all a ∈ Iω, we denote the family of
all εω-classes (uniquely indexed by elements of some �xed set Iω) such that
the following implication, where n = |g| , holds

(. . . ((g
n
+ Hωn

an
)

n−1
+ H

ωn−1
an−1 ) . . .)

1
+ Hω1

a1
⊂ Hω1···ωn

b ,

(. . . ((g
n
+ H

ω′n
an )

n−1
+ H

ω′n−1
an−1 ) . . .)

1
+ H

ω′1
a1 ⊂ H

ω′1···ω′n
c



 =⇒ b = c . (7)

Obviously for Iω ∩ Iω′ = ∅ the condition (7) is satis�ed.
For every g ∈ G, |g| = n, we de�ne the partial n-place function

P(E,W)(g), where (E ,W) is a determining pair of a positional algebra G,
putting

(an
1 , b) ∈ P(E,W)(g) ⇐⇒ (. . . ((g

n
+ Hωn

an
)

n−1
+ Hωn−1

an−1
) . . .)

1
+ Hω1

a1
⊂ Hω1···ωn

b

(8)
for some ω1, . . . , ωn ∈ Ω(A).

Theorem 2. If (E ,W) is a determining pair of a positional algebra
G = (G;

1
+,

2
+, . . . ,

n
+, . . .),

then the mapping P(E,W) : g 7−→ P(E,W)(g), where g ∈ G, is its representa-
tion by multiplace functions.

Proof. Let g1, g2 be arbitrary elements of G such that |g1| = n, |g2| = m.
Assume that (an+m−1

1 , c) ∈ P(E,W)(g1

i
+ g2) for i 6 n. Then, by (8), we

obtain

(. . . ((g1

i
+ g2)

n+m−1
+ Hωn+m−1

an+m−1
)

n−1
+ . . .)

1
+ Hω1

a1
⊂ Hω1···ωn+m−1

c .

If xi ∈ Hωi
ai
, i = 1, . . . , n + m− 1, then

(g1

i
+ g2)

1
+

n+m−1
x1

n+m−1 ∈ Hω1...ωn+m−1
c ,

which, by the axioms of a positional algebra, gives

(g1

i
+ g2)

1
+

n+m−1
x1

n+m−1 =
((

g1

i+1
+
n

xi+m
n+m−1

) i
+

(
g2

1
+
m

xi
i+m−1

))
1
+
i−1

x1
i−1 .
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Therefore
((

g1

i+1
+
n

xi+m
n+m−1

) i
+

(
g2

1
+
m

xi
i+m−1

))
1
+
i−1

x1
i−1 ∈ Hω1...ωn+m−1

c . (9)

Hence
((

g1

i+1
+
n

xi+m
n+m−1

) i
+

(
g2

1
+
m

xi
i+m−1

))
1
+
i−1

x1
i−1 6∈ Wω1...ωn+m−1 .

Since the family W is an l-ideal, then from the last condition follows
that g2

1
+
m

xi
i+m−1 6∈ Wωi...ωi+m−1 .

Suppose that
g2

1
+
m

xi
i+m−1 ∈ H

ωi...ωi+m−1

b . (10)

This, by the permissibility of E , gives
(

. . .
(
g2

m
+ H

ωi+m−1
ai+m−1

) m−1
+ . . .

)
1
+ Hωi

ai
⊂ H

ωi...ωi+m−1

b ,

which implies
(ai+m−1

i , b) ∈ P(E,W)(g2) . (11)

Thus (9) together with (10) proves that

g1

n
+ Hωn+m−1

an+m−1

n−1
+ · · · i+1

+ H
ωi+m
ai+m

i
+ H

ωi...ωi+m−1

b

i−1
+ H

ωi−1
ai−1

i−2
+

i−2
+ · · · 1

+ Hω1
a1

is contained in H
ω1...ωn+m−1
c . Hence

(ai−1
1 b an+m−1

i+m , c) ∈ P(E,W)(g1) . (12)

Now, comparing (11) with (12) we obtain

(an+m−1
1 , c) ∈ P(E,W)(g1)

i
+ P(E,W)(g2) .

So, we have proved that

P(E,W)(g1

i
+ g2) ⊂ P(E,W)(g1)

i
+ P(E,W)(g2) .

The converse inclusion can be proved in the similar way. Thus

P(E,W)(g1

i
+ g2) = P(E,W)(g1)

i
+ P(E,W)(g2)
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for all g1, g2 ∈ G and i 6 n. Hence P(E,W) is a representation of the
positional algebra G.

The fact that P(E,W)(g) is a function is a consequence of the permissi-
bility of E .

We say that a representation P of a given positional algebra is generated
by a determining pair if there exists a determining pair (E ,W) of this algebra
such that P = P(E,W).

Theorem 3. Every representation of a positional algebra by multiplace
functions is generated by some of its determining pair.

Proof. Let P be a representation of a positional algebra G = (G;
1
+,

2
+, . . .)

by multiplace functions on a set A. For each vector an
1 = (a1, . . . , an) ∈ An

we de�ne the binary relation εan
1 ⊂ Gn × Gn and the subset W an

1 ⊂ Gn

putting (for g, g1, g2 ∈ Gn)

g1 ≡ g2(εan
1 ) ⇐⇒ P (g1)〈an

1 〉 = P (g2)〈an
1 〉 ,

g ∈ W an
1 ⇐⇒ P (g)〈an

1 〉 = ∅.

Moreover, let
I(G) = {n ∈ N | (∃g ∈ G) n = |g|} ,

EP = {εan
1 | an

1 ∈ An, n ∈ I(G)} ,

WP = {W an
1 | an

1 ∈ An, n ∈ I(G)} .

We prove that (EP ,WP ) is a determining pair of the positional algebra
G such that P = P(EP ,WP ).

It is clear that εan
1 is an equivalence relation on Gn. To prove that EP

is permissible for the positional algebra G∗, let g ∈ G, |g| = n and

x1 ≡ y1(εa
m1
1 ), x2 ≡ y2(εb

m2
1 ) , . . . , xn ≡ yn(εcmn

1 ) .

This, by the de�nition, implies

P (x1)〈am1
1 〉 = P (y1)〈am1

1 〉,
P (x2)〈bm2

1 〉 = P (y2)〈bm2
1 〉,

. . . . . . . . . . . . . . . . . . . . .

P (xn)〈cmn
1 〉 = P (yn)〈cmn

1 〉,
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which gives

P (g)
(
P (x1)〈am1

1 〉, P (x2)〈bm2
1 〉, . . . , P (xn)〈cmn

1 〉
)

= P (g)
(
P (y1)〈am1

1 〉, P (y2)〈bm2
1 〉, . . . , P (yn)〈cmn

1 〉
)
.

That is equivalent to
(
P (g)

n
+ P (xn)

n−1
+ · · · 1

+ P (x1)
)
〈am1

1 bm2
1 . . . cmn

1 〉

=
(
P (g)

n
+ P (yn)

n−1
+ · · · 1

+ P (y1)
)
〈am1

1 bm2
1 . . . cmn

1 〉.
Since P is a homomorphism, we have

P (g
1
+
n

x1
n)〈am1

1 . . . cmn
1 〉 = P (g

1
+
n

y1
n)〈am1

1 . . . cmn
1 〉,

i. e.
g

1
+
n

x1
n ≡ g

1
+
n

y1
n(εa

m1
1 ... cmn

1 ).

So, EP is permissible for the positional algebra G∗.

To prove that WP is an l-ideal, consider g, xi ∈ G, |g| = n, |xi| = mi,
i = 1, . . . , n. By the de�nition |g 1

+
n

x1
n| =

n∑
i=1

mi = m.

If g
1
+
n

x1
n 6∈ W a

n1
1 , then P (g

1
+
n

x1
n)〈am

1 〉 6= ∅ , whence
(
P (g)

n
+ P (xn)

n−1
+ · · · i

+ P (xi)
i−1
+ · · · 1

+ P (x1)
)
〈am

1 〉 6= ∅,
therefore

P (g)
(
P (x1)〈am1

1 〉, . . . , P (xi)〈asi−1+mi

si−1+1 〉, . . . , P (xn)〈am
sn−1

〉
)
6= ∅,

where si−1 =
i−1∑
k=1

mk . Hence P (xi)〈asi−1+mi

si−1+1 〉 6= ∅, i.e. xi 6∈ Wω
i+mi
i for

each i = 1, . . . , n. So, WP is an l-ideal and, in the consequence, (EP ,WP )
is a determining pair of the positional algebra G.

To prove that P = P(EP ,WP ) , let an
1 ∈ An, b ∈ A and

H
an
1

b = {g ∈ Gn |P (g)〈an
1 〉 = {b}},

i. e.
g ∈ H

an
1

b ⇐⇒ (an
1 , b) ∈ P (g) .
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It is clear that e ∈ Ha
a for any a ∈ A. Also it is not di�cult to see that

{Han
1

b | b ∈ A} is the set of εan
1 -classes, which are disjoint with W an

1 .
The set of all such classes satis�es (7). Indeed, if

g
n
+ H

cmn
1

bn

n−1
+ · · · 1

+ H
a

m1
1

b1
⊂ H

a
m1
1 ...cmn

1
c

and
g

n
+ H

c′m
′
n

1
bn

n−1
+ · · · 1

+ H
a′

m′1
1

b1
⊂ H

a′
m′1
1 ...c′m

′
n

1
d ,

then
g

1
+
n

x1
n ∈ H

a
m1
1 ...cmn

1
c and g

1
+
n

y1
n ∈ H

a′
m′1
1 ...c′m

′
n

1
c ,

where xi ∈ H
d

mi
1

bi
, yi ∈ H

d′
m′i
1

bi
, i = 1, . . . , n, d ∈ {a, . . . , c}. Since P is a

homomorphism

c = P (g)
(
P (x1)(am1

1 ), . . . , P (xn)(cmn
1 )

)
= P (g)(b1, . . . , bn)

= P (g)
(
P (y1)(a′

m′
1

1 ), . . . , P (yn)(c′m
′
n

1 )
)

= d,

i.e. c = d . So, the condition (7) is satis�ed.

Now let (bn
1 , c) ∈ P (g), where |g| = n. Therefore g ∈ H

bn
1

c . But e ∈ Hbi
bi
,

i = 1, . . . , n, and g = g
1
+
n

e imply

g
n
+ Hbn

bn

n−1
+ H

bn−1

bn−1

n−1
+ · · · 1

+ Hb1
b1
⊂ H

bn
1

c ,
which gives

(bn
1 , c) ∈ P(EP ,WP )(g). (13)

Conversely, if (13) holds, then for some am1
1 , . . . , cmn

1 we have

g
n
+ H

cmn
1

bn

n−1
+ · · · 1

+ H
a

m1
1

b1
⊂ H

a
m1
1 ...cmn

1
c .

This means that g
1
+
n

x1
n ∈ H

a
m1
1 ...cmn

1
c for x1 ∈ H

a
m1
1

b1
, . . . , xn ∈ H

cmn
1

bn
. Thus

P (x1)(am1
1 ) = b1 , . . ., P (xn)(cmn

1 ) = bn and (am1
1 . . . cmn

1 , c) ∈ P (g
1
+
n

x1
n).

But P is a homomorphism, hence

(am1
1 . . . cmn

1 , c) ∈ P (g)
n
+ P (xn)

n−1
+ · · · 1

+ P (x1).
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Therefore

c = P (g)
(
P (x1)(am1

1 ), . . . , P (xn)(cmn
1 )

)
= P (g)(b1, . . . , bn) = P (g)(bn

1 ),

whence (bn
1 , c) ∈ P (g).

So, P (g) = P(EP ,WP )(g) for all g ∈ G, which proves P = P(EP ,WP ).

Problems
1. Describe all representations of positional algebras by n-ary relations.
2. Find an abstract characterization of symmetrical positional algebras of

operations (multiplace functions, n-ary relations).
3. Find an abstract characteristic of the class of all positional algebras of

multiplace functions ordered by the relation of the set-theoretical inclu-
sion.
(For n-ary relations this problem was solved by F. M. Sokhatsky in [3].)

4. Describe all automorphisms of the symmetrical positional algebra of ope-
rations (multiplace functions, n-ary relations).
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