Algebras of vector-valued functions

Valentin S. Trokhimenko

Abstract

Superpositions (compositions) of multiplace functions have various applications in the modern mathematics, especially in the algebraic theory of automata [1], [3], [4]. It is known that any automaton with n entrances and m exits can be defined by some functions of the form $f: A^{n} \rightarrow A^{m}$, which are called multiplace vector-valued functions. There are two types of compositions of such functions: serial \circ and parallel \star which were considered by B. Schweizer and A. Sklar in [5], [6], [7]. In this paper we find the abstract characterization of algebras of the form $(\Phi, \circ, \star, \Delta, F)$, where Φ is the set of multiplace vector-valued functions stable for compositions \circ, \star and containing two functions $\Delta(x)=x, F(x, y)=y$. We also describe the case when Φ contains all vectorvalued functions defined on a fixed set A. Automorphisms of such algebra are described too.

1. Introduction

Any mapping $f: A^{n} \rightarrow A^{m}$, where $n, m \in \mathbb{N}$ are fixed and A is a nonempty set, is called a multiplace vector-valued function (or simply vectorfunction) of degree n and rank m (cf. [5]). The degree and the rank of the multiplace vector-valued function f is denoted by αf and βf, respectively. $\gamma f=\alpha f-\beta f$ is called the index of f. The set of all multiplace vector-valued functions of degree n and rank m defined on a fixed set A is denoted by $\mathcal{T}\left(A^{n}, A^{m}\right)$.

According to [5], [6] and [7], on the set $\mathcal{T}(A)=\bigcup_{n, m \in \mathbb{N}} \mathcal{T}\left(A^{n}, A^{m}\right)$ we consider two binary operations: the serial composition \circ and the parallel composition \star, which are defined in the following way:

2000 Mathematics Subject Classification: 20N15, 08N05
Keywords: vector valued function

Definition 1. The serial composition $f \circ g$ of vector-functions $f, g \in \mathcal{T}(A)$ is defined by

$$
\begin{equation*}
(f \circ g)\left(a_{1}, \ldots, a_{d}\right)=f\left(b_{1}, \ldots, b_{\alpha f}\right) b_{\alpha f+1} \ldots b_{d-\gamma g} \tag{1}
\end{equation*}
$$

where $a_{1}, \ldots, a_{d} \in A, d=\max \{\alpha f+\gamma g, \alpha g\}, b_{1}, \ldots, b_{d-\gamma g} \in A$ and $b_{1} \ldots b_{d-\gamma g}=g\left(a_{1}, \ldots, a_{\alpha g}\right) a_{\alpha g+1} \ldots a_{d}$.

Definition 2. The parallel composition of vector-functions $f, g \in \mathcal{T}(A)$ is a vector-function $f \star g$ defined by

$$
\begin{equation*}
(f \star g)\left(a_{1}, \ldots, a_{d}\right)=f\left(a_{1}, \ldots, a_{\alpha f}\right) g\left(a_{1}, \ldots, a_{\alpha g}\right), \tag{2}
\end{equation*}
$$

where $a_{1}, \ldots, a_{d} \in A$ and $d=\max \{\alpha f, \alpha g\}$.
It is easy to see that these operations are associative. Moreover, in the case $\alpha f=\beta g$, serial composition reduces to ordinary composition of functions.

Let I_{i}^{n}, where $n \in \mathbb{N}, 1 \leqslant i \leqslant n$, be an n-place i-th projection of A, i.e. $I_{i}^{n}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$ for all $a_{1}, \ldots, a_{n} \in A$. Obviously $\alpha I_{i}^{n}=n, \beta I_{i}^{n}=1$ for all $1 \leqslant i \leqslant n \in \mathbb{N}$. Putting $\Delta(x)=I_{1}^{1}(x)=x$ and $F(x, y)=I_{2}^{2}(x, y)=y$, we can verify that

$$
I_{i}^{n}=(F \circ(F \star \Delta))^{n-i} \circ F^{i-1}
$$

for any $n \in \mathbb{N}, 1 \leqslant i \leqslant n$ and $f \in \mathcal{T}(A)$, where $f^{0}=\Delta$ and $f^{n+1}=f \circ f^{n}$.
If the subset Φ of $\mathcal{T}(A)$ contains Δ, F and is closed under operations \circ, \star, then a system $(\Phi, \circ, \star, \Delta, F)$ is called an algebra of vector-functions. In the case $\Phi=\mathcal{T}(A)$ we say that this algebra is symmetrical.

2. The main result

In this section we find an abstract characterization of algebras of vector valued-functions.

First we consider an algebra (G, \circ, \star, e, f) of type ($2,2,0,0$) satisfying the following six axioms:

Axiom 1. (G, \circ) and (G, \star) are semigroups and e is the unit of (G, \circ).
Let e_{i}^{p} denotes the expression $(f \circ(f \star e))^{p-i} \circ f^{i-1}$, where $p \in \mathbb{N}$, $1 \leqslant i \leqslant p$ and $(f \circ(f \star e))^{0}=f^{0}=e$.

Axiom 2. For each $g \in G$ there exist $m, n \in \mathbb{N}$ such that

$$
g \circ\left(e^{p} \star \cdots \star e_{p}^{p}\right)=g, \quad\left(e_{1}^{q} \star \cdots \star e_{q}^{q}\right) \circ g=g
$$

for all $p \leqslant n, q \leqslant m, p, q \in \mathbb{N}$ and

$$
g \circ\left(e^{p} \star \cdots \star e_{p}^{p}\right) \neq g, \quad\left(e_{1}^{q} \star \cdots \star e_{q}^{q}\right) \circ g \neq g
$$

for any $p>n, q>m$.
The numbers n and m are called degree and rank of g and are denoted by $\alpha g, \beta g$, respectively.

Axiom 3. For any $g_{1}, g_{2} \in G$ the following conditions
(a) $\alpha e=\beta e=\beta f=1, \alpha f=2$,
(b) $\alpha\left(g_{1} \star g_{2}\right)=\max \left\{\alpha g_{1}, \alpha g_{2}\right\}, \quad \beta\left(g_{1} \star g_{2}\right)=\beta g_{1}+\beta g_{2}$,
(c) $\alpha\left(g_{1} \circ g_{2}\right)=\max \left\{\alpha g_{1}+\gamma g_{2}, \alpha g_{2}\right\}, \quad \beta\left(g_{1} \circ g_{2}\right)=\max \left\{\beta g_{1}, \beta g_{2}-\gamma g_{1}\right\}$, where $\gamma g=\alpha g-\beta g$, hold.

Axiom 4. $f \circ\left(g_{1} \star g_{2}\right)=g_{2}$ for all $g_{1}, g_{2} \in G$ such that $\alpha g_{1}=\alpha g_{2}$ and $\beta g_{1}=\beta g_{2}=1$.

Axiom 5. For all $g_{1}, g_{2}, g_{3} \in G$
(a) $g_{1} \circ\left(g_{2} \star g_{3}\right)=\left(g_{1} \circ g_{2}\right) \star g_{3}$, if $\alpha g_{1} \leqslant \beta g_{2}$,
(b) $\left(g_{1} \star g_{2}\right) \circ g_{3}=\left(g_{1} \circ g_{3}\right) \star\left(g_{2} \circ g_{3}\right)$, if $\beta g_{3} \leqslant \min \left\{\alpha g_{1}, \alpha g_{2}\right\}$.

Axiom 6. For all $g_{1}, g_{2}, g_{3}, g_{4} \in G$
(a) $\left(g_{1} \star g_{2}\right) \circ\left(g_{3} \star g_{4}\right)=\left(g_{1} \circ g_{3}\right) \star\left(g_{2} \circ\left(g_{3} \star g_{4}\right)\right)$, if $\alpha g_{1}<\alpha g_{2}$,

$$
\alpha g_{1}=\beta g_{3}, \quad \alpha g_{2}=\beta\left(g_{3} \star g_{4}\right),
$$

(b) $\left(g_{1} \star g_{2}\right) \circ\left(g_{3} \star g_{4}\right)=\left(g_{1} \circ\left(g_{3} \star g_{4}\right)\right) \star\left(g_{2} \circ g_{3}\right)$, if $\alpha g_{1}>\alpha g_{2}$, $\alpha g_{2}=\beta g_{3}, \quad \alpha g_{1}=\beta\left(g_{3} \star g_{4}\right)$.

Now we can prove some auxiliary results on the algebra (G, \circ, \star, e, f).
Proposition 1. For all $g_{1}, g_{2} \in G$ we have
(a) $\gamma\left(g_{1} \circ g_{2}\right)=\gamma g_{1}+\gamma g_{2}$,
(b) $\gamma\left(g_{1} \star g_{2}\right)=\gamma g_{1}+\gamma g_{2}-\min \left\{\alpha g_{1}, \alpha g_{2}\right\}$.

Proof. By simple application of the above Axiom 3(c).
Proposition 2. For each $n \in \mathbb{N}$ and all $1 \leqslant i \leqslant n$ the equations $\alpha e_{i}^{n}=n$, $\beta e_{i}^{n}=1$ are true.

Proof. Indeed, let g be an element of G such that $\beta g=1$. Then, by Axiom 3(c), we obtain $\alpha g^{n}=n \alpha g-n+1$ and $\beta g^{n}=1$. Further
$\alpha e_{i}^{n}=\alpha\left((f \circ(f \star e))^{n-i} \circ f^{i-1}\right)=\max \left\{\alpha\left((f \circ(f \star e))^{n-i}\right)+\gamma f^{i-1}, \alpha f^{i-1}\right\}$.
But $\alpha(f \circ(f \star e))=2$ and $\beta(f \circ(f \star e))=1$ by our Axiom 3. Thus $\alpha\left((f \circ(f \star e))^{n-i}\right)=n-i+1, \quad \beta\left((f \circ(f \star e))^{n-i}\right)=1, \quad \alpha f^{i-1}=i$, $\beta f^{i-1}=1$. Hence $\alpha e_{i}^{n}=\max \{n, i\}=n$.

Similarly we can prove $\beta e_{i}^{n}=1$.
Proposition 2 implies that the equation

$$
\begin{equation*}
e_{i}^{n} \circ\left(e_{1}^{n} \star \cdots \star e_{n}^{n}\right)=e_{i}^{n} \tag{3}
\end{equation*}
$$

is satisfied for all $n \in \mathbb{N}$ and $1 \leqslant i \leqslant n$.
Proposition 3. For all $g_{1}, \ldots, g_{n} \in G$ such that $\alpha g_{1}=\cdots=\alpha g_{n}$ and $\beta g_{1}=\cdots=\beta g_{n}=1$, the equation

$$
\begin{equation*}
e_{i}^{n} \circ\left(g_{1} \star \cdots \star g_{n}\right)=g_{i} \tag{4}
\end{equation*}
$$

is satisfied for all $n \in \mathbb{N}$ and $1 \leqslant i \leqslant n$.
Proof. First let $n=2$. If $i=2$, then, according to Axiom 4, we have

$$
e_{2}^{2} \circ\left(g_{1} \star g_{2}\right)=f \circ\left(g_{1} \star g_{2}\right)=g_{2} .
$$

If $i=1$, then $e_{1}^{2} \circ\left(g_{1} \star g_{2}\right)=f \circ(f \star e) \circ\left(g_{1} \star g_{2}\right)$. Hence by Axioms 6(b) and 4 we obtain

$$
e_{1}^{2} \circ\left(g_{1} \star g_{2}\right)=f \circ\left(\left(f \circ\left(g_{1} \star g_{2}\right)\right) \star\left(e \circ g_{1}\right)\right)=f \circ\left(g_{2} \star g_{1}\right)=g_{1} .
$$

Now let $n>2,1 \leqslant i \leqslant n$. Then

$$
\begin{aligned}
e_{i}^{n} \circ\left(g_{1} \star \cdots \star g_{n}\right) & =\left(e_{1}^{2}\right)^{n-i} \circ f^{i-1} \circ\left(g_{1} \star \cdots \star g_{n}\right) \\
& =\left(e_{1}^{2}\right)^{n-i} \circ f^{i-2} \circ\left(\left(f \circ\left(g_{1} \star g_{2}\right)\right) \star g_{3} \star \cdots \star g_{n}\right) \\
& =\left(e_{1}^{2}\right)^{n-i} \circ f^{i-2} \circ\left(g_{2} \star \cdots \star g_{n}\right) .
\end{aligned}
$$

Repeating this procedure we obtain

$$
\begin{aligned}
e_{i}^{n} \circ\left(g_{1} \star \cdots \star g_{n}\right) & =\left(e_{1}^{2}\right)^{n-i} \circ\left(g_{i} \star \cdots \star g_{n}\right) \\
& =\left(e_{1}^{2}\right)^{n-i-1} \circ\left(\left(e_{1}^{2} \circ\left(g_{i} \star g_{i+1}\right)\right) \star g_{i+2} \star \cdots \star g_{n}\right) \\
& =\left(e_{1}^{2}\right)^{n-i-1} \circ\left(g_{i} \star g_{i+2} \star \cdots \star g_{n}\right)=\cdots \\
& =e_{1}^{2} \circ\left(g_{i} \star g_{n}\right)=g_{i} .
\end{aligned}
$$

This completes the proof.

Proposition 4. If $x_{1}, \ldots, x_{k} \in G$ are such that

$$
n=\beta x_{1}+\cdots+\beta x_{k} \quad \text { and } \quad m=\max \left\{\alpha x_{1}, \ldots, \alpha x_{k}\right\}
$$

then

$$
\begin{equation*}
e_{i}^{n} \circ\left(x_{1} \star \cdots \star x_{k}\right)=e_{s}^{\beta x_{p}} \circ x_{p} \circ\left(e_{1}^{m} \star \cdots \star e_{\alpha x_{p}}^{m}\right) \tag{5}
\end{equation*}
$$

for all $1 \leqslant i \leqslant n$, where $\sum_{j=1}^{p-1} \beta x_{j}<i \leqslant \sum_{j=1}^{p} \beta x_{j}$ and $s=i-\sum_{j=1}^{p-1} \beta x_{j}$.
Proof. Let $n_{i}=\beta x_{i}$ for all $x_{i} \in G, i=1, \ldots, k$. By Axiom 3(b) we have $\alpha\left(x_{1} \star \cdots \star x_{k}\right)=\max \left\{\alpha x_{1}, \ldots, \alpha x_{k}\right\}=m$. Applying Axiom 2 we obtain

$$
\begin{aligned}
& e_{i}^{n} \circ\left(x_{1} \star \cdots \star x_{k}\right)= \\
& e_{i}^{n} \circ\left(\left(\left(e_{1}^{n_{1}} \star \cdots \star e_{n_{1}}^{n_{1}}\right) \circ x_{1}\right) \star \cdots \star\left(\left(e_{1}^{n_{k}} \star \cdots \star e_{n_{k}}^{n_{k}}\right) \circ x_{k}\right)\right) \circ\left(e_{1}^{n} \star \cdots \star e_{m}^{m}\right) .
\end{aligned}
$$

Further, by Axiom 5(b)

$$
\begin{aligned}
e_{i}^{n} \circ\left(x_{1} \star \cdots \star x_{k}\right)= & e_{i}^{n} \circ\left(\left(e_{1}^{n_{1}} \circ x_{1}\right) \star \cdots \star\left(e_{n_{1}}^{n_{1}} \circ x_{1}\right) \star \cdots \star\right. \\
& \left.\star\left(e_{1}^{n_{k}} \circ x_{k}\right) \star \cdots \star\left(e_{n_{k}}^{n_{k}} \circ x_{k}\right)\right) \circ\left(e_{1}^{m} \star \cdots \star e_{m}^{m}\right)
\end{aligned}
$$

This, together with Axiom 6 and Proposition 3, implies

$$
\begin{aligned}
& e_{i}^{n} \circ\left(x_{1} \star \cdots \star x_{k}\right)=e_{i}^{n} \circ\left(\left(e_{1}^{n_{1}} \circ x_{1} \circ\left(e_{1}^{m} \star \cdots \star e_{\alpha x_{1}}^{m}\right)\right) \star \cdots \star\right. \\
& \left.\star\left(e_{n_{k}}^{n_{k}} \circ x_{1} \circ\left(e_{1}^{m} \star \cdots \star e_{\alpha x_{k}}^{m}\right)\right)\right)=e_{s}^{\beta x_{p}} \circ x_{p} \circ\left(e_{1}^{m} \star \cdots \star e_{\alpha x_{p}}^{m}\right),
\end{aligned}
$$

which completes the proof.
Theorem 1. An algebra (G, \circ, \star, e, f) of type $(2,2,0,0)$ is isomorphic to some algebra of vector-functions if and only if it satisfies Axioms $1-6$.

Proof. The necessity of Theorem is evident. We prove the sufficiency. For this let (G, \circ, \star, e, f) be an algebra satisfying Axioms $1-6$ and let G_{n} be the set of all elements $g \in G$ such that $\alpha g=n$ and $\beta g=1$. It is clear that $G_{n} \neq \emptyset$ for every $n \in \mathbb{N}$, because $e_{i}^{n} \in G_{n}$ for all $1 \leqslant i \leqslant n$. Note that $G_{n} \cap G_{m}=\emptyset$ for $n \neq m$. Let $\bar{G}=\underset{n \in \mathbb{N}}{\times} G_{n}$ be the Cartesian power of the family sets $\left(G_{n}\right)_{n \in \mathbb{N}}$.

For each $g \in G$ we define the vector-function $P_{g}: \bar{G}^{n} \rightarrow \bar{G}^{m}$, where $n=\alpha g, m=\beta g$, putting $P_{g}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=\bar{y}_{1} \ldots \bar{y}_{m}$ if and only if

$$
\begin{equation*}
\bar{y}_{i}(k)=e_{i}^{m} \circ g \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right) \tag{6}
\end{equation*}
$$

for every $1 \leqslant i \leqslant m$ and $k=1,2, \ldots$
We prove that the mapping $P: g \mapsto P_{g}$ is an isomorphism between algebras (G, \circ, \star, e, f) and ($\Phi, \circ, \star, \Delta, F)$, where $\Phi=\left\{P_{g} \mid g \in G\right\}$.

First observe that $P_{e}=\Delta$ and $P_{f}=F$. Indeed, if $P_{e}(\bar{x})=\bar{y}$ for some $\bar{x}, \bar{y} \in \bar{G}$, then $\bar{y}(k)=e_{1}^{1} \circ e \circ \bar{x}(k)=\bar{x}(k)$ for all $k=1,2, \ldots$, because $e_{1}^{1}=e$ is the unit of (G, \circ). Thus $\bar{y}(k)=\bar{x}(k), k=1,2, \ldots \mathrm{So}, P_{e}(\bar{x})=\bar{x}$. Hence $P_{e}=\Delta$. Analogously, from Axiom 4, we deduce $P_{f}=F$.

Now prove that $P\left(g_{1} \circ g_{2}\right)=P\left(g_{1}\right) \circ P\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$, i.e.

$$
\begin{equation*}
P_{g_{1} \circ g_{2}}=P_{g_{1}} \circ P_{g_{2}} . \tag{7}
\end{equation*}
$$

Let $n_{i}=\alpha g_{i}, m_{i}=\beta g_{i}, i=1,2, n=\max \left\{n_{1}+\gamma g_{2}, n_{2}\right\}$ and $m=$ $\max \left\{m_{1}, m_{2}-\gamma g_{1}\right\}$. By Axiom 3(c) $n=\alpha\left(g_{1} \circ g_{2}\right), m=\beta\left(g_{1} \circ g_{2}\right)$. Thus the degree and the rank of the function $P_{g_{1} \circ g_{2}}$ are equal n and m, respectively. Let

$$
\bar{y}_{1} \ldots \bar{y}_{m}=P_{g_{1} \circ g_{2}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)
$$

for some $\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{m} \in \bar{G}$. If $n_{1}>m_{2}$ then $m=m_{1}$. Therefore, by (6), we have

$$
\bar{y}_{i}(k)=e_{i}^{m} \circ g_{1} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right)
$$

for all $1 \leqslant i \leqslant m$ and $k=1,2, \ldots$. Since the equation

$$
n_{2}=\beta\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)
$$

is true, Axiom 5(a) gives

$$
\bar{y}_{i}(k)=e_{i}^{m_{1}} \circ g_{1} \circ\left(\left(g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)\right) \star \bar{x}_{n_{2}+1}(k) \star \cdots \star \bar{x}_{n}(k)\right) .
$$

Applying to this equation Axioms 2 and 6, we obtain

$$
\begin{aligned}
\bar{y}_{i}(k)= & e_{i}^{m_{1}} \circ g_{1} \circ\left(\left(\left(e_{1}^{m_{2}} \star \cdots \star e_{m_{2}}^{m_{2}}\right) \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)\right) \star\right. \\
\star & \left.\bar{x}_{n_{2}+1}(k) \star \cdots \star \bar{x}_{n}(k)\right) \\
= & e_{i}^{m_{1}} \circ g_{1} \circ\left(\left(e_{1}^{m_{2}} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)\right) \star \cdots \star\right. \\
& \left.\star\left(e_{m_{2}}^{m_{2}} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)\right) \star \bar{x}_{n_{2}+1}(k) \star \cdots \star \bar{x}_{n}(k)\right) .
\end{aligned}
$$

Let $\bar{z}_{1} \ldots \bar{z}_{m_{2}}=P_{g_{2}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n_{2}}\right)$, i.e.

$$
\bar{z}_{i}(k)=e_{i}^{m_{2}} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)
$$

for all $1 \leqslant i \leqslant m_{2}$ and $k=1,2, \ldots$ Then

$$
\bar{y}_{i}(k)=e_{i}^{m_{1}} \circ g_{1} \circ\left(\bar{z}_{1}(k) \star \cdots \star \bar{z}_{m_{2}}(k) \star \bar{x}_{n_{2}+1}(k) \star \cdots \star \bar{x}_{n}(k)\right)
$$

for all $1 \leqslant i \leqslant m_{1}$ and $k=1,2, \ldots$ Thus

$$
\bar{y}_{1} \ldots \bar{y}_{m_{1}}=P_{g_{1}}\left(\bar{z}_{1}, \ldots, \bar{z}_{m_{2}}, \bar{x}_{n_{2}+1}, \ldots, \bar{x}_{n}\right) .
$$

Therefore

$$
\bar{y}_{1} \ldots \bar{y}_{m_{1}}=P_{g_{1}}\left(P_{g_{2}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n_{2}}\right), \bar{x}_{n_{2}+1}, \ldots, \bar{x}_{n}\right),
$$

i.e. $\quad \bar{y}_{1} \ldots \bar{y}_{m}=\left(P_{g_{1}} \circ P_{g_{2}}\right)\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$, which proves (7) for $n_{1}>m_{2}$, $m=m_{1}$.

Now let $n_{1} \leqslant m_{2}$. Then $n=n_{2}$ and $m=m_{2}-\gamma g_{1}$. Hence, for all $1 \leqslant i \leqslant m, k=1,2, \ldots$ we have

$$
\begin{aligned}
\bar{y}_{i}(k)= & e_{i}^{m} \circ g_{1} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right) \\
= & e_{i}^{m} \circ g_{1} \circ\left(e_{1}^{m_{2}} \star \cdots \star e_{m_{2}}^{m_{2}}\right) \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right) \\
= & e_{i}^{m} \circ g_{1} \circ\left(\left(e_{1}^{m_{2}} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)\right) \star \cdots \star\right. \\
& \left.\star\left(e_{m_{2}}^{m_{2}} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{2}}(k)\right)\right)\right) \\
= & e_{i}^{m} \circ g_{1} \circ\left(\bar{z}_{1}(k) \star \cdots \star \bar{z}_{m_{2}}(k)\right) .
\end{aligned}
$$

Now applying Axiom 5(a) we obtain

$$
\begin{equation*}
\bar{y}_{i}(k)=e_{i}^{m} \circ\left(\left(g_{1} \circ\left(\bar{z}_{1}(k) \star \cdots \star \bar{z}_{n_{1}}(k)\right)\right) \star \bar{z}_{n_{1}+1}(k) \star \cdots \star \bar{z}_{m_{2}}(k)\right) . \tag{8}
\end{equation*}
$$

If $1 \leqslant i \leqslant m_{1}$, then applying Proposition 4 to (8) we get

$$
\bar{y}_{i}(k)=e_{i}^{m_{1}} \circ g_{1} \circ\left(\bar{z}_{1}(k) \star \cdots \star \bar{z}_{n_{1}}(k)\right)
$$

for $k=1,2, \ldots$ Therefore

$$
\bar{y}_{1} \ldots \bar{y}_{m_{1}}=P_{g_{1}}\left(\bar{z}_{1}, \ldots, \bar{z}_{n_{1}}\right) .
$$

For $m_{1}<i \leqslant m$ we have $\bar{y}_{i}(k)=\bar{z}_{i+\gamma g_{1}}(k)$, where $k=1,2, \ldots$ Whence $\bar{y}_{m_{1}+1} \ldots \bar{y}_{m}=\bar{z}_{n_{1}+1} \ldots \bar{z}_{m_{2}}$. So,

$$
\bar{y}_{1} \ldots \bar{y}_{m}=P_{g_{1}}\left(\bar{z}_{1}, \ldots, \bar{z}_{n_{1}}\right) \bar{z}_{n_{1}+1} \ldots \bar{z}_{m_{2}}
$$

which, by Definition 1, gives $\bar{y}_{1} \ldots \bar{y}_{m}=\left(P_{g_{1}} \circ P_{g_{2}}\right)\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. Thus

$$
P_{g_{1} \circ g_{2}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=\left(P_{g_{1}} \circ P_{g_{2}}\right)\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)
$$

for all $\bar{x}_{1}, \ldots, \bar{x}_{n} \in \bar{G}$. This proves (7).
To verify $P\left(g_{1} \star g_{2}\right)=P\left(g_{1}\right) \star P\left(g_{2}\right)$, i.e.

$$
\begin{equation*}
P_{g_{1} \star g_{2}}=P_{g_{1}} \star P_{g_{2}} \tag{9}
\end{equation*}
$$

for all $g_{1}, g_{2} \in G$, assume that $n_{i}=\alpha g_{i}, m_{i}=\beta g_{i}$ for $i=1,2$, and $n=$ $\max \left\{n_{1}, n_{2}\right\}, m=m_{1}+m_{2}$. By Axiom 3(b), $n=\alpha\left(g_{1} \star g_{2}\right)=\alpha\left(P_{g_{1} \star g_{2}}\right)$, $m=\beta\left(g_{1} \star g_{2}\right)=\beta\left(P_{g_{1} \star g_{2}}\right)$. Let

$$
\bar{y}_{1} \ldots \bar{y}_{m}=P_{g_{1} \star g_{2}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)
$$

for some $\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{m} \in \bar{G}$. Then, according to (6),

$$
\begin{equation*}
\bar{y}_{i}(k)=e_{i}^{m} \circ\left(g_{1} \star g_{2}\right) \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right) \tag{10}
\end{equation*}
$$

for all $1 \leqslant i \leqslant m$ and $k=1,2, \ldots$
Assume that $n_{1} \leqslant n_{2}$. Then $n=n_{2}$. Therefore, by Axiom 6, the equation (10) can be written in the form

$$
\begin{equation*}
\bar{y}_{i}(k)=e_{i}^{m} \circ\left(\left(g_{1} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n_{1}}(k)\right)\right) \star\left(g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right)\right)\right) . \tag{11}
\end{equation*}
$$

For $1 \leqslant i \leqslant m_{1}$ the above equation and Proposition 4 imply

$$
\bar{y}_{i}(k)=e_{i}^{m_{1}} \circ g_{1} \circ\left(\bar{x}_{1}(k), \ldots, \bar{x}_{n_{1}}(k)\right), \quad k=1,2, \ldots
$$

Hence $\bar{y}_{1} \ldots \bar{y}_{m_{1}}=P_{g_{1}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n_{1}}\right)$.
In the same manner, for $m_{1}+1 \leqslant i \leqslant m$, we obtain

$$
\bar{y}_{i}(k)=e_{i-m_{1}}^{m_{2}} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right), \quad k=1,2, \ldots
$$

and $\bar{y}_{m_{1}+1} \ldots \bar{y}_{m}=P_{g_{2}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. Thus $\bar{y}_{1} \ldots \bar{y}_{m}=\left(P_{g_{1}} \star P_{g_{2}}\right)\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. Hence

$$
P_{g_{1} \star g_{2}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=\left(P_{g_{1}} \star P_{g_{2}}\right)\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)
$$

for all $\bar{x}_{1}, \ldots, \bar{x}_{n} \in \bar{G}$. This proves (9) in the case $n_{1} \leqslant n_{2}$.
The case $n_{2} \leqslant n_{1}$ is analogous.

Now we prove that P is one-to-one. Let $P_{g_{1}}=P_{g_{2}}$ for some $g_{1}, g_{2} \in G$. Then $\alpha g_{1}=\alpha g_{2}, \beta g_{1}=\beta g_{2}$. Therefore

$$
\begin{equation*}
e_{i}^{m} \circ g_{1} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right)=e_{i}^{m} \circ g_{2} \circ\left(\bar{x}_{1}(k) \star \cdots \star \bar{x}_{n}(k)\right) \tag{12}
\end{equation*}
$$

for all $1 \leqslant i \leqslant m=\beta g_{1}, \bar{x}_{1}, \ldots, \bar{x}_{n} \in \bar{G}$, where $n=\alpha g_{1}$ and $k=1,2, \ldots$
This for $\bar{x}_{j}=\bar{e}_{j}=\left(e_{1}^{1}, e_{2}^{2}, \ldots, e_{i}^{i}, e_{i}^{i+1}, e_{i}^{i+2}, \ldots\right) \in \bar{G}, j=1, \ldots, n$ and $k=n$, gives

$$
e_{i}^{m} \circ g_{1} \circ\left(e_{1}^{n} \star \cdots \star e_{n}^{n}\right)=e_{i}^{m} \circ g_{2} \circ\left(e_{1}^{n} \star \cdots \star e_{n}^{n}\right) .
$$

Thus $e_{i}^{m} \circ g_{1}=e_{i}^{m} \circ g_{2}$ for all $1 \leqslant i \leqslant m$, and in the consequence

$$
\left(e_{1}^{m} \circ g_{1}\right) \star \cdots \star\left(e_{m}^{m} \circ g_{1}\right)=\left(e_{1}^{m} \circ g_{2}\right) \star \cdots \star\left(e_{m}^{m} \circ g_{2}\right)
$$

Hence $\left(e_{1}^{m} \star \cdots \star e_{m}^{m}\right) \circ g_{1}=\left(e_{1}^{m} \star \cdots \star e_{m}^{m}\right) \circ g_{2}$, which implies $g_{1}=g_{2}$.
This completes the proof that $P: g \mapsto P_{g}$ is an isomorphism between $\operatorname{algebras}(G, \circ, \star, e, f)$ and $(\Phi, \circ, \star, \Delta, F)$, where $\Phi=\left\{P_{g} \mid g \in G\right\}$.

3. Symmetrical algebras

An algebra (G, \circ, \star, e, f) of type $(2,2,0,0)$ satisfying Axioms $1-6$ is called a V-algebra.

Let $\mathcal{G}=(G, \circ, \star, e, f)$ be a fixed V-algebra and let $\mathcal{G}^{\prime}=\left(G^{\prime}, \circ, \star, e^{\prime}, f^{\prime}\right)$ be some other algebra of type $(2,2,0,0)$.

Definition 3. A homomorphism $P: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ is called a v-homomorphism, if $g \neq g \circ\left(e_{1}^{n} \star \cdots \star e_{n}^{n}\right)$ implies $P(g) \neq P\left(g \circ\left(e_{1}^{n} \star \cdots \star e_{n}^{n}\right)\right)$ for any $g \in G$ and $n \in \mathbb{N}$.

It is easy to see that if P is a v-homomorphism of a V-algebra \mathcal{G} onto an algebra \mathcal{G}^{\prime}, then \mathcal{G}^{\prime} is a V-algebra too. In this case $\alpha g=\alpha P(g)$ and $\beta g=\beta P(g)$ for any $g \in G$. Conversely, if P is a homomorphism of a V-algebra \mathcal{G} onto a V-algebra \mathcal{G}^{\prime} such that $\alpha g=\alpha P(g)$ and $\beta=\beta P(g)$ for all $g \in G$, then P is a v-homomorphism.

Definition 4. A subset H of a V-algebra \mathcal{G} is called a v-ideal, if for all $x \in G, h_{1}, \ldots, h_{n} \in H, 1 \leqslant i \leqslant n$, where $n=\alpha x$ and $m=\beta x$, the condition $e_{i}^{m} \circ x \circ\left(h_{1} \star \cdots \star h_{n}\right) \in H$ is satisfied.

Generalizing the concept of dense ideals in semigroups (cf. [2]), we say that an ideal H of a V-algebra \mathcal{G} is dense if and only if
(a) any v-homomorphism of \mathcal{G}, which is not an isomorphism, induces on H a homomorphism, which is not an isomorphism,
(b) if \mathcal{G} is a V-subalgebra of V-algebra $\mathcal{G}^{\prime} \neq \mathcal{G}$ and H is a v-ideal of \mathcal{G}^{\prime}, then there exists a v-homomorphism of \mathcal{G}^{\prime}, which is not an isomorphism, but induces on H an isomorphism.

Now consider the symmetrical algebra of vector-functions

$$
\mathfrak{T}=(\mathcal{T}(A), o, \star, \Delta, F) .
$$

It is easy to verify that it satisfies Axioms $1-6$, i.e. it is a V-algebra.
By H_{A} we denote the set of all functions φ_{a} such that $a \in A$ and $\varphi_{a}(x)=a$ for all $x \in A$. Clearly, $\alpha \varphi_{a}=\beta \varphi_{a}=1$ for all $a \in A$ and $\left(H_{A}, \circ\right)$ is a semigroup of left zeros.

The following three theorems are generalizations of similar results proved for transformation semigroups [2].

Theorem 2. The set H_{A} is a dense v-ideal of $\mathfrak{T}=(\mathcal{T}(A), \circ, \star, \Delta, F)$.
Proof. Let $\psi \in \mathcal{T}(A), \varphi_{a_{1}}, \ldots, \varphi_{a_{n}} \in H_{A}$, where $n=\alpha \psi$ and a_{1}, \ldots, a_{n} are elements of A. Suppose that

$$
\psi\left(a_{1}, \ldots, a_{n}\right)=b_{1} \ldots b_{m}
$$

for some $b_{1}, \ldots, b_{m} \in A$, where $m=\beta \psi$. We have $\left(I_{i}^{m} \circ \psi\right)\left(a_{1}, \ldots, a_{n}\right)=b_{i}$ for $1 \leqslant i \leqslant m$, because $I_{i}^{m}\left(b_{1}, \ldots, b_{m}\right)=b_{i}$. If $c \in A$, then

$$
\left(I_{i}^{m} \circ \psi\right)\left(\varphi_{a_{1}}(c), \ldots, \varphi_{a_{n}}(c)\right)=\varphi_{b_{i}}(c),
$$

i.e. $\left(I_{i}^{m} \circ \psi \circ\left(\varphi_{a_{1}} \star \cdots \star \varphi_{a_{n}}\right)\right)(c)=\varphi_{b_{i}}(c)$. So,

$$
I_{i}^{m} \circ \psi \circ\left(\varphi_{a_{1}} \star \cdots \star \varphi_{a_{n}}\right)=\varphi_{b_{i}} \in H_{A} .
$$

This proves that H_{A} is a v-ideal of \mathfrak{T}.
Now let P be a v-homomorphism of \mathfrak{T}, which is not an isomorphism. Hence, there are $\psi_{1}, \psi_{2} \in \mathcal{T}(A)$ such that $\psi_{1} \neq \psi_{2}$ and $P\left(\psi_{1}\right)=P\left(\psi_{2}\right)$. The last equation gives $\alpha P\left(\psi_{1}\right)=\alpha P\left(\psi_{2}\right)$ and $\beta P\left(\psi_{1}\right)=\beta P\left(\psi_{2}\right)$. So, there are elements $a_{1}, \ldots, a_{n} \in A$ such that

$$
\psi_{1}\left(a_{1}, \ldots, a_{n}\right) \neq \psi_{2}\left(a_{1}, \ldots, a_{n}\right)
$$

Let $\psi_{1}\left(a_{1}, \ldots, a_{n}\right)=b_{1} \ldots b_{m}$ and $\psi_{2}\left(a_{1}, \ldots, a_{n}\right)=c_{1} \ldots c_{m}$, where n, m are degree and rank of functions ψ_{1}, ψ_{2} respectively. Thus $b_{1} \neq c_{i}$ for some $1 \leqslant i \leqslant m$, because $b_{1} \ldots b_{m} \neq c_{1} \ldots c_{m}$. Whence $\varphi_{b_{i}} \neq \varphi_{c_{i}}$. But

$$
\begin{aligned}
& P\left(\varphi_{b_{i}}\right)=P\left(I_{i}^{m} \circ \psi_{1} \circ\left(\varphi_{a_{1}} \star \cdots \star \varphi_{a_{n}}\right)\right) \\
& =P\left(I_{i}^{m}\right) \circ P\left(\psi_{1}\right) \circ\left(P\left(\varphi_{a_{1}}\right) \star \cdots \star P\left(\varphi_{a_{n}}\right)\right) \\
& =P\left(I_{i}^{m}\right) \circ P\left(\psi_{2}\right) \circ\left(P\left(\varphi_{a_{1}}\right) \star \cdots \star P\left(\varphi_{a_{n}}\right)\right) \\
& =P\left(I_{i}^{m} \circ \psi_{2} \circ\left(\varphi_{a_{1}} \star \cdots \star \varphi_{a_{n}}\right)\right)=P\left(\varphi_{c_{i}}\right) .
\end{aligned}
$$

Thus, P induces on H_{A} a homomorphism, which is not isomorphism.
Now assume that H_{A} is a v-ideal of V-algebra $\mathcal{G}=(G, \circ, \star, \Delta, F)$ and \mathfrak{T} is a proper subalgebra of \mathcal{G}. For each element $g \in G$ we consider the function $\lambda_{g} \in \mathcal{T}(A)$ defined in the following way:

$$
\begin{equation*}
b_{1} \ldots b_{m}=\lambda_{g}\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \bigwedge_{i=1}^{m} I_{i}^{m} \circ g \circ\left(\varphi_{a_{1}} \star \cdots \star \varphi_{a_{n}}\right)=\varphi_{b_{i}}, \tag{13}
\end{equation*}
$$

where $n=\alpha g, m=\beta g, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in A$. It is not difficult to see that the mapping $P: g \mapsto \lambda_{g}$ is a v-homomorphism of \mathcal{G} into \mathfrak{T}. Since $\mathcal{T}(A) \subset G$ and $\mathcal{T}(A) \neq G$, for $g \in G \backslash \mathcal{T}(A)$ we have $g \neq P(g)=\lambda_{g}$. But $P\left(\lambda_{g}\right)=\lambda_{g}$, by (13). Therefore $P(g)=P\left(\lambda_{g}\right)$. Thus, P is a v homomorphism, which is not an isomorphism, and which induces on H_{A} an identical isomorphism.

Theorem 3. $A V$-algebra $\mathcal{G}=(G, \circ, \star, e, f)$ is isomorphic to some symmetrical algebra of vector-functions if and only if it contains a dense v-ideal H, which is a semigroup of left zeros under the operation \circ and $\alpha h=\beta h=1$ for all $h \in H$.

Proof. The necessity follows from Theorem 2. To prove the sufficiency we consider the mapping $P: G \rightarrow \mathcal{T}(H)$ defined by the formula

$$
\begin{equation*}
y_{1} \ldots y_{m}=P(g)\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \bigwedge_{i=1}^{m} y_{i}=e_{i}^{m} \circ g \circ\left(x_{1} \star \cdots \star x_{n}\right) \tag{14}
\end{equation*}
$$

for all $g \in G$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in H$, where $n=\alpha g, m=\beta g$. From (14) it follows that $P(e)=\Delta, P(f)=F$. It is not difficult to verify that P is a v-homomorphism, which induces on H an isomorphism. But H is a dense v-ideal of \mathcal{G}, therefore, according to the definition of a dense v-ideal, P must be an isomorphism. Hence, a v-ideal H_{H} is a dense v-ideal of a homomorphic image of (G, \circ, \star, e, f), i.e. $(P(G), \circ, \star, \Delta, F)$, because (H_{H}, \circ) is isomorphic to (H, \circ). But, by Theorem 2 , a v-ideal H_{H} is a dense v-ideal of $(\mathcal{T}(H), \circ, \star, \Delta, F)$, therefore $P(G) \subset \mathcal{T}(H)$ implies $P(G)=\mathcal{T}(H)$. This proves that \mathcal{G} is isomorphic to a symmetrical algebra of vector-functions.

Let $f: A \rightarrow A$ be some one-to-one mapping. By P_{f} we denote the mapping $\mathcal{T}(A) \rightarrow \mathcal{T}(A)$ defined by the condition

$$
\begin{aligned}
& P_{f}(\varphi)\left(a_{1}, \ldots, a_{n}\right)=b_{1} \ldots b_{m} \Longleftrightarrow \\
& f^{-1}\left(b_{1}\right) \ldots f^{-1}\left(b_{m}\right)=\varphi\left(f^{-1}\left(a_{1}\right), \ldots, f^{-1}\left(a_{n}\right)\right)
\end{aligned}
$$

for all $\varphi \in \mathcal{T}(A)$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in A$, where $n=\alpha \varphi, m=\beta \varphi$. It is easy to see that P_{f} is an automorphism of $\mathfrak{T}=(\mathcal{T}(A), \circ, \star, \Delta, F)$. Such defined automorphism is called inner.

Theorem 4. Every automorphism of $\mathfrak{T}=(\mathcal{T}(A), \circ, \star, \Delta, F)$ is inner.
Proof. Let λ be some automorphism of $\mathfrak{T}=(\mathcal{T}(A), \circ, \star, \Delta, F)$, then $\lambda(\Delta)=\Delta$ and $\lambda(F)=F$. Therefore $\lambda\left(I_{i}^{n}\right)=I_{i}^{n}$ for $n \in \mathbb{N}$ and any $1 \leqslant i \leqslant n$. This implies $\alpha \varphi=\alpha \lambda(\varphi)$ and $\beta \varphi=\beta \lambda(\varphi)$ for every $\varphi \in \mathcal{T}(A)$.

We have also $\lambda\left(\varphi_{a}\right) \in H_{A}$ for all $a \in A$. Indeed, for any $\psi \in \mathcal{T}(A)$ such that $\alpha \psi=\beta \psi=1$, holds $\varphi_{1} \circ \psi=\varphi_{a}$, where $a \in A$. Therefore $\varphi_{a} \circ \lambda^{-1}\left(\varphi_{b}\right)=\varphi_{a}$, where $b \in A$. Thus, $\lambda\left(\varphi_{a} \circ \lambda^{-1}\left(\varphi_{b}\right)\right)=\lambda\left(\varphi_{a}\right)$, i.e. $\lambda\left(\varphi_{a}\right) \circ \varphi_{b}=\lambda\left(\varphi_{a}\right)$. Since H_{A} is a v-ideal of \mathfrak{T}, then $\lambda\left(\varphi_{a}\right) \circ \varphi_{b} \in H_{A}$, i.e. $\lambda\left(\varphi_{a}\right) \in H_{A}$.

Now consider the one-to-one correspondence $f_{\lambda}: A \rightarrow A$ such that

$$
(a, b) \in f_{\lambda} \Longleftrightarrow\left(\varphi_{a}, \varphi_{b}\right) \in \lambda
$$

for any $a, b \in A$.

Evidently $\lambda\left(\varphi_{a}\right)=\varphi_{f_{\lambda}(a)}$ and $\lambda^{-1}\left(\varphi_{a}\right)=\varphi_{f_{\lambda}^{-1}(a)}$ for each $a \in A$. Thus, for all $\varphi \in \mathcal{T}(A)$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in A$, where $n=\alpha \varphi$, $m=\beta \varphi$, we have

$$
\begin{aligned}
& b_{1} \ldots b_{m}=\lambda(\varphi)\left(a_{1}, \ldots, a_{n}\right) \\
& \Longleftrightarrow \bigwedge_{i=1}^{m} \varphi_{b_{i}}=I_{i}^{m} \circ \lambda(\varphi) \circ\left(\varphi_{a_{1}} \star \cdots \star \varphi_{a_{n}}\right) \\
& \Longleftrightarrow \bigwedge_{i=1}^{m} \varphi_{f_{\lambda}^{-1}\left(b_{i}\right)}=I_{i}^{m} \circ \varphi \circ\left(\varphi_{f_{\lambda}^{-1}\left(a_{1}\right)} \star \cdots \star \varphi_{f_{\lambda}^{-1}\left(a_{n}\right)}\right) \\
& \Longleftrightarrow f_{\lambda}^{-1}\left(b_{1}\right) \ldots f_{\lambda}^{-1}\left(b_{m}\right)=\varphi\left(f_{\lambda}^{-1}\left(a_{1}\right), \ldots, f_{\lambda}^{-1}\left(a_{n}\right)\right) \\
& \Longleftrightarrow b_{1} \ldots b_{m}=P_{f_{\lambda}}(\varphi)\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

So, $\lambda=P_{f_{\lambda}}$, i.e. λ is an inner automorphism.

References

[1] V. M. Glushkov, G. E. Tseytlin, E. L. Yuschenko: Algebras, languages, programming, (Russian) Naukova Dumka, Kiev 1974.
[2] E. S. Lyapin: Semigroups, (Russian), Fizmatgiz, Moscow 1960.
[3] A. I. Mal'tsev: Iterative Post algebras, (Russian), Novosibirsk State University 1976.
[4] R. Pöschel, L. A. Kalužnin: Funktionen und Relationenalgebren, VEB Deutscher Verlag der Wissenschaften, Berlin 1979.
[5] B. Schweizer, A. Sklar: The algebra of vector-valued functions, Bull. Amer. Math. Soc. 73 (1967), $510-515$.
[6] B. Schweizer, A. Sklar: A grammar of functions, I, Aequat. Math. 2 (1968), $62-85$.
[7] B. Schweizer, A. Sklar: A grammar of functions, II, Aequat. Math. 3 (1969), 15 - 43.

Department of Mathematics
Pedagogical University
21100 Vinnitsa
Ukraine
e-mail: vtrokhim@sovauma.com

