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Algebras of vector-valued functions

Valentin S. Trokhimenko

Abstract

Superpositions (compositions) of multiplace functions have various applications in the
modern mathematics, especially in the algebraic theory of automata [1], [3], [4]. It is
known that any automaton with n entrances and m exits can be defined by some
functions of the form f: A" — A™, which are called multiplace vector-valued functions.
There are two types of compositions of such functions: serial o and parallel * which
were considered by B. Schweizer and A. Sklar in [5], [6], [7]. In this paper we find
the abstract characterization of algebras of the form (®,o0,x, A, F'), where ® is the set
of multiplace vector-valued functions stable for compositions o,* and containing two
functions A(z) = z, F(z,y) = y. We also describe the case when ® contains all vector-
valued functions defined on a fixed set A. Automorphisms of such algebra are described

too.

1. Introduction

Any mapping f : A" — A™, where n,m € N are fixed and A is a non-
empty set, is called a multiplace vector-valued function (or simply wvector-
function) of degree n and rank m (cf. [5]). The degree and the rank of the
multiplace vector-valued function f is denoted by af and Bf, respectively.
vf = af—p0f is called the index of f. The set of all multiplace vector-valued
functions of degree n and rank m defined on a fixed set A is denoted by
T(A™, A™).

According to [5], [6] and [7], on the set T(A) = |J 7T(A", A™) we

n,meN

consider two binary operations: the serial composition o and the parallel

composition x, which are defined in the following way:
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Definition 1. The serial composition fog of vector-functions f,g € T (A)
is defined by

(f 09)(a1,. . .,ad) = f(bl, c. 7baf)baf—|—1 .. ‘bd—'yga (1)

where ai,...,aq € A, d = max{af + vg,ag}, b1,...,bg—yy € A and
bi...ba—rg = glai,...,00g)0ag+1 - - . aq.

Definition 2. The parallel composition of vector-functions f,g € T(A) is
a vector-function f xg defined by

(fxg)(at,...,aq) = fla1,...,aaqf)g(ai, ..., ang), (2)

where ai,...,aq0 € A and d = max{af,ag}.

It is easy to see that these operations are associative. Moreover, in
the case af = (g, serial composition reduces to ordinary composition of
functions.

Let I7', where n € N, 1 <14 < n, be an n-place i-th projection of A, i.e.
I'(a1,...,an) = a; forallay,...,a, € A. Obviously al]' =n, SI' =1 for
all 1 <i<néeN. Putting A(x) = I{(z) =2 and F(z,y) = I3(x,y) = ¥,
we can verify that

I'=(Fo(FxA)""oF!
foranyn € N, 1 <i<n and f € T(A), where f©= A and "' = fofm.
If the subset ® of 7(A) contains A, F' and is closed under operations

o, %, then a system (®,0,*, A, F) is called an algebra of vector-functions.
In the case ® = 7(A) we say that this algebra is symmetrical.

2. The main result

In this section we find an abstract characterization of algebras of vector
valued-functions.

First we consider an algebra (G,o,*,e€, f) of type (2,2,0,0) satisfying
the following six axioms:

Axiom 1. (G,0) and (G,*) are semigroups and e is the unit of (G,o0).

Let e? denotes the expression (f o (f % e))P~" o fi=1 where p € N,
1<i<pand (fo(fxe)’=f'=e.
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Axiom 2. For each g € G there exist m,n € N such that
go(ep*---*eg):g, (6({*-~*eg)og:g
forall p<n, g<m, p,geN and
go(ePx---xeb)#g, (elx---xel)og#yg
for any p>mn, ¢ > m.

The numbers n and m are called degree and rank of g and are denoted
by ag, Bg, respectively.

Axiom 3. For any g1,92 € G the following conditions

(a) ae=pPe=pf=1, af =2,

(0) algr *g2) = max{agi, agz}, B(g1*9g2) = Bgr + Bga,

(c) a(giog2) = max{agi+792, 292},  B(g1092) = max{Bg1, Bg2—vg1},
where vg = ag — (g, hold.

Axiom 4. fo (g1 *g2) = g2 for all g1,92 € G such that ag = age and
Bg1 = Bg2 = 1.
Axiom 5. For all g1,92,93 € G

(a) g1o(g2xg3) = (g91092)*gs, if ag < Bgz,

(b) (g1x92)093=(g1093)*(92093), if Bgs <min{agy, ags}.

Axiom 6. For dall g1,92,93,94 € G
(a) (g1x92)0(g3*ga) =(g1093) % (920 (93*94)), if ag1 <ags,
agr = fg3, ags = B(g3* ga),
(0) (91xg2) 0 (g3*ga) = (g10(g3*9ga)) * (92093), if agrL> ags,
ags = Bg3, agr = (g3 * gs).

Now we can prove some auxiliary results on the algebra (G,o,*,e, f).

Proposition 1. For all g1,92 € G we have
(a) v(g1092) =791 + 792,
(0) (g1 % g2) =791 + 792 — min{ag:, ags}.
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Proof. By simple application of the above Axiom 3(c). O

Proposition 2. For each n € N and all 1 < 1 < n the equations ae} = n,
Bei =1 are true.

Proof. Indeed, let g be an element of G such that Bg = 1. Then, by
Axiom 3(c), we obtain ag"™ =nag —n+1 and Fg"™ = 1. Further

act = a((fo (fxe)" "o =) = maxfa((fo (fxe))" ™) + 4L, af 1},

But a(fo(fxe)) =2 and B(fo(fxe)) =1 by our Axiom 3. Thus
al(fo(fxe))"™) =n—i+1l, B((fo(fre)"") =1, af' =i
Bf~1 =1. Hence ael = max{n,z} =n.

Similarly we can prove (e}’ = 1. O

Proposition 2 implies that the equation

po(erx-xey) =ef (3)

is satisfied for all n € N and 1 <7< n.

Proposition 3. For all ¢1,...,9, € G such that agy = -+ = ag, and
Bg1 = --- = Bgn =1, the equation

o (g1 %% gn) = gi (4)

1s satisfied for alln € N and 1 <17 < n.

Proof. First let n = 2. If i =2, then, according to Axiom 4, we have

o(g1xg2) = fol(g1%g2) =92.

If i =1, then e% o(g1xg2) = fo(f*e)o(g1*ga). Hence by Axioms 6(b)
and 4 we obtain

o(g1xg2)=fo ((fo(gl *92)> *(6091)) = fol(g2*g1)=a.
Now let n > 2, 1 <i<n. Then

o(grx---xgn)=(e)" "o f o (gix e xgn)
=(e})" "o f'%0 ((fo (g1 *gz)) *93*"'*971)
= (e2)" o fim2 0 (gg K -+ x gn).
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Repeating this procedure we obtain
o (g1 % xgn) = (e1)" "0 (gix % gn)

i
= (eD)" " 10(( gz*gz+1)>*gi+2*~--*gn>
= ()" o (gixgiraKk ek gn) =+

= e} o (gi* gn) = Gi-

This completes the proof. [

Proposition 4. If z1,...,x € G are such that

n=p0x+ -+ pPxr and m=max{azy,...,ar;},
then
e?o(ml*---*xk)—efpoxpo(e’fl*---*eg”%) (5)
p—1 p p—l
for all 1 < i< n, where ) fr; <i< Z zj and s=1— ) fx;.
j=1 j=1 =1

Proof. Let n; = fx; for all x; € G, i =1,...,k. By Axiom 3(b) we have
a(xy * -+ x ) = max{awy,...,ar;} = m. Applying Axiom 2 we obtain

e?o(xl**wk):
e?o(((e?l*---*e%)oxl)*---*<(erf’“*---*ezz)oxk>)o(e’f*---*efnl).

Further, by Axiom 5(b)

e?o(x1*~--*a;k):e?o((e’floxl)*--w(e%oxl)*---*

* (e o) x -k (ent o)) o (e w o w el

This, together with Axiom 6 and Proposition 3, implies
efo(xyx--xxp)=¢€}o ((e’fl oxlo(e’ln*---*eglxl))*---*
*(622 oxyo (e’ln*---*eglxk))) = e oxpo(ef" xxeny ),

which completes the proof. ]

Theorem 1. An algebra (G,o,x,e, f) of type (2,2,0,0) is isomorphic to
some algebra of vector-functions if and only if it satisfies Axioms 1 — 6.
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Proof. The necessity of Theorem is evident. We prove the sufficiency. For
this let (G, o, %, e, f) be an algebra satisfying Axioms 1 — 6 and let G,, be
the set of all elements g € G such that ag = n and Bg = 1. It is clear that
Gn # 0 for every n € N, because el € Gy for all 1 < i < n. Note that

GpoNGp =0 for n #m. Let G = X G, be the Cartesian power of the
neN

family sets (G)nen- B B
For each g € G we define the vector-function P, : G" — G™, where
n = ag, m = g, putting Py(Z1,...,%Tn) =Y1...Ym if and only if

gi(k)=e"ogo (a?l(k)**i’n(k)> (6)

forevery 1<i<m and k=1,2,...

We prove that the mapping P : g — P, is an isomorphism between
algebras (G,o,%,e, f) and (®,0,%, A, F), where ® ={P,;|g € G}.

First observe that P. = A and Py = F. Indeed, if P.(Z) =7 for some
z,y € G, then (k) = el oeoz(k) = z(k) for all k = 1,2,..., because
el = e is the unit of (G,o). Thus y(k) = z(k), k = 1,2,... So, P.(z) = 7.
Hence P, = A. Analogously, from Axiom 4, we deduce P; = F.

Now prove that P(g1 0 g2) = P(g1) o P(g2) for all ¢g1,92 € G, i.e.

Pgiog, = Pg, 0 Py, . (7)

Let n; = agi, m;j = Bg;, i = 1,2, n = max{ni + g2, n2} and m =
max{mi, ma — vg1}. By Axiom 3(c) n = a(g1 o g2), m = B(g1 © g2).
Thus the degree and the rank of the function P, .4, are equal n and m,
respectively. Let

U1 Um = Pgrogs (T1,- ., Tn)

for some Z1,...,%n,Y1,---,Ym € G. If ny > mgy then m = m;. Therefore,
by (6), we have

i(k) = e 0 gu o gy o (F1(K) %+ % Fulk))

forall 1<¢<m and k=1,2,... Since the equation
ny = B(T1(k) %+ x T (R))

is true, Axiom 5(a) gives

gi(k) =€ ogio (<92 o (5:1(145) X *:EnQ(k:))) * Tpgt1 (k) %+ *;ﬁn(k))
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Applying to this equation Axioms 2 and 6, we obtain

Gik) = ogro (e vemz) oge o (:(k) %%y (R)) )

* Tpgt1(k) * - * T (k)
—eMogo ((egnzogw (ail(k)*---*a‘:nz(k)»*---*
x(emzogeo (B1(k) % %y () ) % By (k) %% 2 (R) ).
Let Z1...2Zmy = Py, (Z1,...,Zn,), ie.
zi(k) = €] o0 ga o (T1(k) x -+ - x Ty, (k)
forall 1<i<mo and k=1,2,... Then
Gilk) = € 0 g1 0 (21 (k) % -+ 2y (8) % g1 () -+ 2 (R) )

forall 1<¢<my and k=1,2,... Thus

Ut Umi = Py (Z1,- ., Zmgy Trgt1, - - Tn)-
Therefore
U1 Ymy = Py (Pyo(T1, ..., Ty )y Tgt1s - -+, Tn)s
ie. Y1...Ym = (Py 0 Py,)(Z1,...,%y), which proves (7) for n; > ma,
m = mi.

Now let n; < ma. Then n = ny and m = ma — vg1. Hence, for all
1<i<m, k=1,2,... we have

yi(k) =e"ogiogao <51(k) *"'*fn(k?)>
=e"ogyo (egm*--'*emg) o0g0 (fl(k)*'--*fnz,(k)>
=el"ogio ((eTQ 0ggo (j;l(k)**j:m(k)>) Kok
* <efn1§ 0 go© (fl(k)*---*azm(k))))
=e"ogyo <Zl(k)*~~*2m2(k:)>.

Now applying Axiom 5(a) we obtain

Gi(k) = el o ((gl o <Zl(k) oo *zm(k)» s Zr 1 (k) % - - *Zmz(k)>. (8)
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If 1 << my, then applying Proposition 4 to (8) we get

(k) = " 0 g1 0 (21(k) -+ 20, ()

for k=1,2,... Therefore

U1 Gmy = Py (Z1, ..., Zny)-

For m; < i < m we have y;(k) = Ziyyg, (k), where k= 1,2,... Whence
Umidl - = Znidl - - Zmg- S0,
Ui -Um = Py (21, Zn)) Zny41 - - - Zmo
which, by Definition 1, gives 41 ...9m = (Py, 0 Py,)(Z1,...,Zpn). Thus
Pylogs (T1,. .., @n) = (Py, 0 Py, )(Z1,...,Tn)

for all Z1,...,Z, € G. This proves (7).

To verify P(g1 x g2) = P(g1) x P(g2) , i.e

Pg1*92 = Pgl * sz (9)

for all g1,92 € G, assume that n; = ag;, m; = 8g; for 1 = 1,2, and n =
max{ni,na}, m = mi + my. By Axiom 3(b), n = a(g1 * 92) = a(Py,4g.):
m = B(g1* g2) = ﬁ(Psh*gz)' Let

U1 Ym = Pyrugs(T1, ..., Tp)
for some Z1,...,Zn,¥1,---,Ym € G. Then, according to (6),
Yi(k) = €i" o (g1 % g2) o (T1(k) * - - - * T (K)) (10)
forall 1<i<m and k=1,2,.

Assume that n1 < no. Then n = no. Therefore, by Axiom 6, the
equation (10) can be written in the form

Gi(k) = e¢o<(glo(fl(k)*. : -*fm(k)))*<ggo<a_cl(k)*~ : -*:En(k)))>. (11)

For 1 < i < m; the above equation and Proposition 4 imply

gi(k) =€/ ogio (:El(k),...,:fm(k:)), k=1,2,...
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Hence §i...0m; = Py (T1,...,%n,).
In the same manner, for m; + 1 < ¢ < m, we obtain

Gi(k) =€ ogy0 (:El(k:) *...*:fn(k)), k=12,...

and Ymy4+1---Ym = Py (Z1,...,Zy). Thus g1 ...0m = (Py %Py, )(ZT1,...,Tn).
Hence
P91*92(z1""7fn) = (Pgl*Pg2)(j17""'fn)

for all Z1,...,%, € G. This proves (9) in the case n; < na.
The case ng < n; is analogous.

Now we prove that P is one-to-one. Let P, = P,, for some g1,92 € G.
Then ag; = ags, 891 = Bg2. Therefore

"o gy o (il(k) *---*:En(k)) = M ogyo (jl(k) ,- ..*zn(k:)) (12)

forall 1 <t < m= g, jl,...,i:neé, where n=ag; and k=1,2,...
This for 7; = &; = (el,e3,... el el elt? . ) €@, j=1,...,n and

y GG 96y
k=n, gives
etogro(ef x---Kxep)=el'ogao (el x---xep).

Thus ef" o g1 =e€" oge for all 1 < i< m, and in the consequence

(ef"ogi)*x--*(emogr)=(el"oga)x---*(epoga).
Hence (ef* x---xe)og; = (ef" x---*epr) o g2, which implies g; = go.

This completes the proof that P : g — P, is an isomorphism between
algebras (G,o,*,e, f) and (®,0,%, A, F), where & = {P; | g € G}. O

3. Symmetrical algebras

An algebra (G, o,x,e, f) of type (2,2,0,0) satisfying Axioms 1 — 6 is called
a V-algebra.

Let G = (G, 0,%,¢, f) be a fixed V-algebra and let G’ = (G',0,x, €', )
be some other algebra of type (2,2,0,0).

Definition 3. A homomorphism P : G — G’ is called a v-homomorphism,
if g# go(elx---xe}) implies P(g) # P(go (e} x---xep)) forany g € G
and n € N.
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It is easy to see that if P is a v-homomorphism of a V-algebra G onto
an algebra G', then G’ is a V-algebra too. In this case ag = aP(g) and
Bg = BP(g) for any g € G. Conversely, if P is a homomorphism of a
V-algebra G onto a V-algebra G’ such that ag = aP(g) and 8 = SP(g) for
all g € G, then P is a v-homomorphism.

Definition 4. A subset H of a V-algebra G is called a v-ideal, if for all
r€G, hy,....,hy, € H 1 <i<n,wheren = ax and m = [z, the condition
e"oxo(hyx---xhy,) € H is satisfied.

Generalizing the concept of dense ideals in semigroups (cf. [2]), we say
that an ideal H of a V-algebra G is dense if and only if

(a) any v-homomorphism of G, which is not an isomorphism, induces on
H a homomorphism, which is not an isomorphism,

(b) if G is a V-subalgebra of V-algebra G’ # G and H is a v-ideal of
G’, then there exists a v-homomorphism of G’, which is not an isomor-
phism, but induces on H an isomorphism.

Now consider the symmetrical algebra of vector-functions
T=(T(A),o,x,A F).

It is easy to verify that it satisfies Axioms 1 — 6, i.e. it is a V-algebra.

By Hj we denote the set of all functions ¢, such that a € A and
va(x) = a for all x € A. Clearly, ap, = By, = 1 for all a € A and
(H4,o0) is a semigroup of left zeros.

The following three theorems are generalizations of similar results proved
for transformation semigroups [2].

Theorem 2. The set Hy is a dense v-ideal of ¥ = (T (A),o0,x, A, F).

Proof. Let b € T(A), @ays---»Pa, € Ha, where n = atp and ay,...,a,
are elements of A. Suppose that

¢(a1,...,an):b1...bm

for some by, ..., by € A, where m = B1. We have ([["ov)(ar,...,a,) =b;
for 1 < i< m, because I/"(b1,...,by) =0b;. If ¢ € A, then

(L 0 ) (Par (€); -+ s Pan (€)) = b, (€);
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ie. (I" o9 o (@ay * - *pa,))(c) = wp,(c). So,
Igno/l/}o(soal*.”*soan)zgpbiGHA‘

This proves that H,4 is a v-ideal of %.

Now let P be a v-homomorphism of ¥, which is not an isomorphism.
Hence, there are 11,19 € 7(A) such that 11 # ¥y and P(¢1) = P(2).
The last equation gives aP(¢1) = aP(¢2) and BP(¢1) = BP(12). So,

there are elements aq,...,a, € A such that
1/11((11,...,04”) 7’57112(@1»---,@11)-
Let ¥i(ay,...,an) = b1...by, and ¥a(ai,...,an) = c1...Cn, where n,m

are degree and rank of functions 1,19 respectively. Thus by # ¢; for some
1 <i<m, because by...by, # c1...cp. Whence ¢y, # ;. But

P(pp,) = P(I" o910 (¢ay %+ % Pay,))

= P(Ii") o P(¢1) o (P(ay) * -+ * P(¢a,))
= P(Ii") o P(¢2) o (P(¢ay) * - -+ * P(¢a,))
= P(I" otp3 0 (¢ay * - * ¢a,)) = P(pe,)-

Thus, P induces on H4 a homomorphism, which is not isomorphism.

Now assume that H4 is a v-ideal of V-algebra G = (G, 0, %, A, F) and
T is a proper subalgebra of G. For each element ¢ € G we consider the
function A\; € 7(A) defined in the following way:

bl"'bm:>‘9(a17--'aan)<:>> /\ Iimogo((/’al*"‘*gpan):@bw (13)
=1

where n =ag, m = (g, a1,...,0,,b1,...,by € A. It is not difficult to see
that the mapping P : g — Ay is a v-homomorphism of G into T. Since
T(A) C G and T(A) # G, for g € G\ T(A) we have g # P(g) = Ag.
But P(\g) = Ag, by (13). Therefore P(g) = P()\y). Thus, P is a v-
homomorphism, which is not an isomorphism, and which induces on H4
an identical isomorphism. O

Theorem 3. A V-algebra G = (G, 0, %, e, f) is isomorphic to some symmet-
rical algebra of vector-functions if and only if it contains a dense v-ideal H,
which is a semigroup of left zeros under the operation o and ah = fh =1

forall h € H.
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Proof. The necessity follows from Theorem 2. To prove the sufficiency we
consider the mapping P : G — 7 (H) defined by the formula

m
Y = PQ)@1, . m) &= N\ = e ogo (maexzn)  (14)
i=1
forall g € G and x1,...,%n,Y1,--.,Ym € H, where n = ag, m = Bg. From
(14) it follows that P(e) = A, P(f) = F. It is not difficult to verify that
P is a v-homomorphism, which induces on H an isomorphism. But H is a
dense v-ideal of G, therefore, according to the definition of a dense v-ideal,
P must be an isomorphism. Hence, a v-ideal Hy is a dense v-ideal of a ho-
momorphic image of (G, o0, %€, f),i.e. (P(G),o0,%,A,F), because (Hy,o)
is isomorphic to (H, o). But, by Theorem 2, a v-ideal Hy is a dense v-ideal
of (T(H),o,%,A, F), therefore P(G) C 7(H) implies P(G) =7 (H). This
proves that G is isomorphic to a symmetrical algebra of vector-functions. O

Let f: A — A be some one-to-one mapping. By P; we denote the
mapping 7 (A) — 7 (A) defined by the condition

Pf(go)(al, ce ,an) =by...b,, <
FHb) - 7 bm) = @(fHan), -+, fH(an))

for all ¢ € T(A) and ay,...,ap,b1,...,by € A, where n = ap, m = (.
It is easy to see that Py is an automorphism of T = (7(A),0,%, A, F).
Such defined automorphism is called inner.

Theorem 4. Every automorphism of ¥ = (T (A),o0,%, A, F) is inner.

Proof. Let A be some automorphism of ¥ = (7(A),o0,% A, F), then
AMA) = A and A(F) = F. Therefore A\(I]') = I for n € N and any
1 <@ < n. Thisimplies ap = aX(p) and Bp = BA(p) for every ¢ € T(A).

We have also A(p,) € Ha for all a € A. Indeed, for any ¢ € T (A)
such that ayp = (Y = 1, holds @1 0¥ = ¢,, where a € A. Therefore
©a © X 1(pp) = pa, where b € A. Thus, Awa 0 A7) = AMpa), i.e.
AM@a) ©op = A(pa). Since Hy is a v-ideal of T, then A(¢q) o ¢p € Hg, i.e.
)‘(Spa) € HA-

Now consider the one-to-one correspondence fy: A — A such that

(a7 b) € f)x <~ ((Pav()ob) €A

for any a,b € A.
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Evidently A(pa) = ¢f,(a) and A ) = ) for each a € A.
Thus, for all ¢ € T(A) and ay,...,an,b1,...,by € A, where n = ap,
m = By, we have

by...bym = Ae)(a1,...,ap)

m
= /\ Pt = IMoypo (Sof;l(al)*"'*spf;l(a"))
i=1

= ) ) = (), (an)
> by...by, = Pp () a1,...,an).

So, A= Py,, i.e. A is an inner automorphism. O
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