Algebras of vector-valued functions

Valentin S. Trokhimenko

Abstract

Superpositions (compositions) of multiplace functions have various applications in the modern mathematics, especially in the algebraic theory of automata [1], [3], [4]. It is known that any automaton with n entrances and m exits can be defined by some functions of the form $f: A^n \to A^m$, which are called multiplace vector-valued functions. There are two types of compositions of such functions: serial \circ and parallel \star which were considered by B. Schweizer and A. Sklar in [5], [6], [7]. In this paper we find the abstract characterization of algebras of the form $(\Phi, \circ, \star, \Delta, F)$, where Φ is the set of multiplace vector-valued functions stable for compositions \circ, \star and containing two functions $\Delta(x) = x$, F(x, y) = y. We also describe the case when Φ contains all vector-valued functions defined on a fixed set A. Automorphisms of such algebra are described too.

1. Introduction

Any mapping $f : A^n \to A^m$, where $n, m \in \mathbb{N}$ are fixed and A is a nonempty set, is called a *multiplace vector-valued function* (or simply *vectorfunction*) of *degree* n and *rank* m (cf. [5]). The degree and the rank of the multiplace vector-valued function f is denoted by αf and βf , respectively. $\gamma f = \alpha f - \beta f$ is called the *index* of f. The set of all multiplace vector-valued functions of degree n and rank m defined on a fixed set A is denoted by $\mathcal{T}(A^n, A^m)$.

According to [5], [6] and [7], on the set $\mathcal{T}(A) = \bigcup_{n,m\in\mathbb{N}} \mathcal{T}(A^n, A^m)$ we consider two binary operations: the serial composition \circ and the parallel composition \star , which are defined in the following way:

²⁰⁰⁰ Mathematics Subject Classification: $20\mathrm{N}15,\,08\mathrm{N}05$

Keywords: vector valued function

Definition 1. The serial composition $f \circ g$ of vector-functions $f, g \in \mathcal{T}(A)$ is defined by

$$(f \circ g)(a_1, \dots, a_d) = f(b_1, \dots, b_{\alpha f})b_{\alpha f+1} \dots b_{d-\gamma g}, \qquad (1)$$

where $a_1, \ldots, a_d \in A$, $d = \max\{\alpha f + \gamma g, \alpha g\}, b_1, \ldots, b_{d-\gamma g} \in A$ and $b_1 \ldots b_{d-\gamma g} = g(a_1, \ldots, a_{\alpha g})a_{\alpha g+1} \ldots a_d$.

Definition 2. The *parallel composition* of vector-functions $f, g \in \mathcal{T}(A)$ is a vector-function $f \star g$ defined by

$$(f \star g)(a_1, \dots, a_d) = f(a_1, \dots, a_{\alpha f})g(a_1, \dots, a_{\alpha g}), \qquad (2)$$

where $a_1, \ldots, a_d \in A$ and $d = \max\{\alpha f, \alpha g\}$.

It is easy to see that these operations are associative. Moreover, in the case $\alpha f = \beta g$, serial composition reduces to ordinary composition of functions.

Let I_i^n , where $n \in \mathbb{N}$, $1 \leq i \leq n$, be an *n*-place *i*-th projection of A, i.e. $I_i^n(a_1, \ldots, a_n) = a_i$ for all $a_1, \ldots, a_n \in A$. Obviously $\alpha I_i^n = n$, $\beta I_i^n = 1$ for all $1 \leq i \leq n \in \mathbb{N}$. Putting $\Delta(x) = I_1^1(x) = x$ and $F(x, y) = I_2^2(x, y) = y$, we can verify that

$$I_i^n = (F \circ (F \star \Delta))^{n-i} \circ F^{i-1}$$

for any $n \in \mathbb{N}$, $1 \leq i \leq n$ and $f \in \mathcal{T}(A)$, where $f^0 = \Delta$ and $f^{n+1} = f \circ f^n$.

If the subset Φ of $\mathcal{T}(A)$ contains Δ, F and is closed under operations \circ, \star , then a system $(\Phi, \circ, \star, \Delta, F)$ is called an *algebra of vector-functions*. In the case $\Phi = \mathcal{T}(A)$ we say that this algebra is *symmetrical*.

2. The main result

In this section we find an abstract characterization of algebras of vector valued-functions.

First we consider an algebra (G, \circ, \star, e, f) of type (2, 2, 0, 0) satisfying the following six axioms:

Axiom 1. (G, \circ) and (G, \star) are semigroups and e is the unit of (G, \circ) .

Let e_i^p denotes the expression $(f \circ (f \star e))^{p-i} \circ f^{i-1}$, where $p \in \mathbb{N}$, $1 \leq i \leq p$ and $(f \circ (f \star e))^0 = f^0 = e$.

Axiom 2. For each $g \in G$ there exist $m, n \in \mathbb{N}$ such that $g \circ (e^p \star \cdots \star e^p_n) = g, \quad (e^q_1 \star \cdots \star e^q_q) \circ g = g$ for all $p \leq n$, $q \leq m$, $p, q \in \mathbb{N}$ and $g \circ (e^p \star \cdots \star e^p_p) \neq g$, $(e^q_1 \star \cdots \star e^q_a) \circ g \neq g$

for any p > n, q > m.

The numbers n and m are called *degree* and *rank* of g and are denoted by αg , βg , respectively.

Axiom 3. For any $g_1, g_2 \in G$ the following conditions

(a) $\alpha e = \beta e = \beta f = 1, \ \alpha f = 2,$

(b) $\alpha(g_1 \star g_2) = \max\{\alpha g_1, \alpha g_2\}, \quad \beta(g_1 \star g_2) = \beta g_1 + \beta g_2,$

(c) $\alpha(g_1 \circ g_2) = \max\{\alpha g_1 + \gamma g_2, \alpha g_2\}, \quad \beta(g_1 \circ g_2) = \max\{\beta g_1, \beta g_2 - \gamma g_1\},\$ where $\gamma g = \alpha g - \beta g$, hold.

Axiom 4. $f \circ (g_1 \star g_2) = g_2$ for all $g_1, g_2 \in G$ such that $\alpha g_1 = \alpha g_2$ and $\beta g_1 = \beta g_2 = 1.$

Axiom 5. For all $g_1, g_2, g_3 \in G$

- (a) $g_1 \circ (g_2 \star g_3) = (g_1 \circ g_2) \star g_3$, if $\alpha g_1 \leq \beta g_2$,
- (b) $(g_1 \star g_2) \circ g_3 = (g_1 \circ g_3) \star (g_2 \circ g_3), \text{ if } \beta g_3 \leq \min\{\alpha g_1, \alpha g_2\}.$

Axiom 6. For all $g_1, g_2, g_3, g_4 \in G$

- (a) $(g_1 \star g_2) \circ (g_3 \star g_4) = (g_1 \circ g_3) \star (g_2 \circ (g_3 \star g_4)), \text{ if } \alpha g_1 < \alpha g_2,$ $\alpha q_1 = \beta q_3, \ \alpha q_2 = \beta (q_3 \star q_4),$
- (b) $(q_1 \star q_2) \circ (q_3 \star q_4) = (q_1 \circ (q_3 \star q_4)) \star (q_2 \circ q_3), \text{ if } \alpha q_1 > \alpha q_2,$ $\alpha g_2 = \beta g_3, \ \alpha g_1 = \beta (g_3 \star g_4).$

Now we can prove some auxiliary results on the algebra (G, \circ, \star, e, f) .

Proposition 1. For all $g_1, g_2 \in G$ we have

- (a) $\gamma(g_1 \circ g_2) = \gamma g_1 + \gamma g_2$,
- (b) $\gamma(g_1 \star g_2) = \gamma g_1 + \gamma g_2 \min\{\alpha g_1, \alpha g_2\}.$

Proposition 2. For each $n \in \mathbb{N}$ and all $1 \leq i \leq n$ the equations $\alpha e_i^n = n$, $\beta e_i^n = 1$ are true.

Proof. Indeed, let g be an element of G such that $\beta g = 1$. Then, by Axiom 3(c), we obtain $\alpha g^n = n\alpha g - n + 1$ and $\beta g^n = 1$. Further

$$\alpha e_i^n = \alpha((f \circ (f \star e))^{n-i} \circ f^{i-1}) = \max\{\alpha((f \circ (f \star e))^{n-i}) + \gamma f^{i-1}, \, \alpha f^{i-1}\}.$$

But $\alpha(f \circ (f \star e)) = 2$ and $\beta(f \circ (f \star e)) = 1$ by our Axiom 3. Thus $\alpha((f \circ (f \star e))^{n-i}) = n - i + 1, \quad \beta((f \circ (f \star e))^{n-i}) = 1, \quad \alpha f^{i-1} = i,$ $\beta f^{i-1} = 1$. Hence $\alpha e_i^n = \max\{n, i\} = n$.

Similarly we can prove $\beta e_i^n = 1$.

Proposition 2 implies that the equation

$$e_i^n \circ (e_1^n \star \dots \star e_n^n) = e_i^n \tag{3}$$

is satisfied for all $n \in \mathbb{N}$ and $1 \leq i \leq n$.

Proposition 3. For all $g_1, \ldots, g_n \in G$ such that $\alpha g_1 = \cdots = \alpha g_n$ and $\beta g_1 = \cdots = \beta g_n = 1$, the equation

$$e_i^n \circ (g_1 \star \dots \star g_n) = g_i \tag{4}$$

is satisfied for all $n \in \mathbb{N}$ and $1 \leq i \leq n$.

Proof. First let n = 2. If i = 2, then, according to Axiom 4, we have

$$e_2^2 \circ (g_1 \star g_2) = f \circ (g_1 \star g_2) = g_2.$$

If i = 1, then $e_1^2 \circ (g_1 \star g_2) = f \circ (f \star e) \circ (g_1 \star g_2)$. Hence by Axioms 6(b) and 4 we obtain

$$e_1^2 \circ (g_1 \star g_2) = f \circ \left(\left(f \circ (g_1 \star g_2) \right) \star (e \circ g_1) \right) = f \circ (g_2 \star g_1) = g_1.$$

Now let $n > 2, 1 \leq i \leq n$. Then

$$e_i^n \circ (g_1 \star \dots \star g_n) = (e_1^2)^{n-i} \circ f^{i-1} \circ (g_1 \star \dots \star g_n)$$

= $(e_1^2)^{n-i} \circ f^{i-2} \circ \left(\left(f \circ (g_1 \star g_2) \right) \star g_3 \star \dots \star g_n \right)$
= $(e_1^2)^{n-i} \circ f^{i-2} \circ (g_2 \star \dots \star g_n).$

Repeating this procedure we obtain

$$e_i^n \circ (g_1 \star \dots \star g_n) = (e_1^2)^{n-i} \circ (g_i \star \dots \star g_n)$$

= $(e_1^2)^{n-i-1} \circ \left(\left(e_1^2 \circ (g_i \star g_{i+1}) \right) \star g_{i+2} \star \dots \star g_n \right)$
= $(e_1^2)^{n-i-1} \circ (g_i \star g_{i+2} \star \dots \star g_n) = \dots$
= $e_1^2 \circ (g_i \star g_n) = g_i.$

This completes the proof.

Proposition 4. If $x_1, \ldots, x_k \in G$ are such that

$$n = \beta x_1 + \dots + \beta x_k$$
 and $m = \max\{\alpha x_1, \dots, \alpha x_k\},\$

then

$$e_i^n \circ (x_1 \star \dots \star x_k) = e_s^{\beta x_p} \circ x_p \circ (e_1^m \star \dots \star e_{\alpha x_p}^m)$$
(5)

for all $1 \leq i \leq n$, where $\sum_{j=1}^{p-1} \beta x_j < i \leq \sum_{j=1}^p \beta x_j$ and $s = i - \sum_{j=1}^{p-1} \beta x_j$.

Proof. Let $n_i = \beta x_i$ for all $x_i \in G$, i = 1, ..., k. By Axiom 3(b) we have $\alpha(x_1 \star \cdots \star x_k) = \max\{\alpha x_1, \ldots, \alpha x_k\} = m$. Applying Axiom 2 we obtain

$$e_i^n \circ (x_1 \star \dots \star x_k) = e_i^n \circ \left(\left((e_1^{n_1} \star \dots \star e_{n_1}^{n_1}) \circ x_1 \right) \star \dots \star \left((e_1^{n_k} \star \dots \star e_{n_k}^{n_k}) \circ x_k \right) \right) \circ (e_1^n \star \dots \star e_m^m).$$

Further, by Axiom 5(b)

$$e_i^n \circ (x_1 \star \dots \star x_k) = e_i^n \circ \left((e_1^{n_1} \circ x_1) \star \dots \star (e_{n_1}^{n_1} \circ x_1) \star \dots \star (e_1^{n_k} \circ x_k) \star \dots \star (e_{n_k}^{n_k} \circ x_k) \right) \circ (e_1^m \star \dots \star e_m^m).$$

This, together with Axiom 6 and Proposition 3, implies

$$e_i^n \circ (x_1 \star \dots \star x_k) = e_i^n \circ \left(\left(e_1^{n_1} \circ x_1 \circ (e_1^m \star \dots \star e_{\alpha x_1}^m) \right) \star \dots \star \right) \star \left(e_{n_k}^{n_k} \circ x_1 \circ (e_1^m \star \dots \star e_{\alpha x_k}^m) \right) = e_s^{\beta x_p} \circ x_p \circ (e_1^m \star \dots \star e_{\alpha x_p}^m),$$

which completes the proof.

Theorem 1. An algebra (G, \circ, \star, e, f) of type (2, 2, 0, 0) is isomorphic to some algebra of vector-functions if and only if it satisfies Axioms 1-6.

Proof. The necessity of Theorem is evident. We prove the sufficiency. For this let (G, \circ, \star, e, f) be an algebra satisfying Axioms 1 - 6 and let G_n be the set of all elements $g \in G$ such that $\alpha g = n$ and $\beta g = 1$. It is clear that $G_n \neq \emptyset$ for every $n \in \mathbb{N}$, because $e_i^n \in G_n$ for all $1 \leq i \leq n$. Note that $G_n \cap G_m = \emptyset$ for $n \neq m$. Let $\overline{G} = \underset{n \in \mathbb{N}}{\times} G_n$ be the Cartesian power of the family sets $(G_n)_{n \in \mathbb{N}}$.

For each $g \in G$ we define the vector-function $P_g : \overline{G}^n \to \overline{G}^m$, where $n = \alpha g, m = \beta g$, putting $P_g(\overline{x}_1, \ldots, \overline{x}_n) = \overline{y}_1 \ldots \overline{y}_m$ if and only if

$$\bar{y}_i(k) = e_i^m \circ g \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_n(k)\right) \tag{6}$$

for every $1 \leq i \leq m$ and $k = 1, 2, \ldots$

We prove that the mapping $P : g \mapsto P_g$ is an isomorphism between algebras (G, \circ, \star, e, f) and $(\Phi, \circ, \star, \Delta, F)$, where $\Phi = \{P_g | g \in G\}$.

First observe that $P_e = \Delta$ and $P_f = F$. Indeed, if $P_e(\bar{x}) = \bar{y}$ for some $\bar{x}, \bar{y} \in \overline{G}$, then $\bar{y}(k) = e_1^1 \circ e \circ \bar{x}(k) = \bar{x}(k)$ for all $k = 1, 2, \ldots$, because $e_1^1 = e$ is the unit of (G, \circ) . Thus $\bar{y}(k) = \bar{x}(k), k = 1, 2, \ldots$ So, $P_e(\bar{x}) = \bar{x}$. Hence $P_e = \Delta$. Analogously, from Axiom 4, we deduce $P_f = F$.

Now prove that $P(g_1 \circ g_2) = P(g_1) \circ P(g_2)$ for all $g_1, g_2 \in G$, i.e.

$$P_{g_1 \circ g_2} = P_{g_1} \circ P_{g_2} \,. \tag{7}$$

Let $n_i = \alpha g_i$, $m_i = \beta g_i$, i = 1, 2, $n = \max\{n_1 + \gamma g_2, n_2\}$ and $m = \max\{m_1, m_2 - \gamma g_1\}$. By Axiom 3(c) $n = \alpha(g_1 \circ g_2)$, $m = \beta(g_1 \circ g_2)$. Thus the degree and the rank of the function $P_{g_1 \circ g_2}$ are equal n and m, respectively. Let

$$\bar{y}_1 \dots \bar{y}_m = P_{g_1 \circ g_2}(\bar{x}_1, \dots, \bar{x}_n)$$

for some $\bar{x}_1, \ldots, \bar{x}_n, \bar{y}_1, \ldots, \bar{y}_m \in \overline{G}$. If $n_1 > m_2$ then $m = m_1$. Therefore, by (6), we have

$$\bar{y}_i(k) = e_i^m \circ g_1 \circ g_2 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_n(k)\right)$$

for all $1 \leq i \leq m$ and $k = 1, 2, \dots$ Since the equation

$$n_2 = \beta \Big(\bar{x}_1(k) \star \dots \star \bar{x}_{n_2}(k) \Big)$$

is true, Axiom 5(a) gives

$$\bar{y}_i(k) = e_i^{m_1} \circ g_1 \circ \left(\left(g_2 \circ \left(\bar{x}_1(k) \star \cdots \star \bar{x}_{n_2}(k) \right) \right) \star \bar{x}_{n_2+1}(k) \star \cdots \star \bar{x}_n(k) \right).$$

Applying to this equation Axioms 2 and 6, we obtain

$$\bar{y}_i(k) = e_i^{m_1} \circ g_1 \circ \left(\left(\left(e_1^{m_2} \star \dots \star e_{m_2}^{m_2} \right) \circ g_2 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_{n_2}(k) \right) \right) \star \\ \star \bar{x}_{n_2+1}(k) \star \dots \star \bar{x}_n(k) \right)$$

$$= e_i^{m_1} \circ g_1 \circ \left(\left(e_1^{m_2} \circ g_2 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_{n_2}(k) \right) \right) \star \dots \star \\ \star \left(e_{m_2}^{m_2} \circ g_2 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_{n_2}(k) \right) \right) \star \dots \star \\ \star \left(e_{m_2}^{m_2} \circ g_2 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_{n_2}(k) \right) \right) \star \bar{x}_{n_2+1}(k) \star \dots \star \bar{x}_n(k) \right).$$

Let $\bar{z}_1 \dots \bar{z}_{m_2} = P_{g_2}(\bar{x}_1, \dots, \bar{x}_{n_2})$, i.e.

$$\bar{z}_i(k) = e_i^{m_2} \circ g_2 \circ (\bar{x}_1(k) \star \dots \star \bar{x}_{n_2}(k))$$

for all $1 \leq i \leq m_2$ and $k = 1, 2, \dots$ Then

$$\bar{y}_i(k) = e_i^{m_1} \circ g_1 \circ \left(\bar{z}_1(k) \star \cdots \star \bar{z}_{m_2}(k) \star \bar{x}_{n_2+1}(k) \star \cdots \star \bar{x}_n(k) \right)$$

for all $1 \leq i \leq m_1$ and $k = 1, 2, \ldots$ Thus

$$\bar{y}_1 \dots \bar{y}_{m_1} = P_{g_1}(\bar{z}_1, \dots, \bar{z}_{m_2}, \bar{x}_{n_2+1}, \dots, \bar{x}_n)$$

Therefore

$$\bar{y}_1 \dots \bar{y}_{m_1} = P_{g_1}(P_{g_2}(\bar{x}_1, \dots, \bar{x}_{n_2}), \bar{x}_{n_2+1}, \dots, \bar{x}_n),$$

i.e. $\bar{y}_1 \dots \bar{y}_m = (P_{g_1} \circ P_{g_2})(\bar{x}_1, \dots, \bar{x}_n)$, which proves (7) for $n_1 > m_2$, $m = m_1$.

Now let $n_1 \leq m_2$. Then $n = n_2$ and $m = m_2 - \gamma g_1$. Hence, for all $1 \leq i \leq m, k = 1, 2, \ldots$ we have

Now applying Axiom 5(a) we obtain

$$\bar{y}_i(k) = e_i^m \circ \left(\left(g_1 \circ \left(\bar{z}_1(k) \star \dots \star \bar{z}_{n_1}(k) \right) \right) \star \bar{z}_{n_1+1}(k) \star \dots \star \bar{z}_{m_2}(k) \right).$$
(8)

If $1 \leq i \leq m_1$, then applying Proposition 4 to (8) we get

$$\bar{y}_i(k) = e_i^{m_1} \circ g_1 \circ \left(\bar{z}_1(k) \star \dots \star \bar{z}_{n_1}(k)\right)$$

for $k = 1, 2, \ldots$ Therefore

$$\bar{y}_1 \dots \bar{y}_{m_1} = P_{g_1}(\bar{z}_1, \dots, \bar{z}_{n_1}).$$

For $m_1 < i \leq m$ we have $\bar{y}_i(k) = \bar{z}_{i+\gamma g_1}(k)$, where $k = 1, 2, \ldots$ Whence $\bar{y}_{m_1+1} \ldots \bar{y}_m = \bar{z}_{n_1+1} \ldots \bar{z}_{m_2}$. So,

$$\bar{y}_1 \dots \bar{y}_m = P_{g_1}(\bar{z}_1, \dots, \bar{z}_{n_1}) \bar{z}_{n_1+1} \dots \bar{z}_{m_2},$$

which, by Definition 1, gives $\bar{y}_1 \dots \bar{y}_m = (P_{g_1} \circ P_{g_2})(\bar{x}_1, \dots, \bar{x}_n)$. Thus

$$P_{g_1 \circ g_2}(\bar{x}_1, \dots, \bar{x}_n) = (P_{g_1} \circ P_{g_2})(\bar{x}_1, \dots, \bar{x}_n)$$

for all $\bar{x}_1, \ldots, \bar{x}_n \in \overline{G}$. This proves (7).

To verify $P(g_1 \star g_2) = P(g_1) \star P(g_2)$, i.e.

$$P_{g_1 \star g_2} = P_{g_1} \star P_{g_2} \tag{9}$$

for all $g_1, g_2 \in G$, assume that $n_i = \alpha g_i$, $m_i = \beta g_i$ for i = 1, 2, and $n = \max\{n_1, n_2\}$, $m = m_1 + m_2$. By Axiom 3(b), $n = \alpha(g_1 \star g_2) = \alpha(P_{g_1 \star g_2})$, $m = \beta(g_1 \star g_2) = \beta(P_{g_1 \star g_2})$. Let

$$\bar{y}_1 \dots \bar{y}_m = P_{g_1 \star g_2}(\bar{x}_1, \dots, \bar{x}_n)$$

for some $\bar{x}_1, \ldots, \bar{x}_n, \bar{y}_1, \ldots, \bar{y}_m \in \overline{G}$. Then, according to (6),

$$\bar{y}_i(k) = e_i^m \circ (g_1 \star g_2) \circ (\bar{x}_1(k) \star \dots \star \bar{x}_n(k))$$
(10)

for all $1 \leq i \leq m$ and $k = 1, 2, \ldots$

Assume that $n_1 \leq n_2$. Then $n = n_2$. Therefore, by Axiom 6, the equation (10) can be written in the form

$$\bar{y}_i(k) = e_i^m \circ \left(\left(g_1 \circ \left(\bar{x}_1(k) \star \cdots \star \bar{x}_{n_1}(k) \right) \right) \star \left(g_2 \circ \left(\bar{x}_1(k) \star \cdots \star \bar{x}_n(k) \right) \right) \right).$$
(11)

For $1 \leq i \leq m_1$ the above equation and Proposition 4 imply

$$\bar{y}_i(k) = e_i^{m_1} \circ g_1 \circ \left(\bar{x}_1(k), \dots, \bar{x}_{n_1}(k)\right), \quad k = 1, 2, \dots$$

Hence $\bar{y}_1 \dots \bar{y}_{m_1} = P_{g_1}(\bar{x}_1, \dots, \bar{x}_{n_1}).$

In the same manner, for $m_1 + 1 \leq i \leq m$, we obtain

$$\bar{y}_i(k) = e_{i-m_1}^{m_2} \circ g_2 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_n(k)\right), \quad k = 1, 2, \dots$$

and $\bar{y}_{m_1+1} \dots \bar{y}_m = P_{g_2}(\bar{x}_1, \dots, \bar{x}_n)$. Thus $\bar{y}_1 \dots \bar{y}_m = (P_{g_1} \star P_{g_2})(\bar{x}_1, \dots, \bar{x}_n)$. Hence

$$P_{g_1 \star g_2}(\bar{x}_1, \dots, \bar{x}_n) = (P_{g_1} \star P_{g_2})(\bar{x}_1, \dots, \bar{x}_n)$$

for all $\bar{x}_1, \ldots, \bar{x}_n \in \overline{G}$. This proves (9) in the case $n_1 \leq n_2$.

The case $n_2 \leq n_1$ is analogous.

Now we prove that P is one-to-one. Let $P_{g_1} = P_{g_2}$ for some $g_1, g_2 \in G$. Then $\alpha g_1 = \alpha g_2$, $\beta g_1 = \beta g_2$. Therefore

$$e_i^m \circ g_1 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_n(k)\right) = e_i^m \circ g_2 \circ \left(\bar{x}_1(k) \star \dots \star \bar{x}_n(k)\right)$$
(12)

for all $1 \leq i \leq m = \beta g_1, \ \bar{x}_1, \dots, \bar{x}_n \in \overline{G}$, where $n = \alpha g_1$ and $k = 1, 2, \dots$ This for $\bar{x}_j = \bar{e}_j = (e_1^1, e_2^2, \dots, e_i^i, e_i^{i+1}, e_i^{i+2}, \dots) \in \overline{G}, \ j = 1, \dots, n$ and k = n, gives

$$e_i^m \circ g_1 \circ (e_1^n \star \cdots \star e_n^n) = e_i^m \circ g_2 \circ (e_1^n \star \cdots \star e_n^n).$$

Thus $e_i^m \circ g_1 = e_i^m \circ g_2$ for all $1 \leq i \leq m$, and in the consequence

$$(e_1^m \circ g_1) \star \cdots \star (e_m^m \circ g_1) = (e_1^m \circ g_2) \star \cdots \star (e_m^m \circ g_2).$$

Hence $(e_1^m \star \cdots \star e_m^m) \circ g_1 = (e_1^m \star \cdots \star e_m^m) \circ g_2$, which implies $g_1 = g_2$.

This completes the proof that $P: g \mapsto P_g$ is an isomorphism between algebras (G, \circ, \star, e, f) and $(\Phi, \circ, \star, \Delta, F)$, where $\Phi = \{P_g \mid g \in G\}$. \Box

3. Symmetrical algebras

An algebra (G, \circ, \star, e, f) of type (2, 2, 0, 0) satisfying Axioms 1-6 is called a *V*-algebra.

Let $\mathcal{G} = (G, \circ, \star, e, f)$ be a fixed V-algebra and let $\mathcal{G}' = (G', \circ, \star, e', f')$ be some other algebra of type (2, 2, 0, 0).

Definition 3. A homomorphism $P: \mathcal{G} \to \mathcal{G}'$ is called a *v*-homomorphism, if $g \neq g \circ (e_1^n \star \cdots \star e_n^n)$ implies $P(g) \neq P(g \circ (e_1^n \star \cdots \star e_n^n))$ for any $g \in G$ and $n \in \mathbb{N}$.

It is easy to see that if P is a v-homomorphism of a V-algebra \mathcal{G} onto an algebra \mathcal{G}' , then \mathcal{G}' is a V-algebra too. In this case $\alpha g = \alpha P(g)$ and $\beta g = \beta P(g)$ for any $g \in G$. Conversely, if P is a homomorphism of a V-algebra \mathcal{G} onto a V-algebra \mathcal{G}' such that $\alpha g = \alpha P(g)$ and $\beta = \beta P(g)$ for all $g \in G$, then P is a v-homomorphism.

Definition 4. A subset H of a V-algebra \mathcal{G} is called a v-*ideal*, if for all $x \in G, h_1, \ldots, h_n \in H, 1 \leq i \leq n$, where $n = \alpha x$ and $m = \beta x$, the condition $e_i^m \circ x \circ (h_1 \star \cdots \star h_n) \in H$ is satisfied.

Generalizing the concept of dense ideals in semigroups (cf. [2]), we say that an ideal H of a V-algebra \mathcal{G} is *dense* if and only if

- (a) any v-homomorphism of \mathcal{G} , which is not an isomorphism, induces on H a homomorphism, which is not an isomorphism,
- (b) if \mathcal{G} is a V-subalgebra of V-algebra $\mathcal{G}' \neq \mathcal{G}$ and H is a v-ideal of \mathcal{G}' , then there exists a v-homomorphism of \mathcal{G}' , which is not an isomorphism, but induces on H an isomorphism.

Now consider the symmetrical algebra of vector-functions

$$\mathfrak{T} = (\mathcal{T}(A), \circ, \star, \Delta, F).$$

It is easy to verify that it satisfies Axioms 1-6, i.e. it is a V-algebra.

By H_A we denote the set of all functions φ_a such that $a \in A$ and $\varphi_a(x) = a$ for all $x \in A$. Clearly, $\alpha \varphi_a = \beta \varphi_a = 1$ for all $a \in A$ and (H_A, \circ) is a semigroup of left zeros.

The following three theorems are generalizations of similar results proved for transformation semigroups [2].

Theorem 2. The set H_A is a dense v-ideal of $\mathfrak{T} = (\mathcal{T}(A), \circ, \star, \Delta, F)$.

Proof. Let $\psi \in \mathcal{T}(A)$, $\varphi_{a_1}, \ldots, \varphi_{a_n} \in H_A$, where $n = \alpha \psi$ and a_1, \ldots, a_n are elements of A. Suppose that

$$\psi(a_1,\ldots,a_n)=b_1\ldots b_m$$

for some $b_1, \ldots, b_m \in A$, where $m = \beta \psi$. We have $(I_i^m \circ \psi)(a_1, \ldots, a_n) = b_i$ for $1 \leq i \leq m$, because $I_i^m(b_1, \ldots, b_m) = b_i$. If $c \in A$, then

$$(I_i^m \circ \psi)(\varphi_{a_1}(c), \dots, \varphi_{a_n}(c)) = \varphi_{b_i}(c),$$

i.e.
$$(I_i^m \circ \psi \circ (\varphi_{a_1} \star \cdots \star \varphi_{a_n}))(c) = \varphi_{b_i}(c)$$
. So,
 $I_i^m \circ \psi \circ (\varphi_{a_1} \star \cdots \star \varphi_{a_n}) = \varphi_{b_i} \in H_A.$

This proves that H_A is a v-ideal of \mathfrak{T} .

Now let P be a v-homomorphism of \mathfrak{T} , which is not an isomorphism. Hence, there are $\psi_1, \psi_2 \in \mathcal{T}(A)$ such that $\psi_1 \neq \psi_2$ and $P(\psi_1) = P(\psi_2)$. The last equation gives $\alpha P(\psi_1) = \alpha P(\psi_2)$ and $\beta P(\psi_1) = \beta P(\psi_2)$. So, there are elements $a_1, \ldots, a_n \in A$ such that

$$\psi_1(a_1,\ldots,a_n) \neq \psi_2(a_1,\ldots,a_n)$$

Let $\psi_1(a_1,\ldots,a_n) = b_1 \ldots b_m$ and $\psi_2(a_1,\ldots,a_n) = c_1 \ldots c_m$, where n,m are degree and rank of functions ψ_1, ψ_2 respectively. Thus $b_1 \neq c_i$ for some $1 \leq i \leq m$, because $b_1 \ldots b_m \neq c_1 \ldots c_m$. Whence $\varphi_{b_i} \neq \varphi_{c_i}$. But

$$P(\varphi_{b_i}) = P(I_i^m \circ \psi_1 \circ (\varphi_{a_1} \star \dots \star \varphi_{a_n}))$$

= $P(I_i^m) \circ P(\psi_1) \circ (P(\varphi_{a_1}) \star \dots \star P(\varphi_{a_n}))$
= $P(I_i^m) \circ P(\psi_2) \circ (P(\varphi_{a_1}) \star \dots \star P(\varphi_{a_n}))$
= $P(I_i^m \circ \psi_2 \circ (\varphi_{a_1} \star \dots \star \varphi_{a_n})) = P(\varphi_{c_i}).$

Thus, P induces on H_A a homomorphism, which is not isomorphism.

Now assume that H_A is a v-ideal of V-algebra $\mathcal{G} = (G, \circ, \star, \Delta, F)$ and \mathfrak{T} is a proper subalgebra of \mathcal{G} . For each element $g \in G$ we consider the function $\lambda_g \in \mathcal{T}(A)$ defined in the following way:

$$b_1 \dots b_m = \lambda_g(a_1, \dots, a_n) \iff \bigwedge_{i=1}^m I_i^m \circ g \circ (\varphi_{a_1} \star \dots \star \varphi_{a_n}) = \varphi_{b_i}, \quad (13)$$

where $n = \alpha g$, $m = \beta g$, $a_1, \ldots, a_n, b_1, \ldots, b_m \in A$. It is not difficult to see that the mapping $P: g \mapsto \lambda_g$ is a v-homomorphism of \mathcal{G} into \mathfrak{T} . Since $\mathcal{T}(A) \subset G$ and $\mathcal{T}(A) \neq G$, for $g \in G \setminus \mathcal{T}(A)$ we have $g \neq P(g) = \lambda_g$. But $P(\lambda_g) = \lambda_g$, by (13). Therefore $P(g) = P(\lambda_g)$. Thus, P is a vhomomorphism, which is not an isomorphism, and which induces on H_A an identical isomorphism. \Box

Theorem 3. A V-algebra $\mathcal{G} = (G, \circ, \star, e, f)$ is isomorphic to some symmetrical algebra of vector-functions if and only if it contains a dense v-ideal H, which is a semigroup of left zeros under the operation \circ and $\alpha h = \beta h = 1$ for all $h \in H$.

Proof. The necessity follows from Theorem 2. To prove the sufficiency we consider the mapping $P: G \to \mathcal{T}(H)$ defined by the formula

$$y_1 \dots y_m = P(g)(x_1, \dots, x_n) \iff \bigwedge_{i=1}^m y_i = e_i^m \circ g \circ (x_1 \star \dots \star x_n)$$
 (14)

for all $g \in G$ and $x_1, \ldots, x_n, y_1, \ldots, y_m \in H$, where $n = \alpha g$, $m = \beta g$. From (14) it follows that $P(e) = \Delta$, P(f) = F. It is not difficult to verify that P is a v-homomorphism, which induces on H an isomorphism. But H is a dense v-ideal of \mathcal{G} , therefore, according to the definition of a dense v-ideal, P must be an isomorphism. Hence, a v-ideal H_H is a dense v-ideal of a homomorphic image of (G, \circ, \star, e, f) , i.e. $(P(G), \circ, \star, \Delta, F)$, because (H_H, \circ) is isomorphic to (H, \circ) . But, by Theorem 2, a v-ideal H_H is a dense v-ideal of $(\mathcal{T}(H), \circ, \star, \Delta, F)$, therefore $P(G) \subset \mathcal{T}(H)$ implies $P(G) = \mathcal{T}(H)$. This proves that \mathcal{G} is isomorphic to a symmetrical algebra of vector-functions. \Box

Let $f : A \to A$ be some one-to-one mapping. By P_f we denote the mapping $\mathcal{T}(A) \to \mathcal{T}(A)$ defined by the condition

$$P_f(\varphi)(a_1,\ldots,a_n) = b_1\ldots b_m \iff$$

$$f^{-1}(b_1)\ldots f^{-1}(b_m) = \varphi(f^{-1}(a_1),\ldots,f^{-1}(a_n))$$

for all $\varphi \in \mathcal{T}(A)$ and $a_1, \ldots, a_n, b_1, \ldots, b_m \in A$, where $n = \alpha \varphi$, $m = \beta \varphi$. It is easy to see that P_f is an automorphism of $\mathfrak{T} = (\mathcal{T}(A), \circ, \star, \Delta, F)$. Such defined automorphism is called *inner*.

Theorem 4. Every automorphism of $\mathfrak{T} = (\mathcal{T}(A), \circ, \star, \Delta, F)$ is inner.

Proof. Let λ be some automorphism of $\mathfrak{T} = (\mathcal{T}(A), \circ, \star, \Delta, F)$, then $\lambda(\Delta) = \Delta$ and $\lambda(F) = F$. Therefore $\lambda(I_i^n) = I_i^n$ for $n \in \mathbb{N}$ and any $1 \leq i \leq n$. This implies $\alpha \varphi = \alpha \lambda(\varphi)$ and $\beta \varphi = \beta \lambda(\varphi)$ for every $\varphi \in \mathcal{T}(A)$.

We have also $\lambda(\varphi_a) \in H_A$ for all $a \in A$. Indeed, for any $\psi \in \mathcal{T}(A)$ such that $\alpha \psi = \beta \psi = 1$, holds $\varphi_1 \circ \psi = \varphi_a$, where $a \in A$. Therefore $\varphi_a \circ \lambda^{-1}(\varphi_b) = \varphi_a$, where $b \in A$. Thus, $\lambda(\varphi_a \circ \lambda^{-1}(\varphi_b)) = \lambda(\varphi_a)$, i.e. $\lambda(\varphi_a) \circ \varphi_b = \lambda(\varphi_a)$. Since H_A is a v-ideal of \mathfrak{T} , then $\lambda(\varphi_a) \circ \varphi_b \in H_A$, i.e. $\lambda(\varphi_a) \in H_A$.

Now consider the one-to-one correspondence $f_{\lambda}: A \to A$ such that

$$(a,b) \in f_{\lambda} \iff (\varphi_a,\varphi_b) \in \lambda$$

for any $a, b \in A$.

Evidently $\lambda(\varphi_a) = \varphi_{f_{\lambda}(a)}$ and $\lambda^{-1}(\varphi_a) = \varphi_{f_{\lambda}^{-1}(a)}$ for each $a \in A$. Thus, for all $\varphi \in \mathcal{T}(A)$ and $a_1, \ldots, a_n, b_1, \ldots, b_m \in A$, where $n = \alpha \varphi$, $m = \beta \varphi$, we have

$$b_{1} \dots b_{m} = \lambda(\varphi)(a_{1}, \dots, a_{n})$$

$$\iff \bigwedge_{i=1}^{m} \varphi_{b_{i}} = I_{i}^{m} \circ \lambda(\varphi) \circ (\varphi_{a_{1}} \star \dots \star \varphi_{a_{n}})$$

$$\iff \bigwedge_{i=1}^{m} \varphi_{f_{\lambda}^{-1}(b_{i})} = I_{i}^{m} \circ \varphi \circ (\varphi_{f_{\lambda}^{-1}(a_{1})} \star \dots \star \varphi_{f_{\lambda}^{-1}(a_{n})})$$

$$\iff f_{\lambda}^{-1}(b_{1}) \dots f_{\lambda}^{-1}(b_{m}) = \varphi(f_{\lambda}^{-1}(a_{1}), \dots, f_{\lambda}^{-1}(a_{n}))$$

$$\iff b_{1} \dots b_{m} = P_{f_{\lambda}}(\varphi)(a_{1}, \dots, a_{n}).$$

So, $\lambda = P_{f_{\lambda}}$, i.e. λ is an inner automorphism.

References

- [1] V. M. Glushkov, G. E. Tseytlin, E. L. Yuschenko: Algebras, languages, programming, (Russian) Naukova Dumka, Kiev 1974.
- [2] E. S. Lyapin: Semigroups, (Russian), Fizmatgiz, Moscow 1960.
- [3] A. I. Mal'tsev: Iterative Post algebras, (Russian), Novosibirsk State University 1976.
- [4] R. Pöschel, L. A. Kalužnin: Funktionen und Relationenalgebren, VEB Deutscher Verlag der Wissenschaften, Berlin 1979.
- [5] B. Schweizer, A. Sklar: The algebra of vector-valued functions, Bull. Amer. Math. Soc. 73 (1967), 510 - 515.
- [6] B. Schweizer, A. Sklar: A grammar of functions, I, Aequat. Math. 2 (1968), 62-85.
- B. Schweizer, A. Sklar: A grammar of functions, II, Aequat. Math. 3 (1969), 15-43.

Department of Mathematics Received September 12, 2001 Pedagogical University 21100 Vinnitsa Ukraine e-mail: vtrokhim@sovauma.com