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Algebras of vector-valued functions

Valentin S. Trokhimenko

Abstract

Superpositions (compositions) of multiplace functions have various applications in the
modern mathematics, especially in the algebraic theory of automata [1], [3], [4]. It is
known that any automaton with n entrances and m exits can be de�ned by some
functions of the form f : An → Am, which are called multiplace vector-valued functions.
There are two types of compositions of such functions: serial ◦ and parallel ? which
were considered by B. Schweizer and A. Sklar in [5], [6], [7]. In this paper we �nd
the abstract characterization of algebras of the form (Φ, ◦, ?, ∆, F ), where Φ is the set
of multiplace vector-valued functions stable for compositions ◦ , ? and containing two
functions ∆(x) = x, F (x, y) = y. We also describe the case when Φ contains all vector-
valued functions de�ned on a �xed set A. Automorphisms of such algebra are described
too.

1. Introduction
Any mapping f : An → Am, where n,m ∈ N are �xed and A is a non-
empty set, is called a multiplace vector-valued function (or simply vector-
function) of degree n and rank m (cf. [5]). The degree and the rank of the
multiplace vector-valued function f is denoted by αf and βf , respectively.
γf = αf−βf is called the index of f . The set of all multiplace vector-valued
functions of degree n and rank m de�ned on a �xed set A is denoted by
T (An, Am).

According to [5], [6] and [7], on the set T (A) =
⋃

n,m∈N
T (An, Am) we

consider two binary operations: the serial composition ◦ and the parallel
composition ? , which are de�ned in the following way:
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De�nition 1. The serial composition f ◦g of vector-functions f, g ∈ T (A)
is de�ned by

(f ◦ g)(a1, . . . , ad) = f(b1, . . . , bαf )bαf+1 . . . bd−γg , (1)

where a1, . . . , ad ∈ A, d = max{αf + γg, αg}, b1, . . . , bd−γg ∈ A and
b1 . . . bd−γg = g(a1, . . . , aαg)aαg+1 . . . ad.

De�nition 2. The parallel composition of vector-functions f, g ∈ T (A) is
a vector-function f ? g de�ned by

(f ? g)(a1, . . . , ad) = f(a1, . . . , aαf )g(a1, . . . , aαg) , (2)

where a1, . . . , ad ∈ A and d = max{αf, αg}.

It is easy to see that these operations are associative. Moreover, in
the case αf = βg, serial composition reduces to ordinary composition of
functions.

Let In
i , where n ∈ N, 1 6 i 6 n, be an n-place i-th projection of A, i.e.

In
i (a1, . . . , an) = ai for all a1, . . . , an ∈ A. Obviously αIn

i = n, βIn
i = 1 for

all 1 6 i 6 n ∈ N. Putting ∆(x) = I1
1 (x) = x and F (x, y) = I2

2 (x, y) = y,
we can verify that

In
i = (F ◦ (F ? ∆))n−i ◦ F i−1

for any n ∈ N, 1 6 i 6 n and f ∈ T (A), where f0 = ∆ and fn+1 = f ◦fn.
If the subset Φ of T (A) contains ∆, F and is closed under operations

◦, ?, then a system (Φ, ◦, ?,∆, F ) is called an algebra of vector-functions.
In the case Φ = T (A) we say that this algebra is symmetrical.

2. The main result
In this section we �nd an abstract characterization of algebras of vector
valued-functions.

First we consider an algebra (G, ◦, ?, e, f) of type (2, 2, 0, 0) satisfying
the following six axioms:

Axiom 1. (G, ◦) and (G, ?) are semigroups and e is the unit of (G, ◦).

Let ep
i denotes the expression (f ◦ (f ? e))p−i ◦ f i−1, where p ∈ N,

1 6 i 6 p and (f ◦ (f ? e))0 = f0 = e.
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Axiom 2. For each g ∈ G there exist m,n ∈ N such that
g ◦ (ep ? · · · ? ep

p ) = g , (eq
1 ? · · · ? eq

q ) ◦ g = g

for all p 6 n, q 6 m, p, q ∈ N and
g ◦ (ep ? · · · ? ep

p ) 6= g , (eq
1 ? · · · ? eq

q ) ◦ g 6= g

for any p > n, q > m.

The numbers n and m are called degree and rank of g and are denoted
by αg, βg, respectively.

Axiom 3. For any g1, g2 ∈ G the following conditions
(a) αe = βe = βf = 1, αf = 2,

(b) α(g1 ? g2) = max{αg1, αg2}, β(g1 ? g2) = βg1 + βg2,

(c) α(g1◦g2) = max{αg1+γg2, αg2}, β(g1◦g2) = max{βg1, βg2−γg1},
where γg = αg − βg, hold.

Axiom 4. f ◦ (g1 ? g2) = g2 for all g1, g2 ∈ G such that αg1 = αg2 and
βg1 = βg2 = 1.

Axiom 5. For all g1, g2, g3 ∈ G

(a) g1 ◦ (g2 ? g3) = (g1 ◦ g2) ? g3, if αg1 6 βg2,

(b) (g1 ? g2) ◦ g3 = (g1 ◦ g3) ? (g2 ◦ g3), if βg3 6 min{αg1, αg2}.

Axiom 6. For all g1, g2, g3, g4 ∈ G

(a) (g1 ? g2) ◦ (g3 ? g4) = (g1 ◦ g3) ? (g2 ◦ (g3 ? g4)), if αg1 < αg2,
αg1 = βg3, αg2 = β(g3 ? g4),

(b) (g1 ? g2) ◦ (g3 ? g4) = (g1 ◦ (g3 ? g4)) ? (g2 ◦ g3), if αg1 > αg2,
αg2 = βg3, αg1 = β(g3 ? g4).

Now we can prove some auxiliary results on the algebra (G, ◦, ?, e, f).

Proposition 1. For all g1, g2 ∈ G we have
(a) γ(g1 ◦ g2) = γg1 + γg2,

(b) γ(g1 ? g2) = γg1 + γg2 −min{αg1, αg2}.
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Proof. By simple application of the above Axiom 3(c).

Proposition 2. For each n ∈ N and all 1 6 i 6 n the equations αen
i = n,

βen
i = 1 are true.

Proof. Indeed, let g be an element of G such that βg = 1. Then, by
Axiom 3(c), we obtain αgn = nαg − n + 1 and βgn = 1. Further

αen
i = α((f ◦ (f ? e))n−i ◦ f i−1) = max{α((f ◦ (f ? e))n−i) + γf i−1, αf i−1}.

But α(f ◦ (f ? e)) = 2 and β(f ◦ (f ? e)) = 1 by our Axiom 3. Thus
α((f ◦ (f ? e))n−i) = n − i + 1, β((f ◦ (f ? e))n−i) = 1, αf i−1 = i,
βf i−1 = 1. Hence αen

i = max{n, i} = n.
Similarly we can prove βen

i = 1.

Proposition 2 implies that the equation

en
i ◦ (en

1 ? · · · ? en
n) = en

i (3)

is satis�ed for all n ∈ N and 1 6 i 6 n.

Proposition 3. For all g1, . . . , gn ∈ G such that αg1 = · · · = αgn and
βg1 = · · · = βgn = 1, the equation

en
i ◦ (g1 ? · · · ? gn) = gi (4)

is satis�ed for all n ∈ N and 1 6 i 6 n.

Proof. First let n = 2. If i = 2, then, according to Axiom 4, we have

e2
2 ◦ (g1 ? g2) = f ◦ (g1 ? g2) = g2 .

If i = 1, then e2
1 ◦ (g1 ? g2) = f ◦ (f ? e) ◦ (g1 ? g2). Hence by Axioms 6(b)

and 4 we obtain

e2
1 ◦ (g1 ? g2) = f ◦

((
f ◦ (g1 ? g2)

)
? (e ◦ g1)

)
= f ◦ (g2 ? g1) = g1.

Now let n > 2, 1 6 i 6 n. Then

en
i ◦ (g1 ? · · · ? gn) = (e2

1)
n−i ◦ f i−1 ◦ (g1 ? · · · ? gn)

= (e2
1)

n−i ◦ f i−2 ◦
((

f ◦ (g1 ? g2)
)

? g3 ? · · · ? gn

)

= (e2
1)

n−i ◦ f i−2 ◦ (g2 ? · · · ? gn).
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Repeating this procedure we obtain

en
i ◦ (g1 ? · · · ? gn) = (e2

1)
n−i ◦ (gi ? · · · ? gn)

= (e2
1)

n−i−1 ◦
((

e2
1 ◦ (gi ? gi+1)

)
? gi+2 ? · · · ? gn

)

= (e2
1)

n−i−1 ◦ (gi ? gi+2 ? · · · ? gn) = · · ·
= e2

1 ◦ (gi ? gn) = gi.

This completes the proof.

Proposition 4. If x1, . . . , xk ∈ G are such that
n = βx1 + · · ·+ βxk and m = max{αx1, . . . , αxk},

then
en
i ◦ (x1 ? · · · ? xk) = e

βxp
s ◦ xp ◦ (em

1 ? · · · ? em
αxp

) (5)

for all 1 6 i 6 n, where
p−1∑
j=1

βxj < i 6
p∑

j=1
βxj and s = i−

p−1∑
j=1

βxj.

Proof. Let ni = βxi for all xi ∈ G, i = 1, . . . , k. By Axiom 3(b) we have
α(x1 ? · · · ? xk) = max{αx1, . . . , αxk} = m. Applying Axiom 2 we obtain

en
i ◦ (x1 ? · · · ? xk) =

en
i ◦

((
(en1

1 ? · · · ? en1
n1

) ◦ x1

)
? · · · ?

(
(enk

1 ? · · · ? enk
nk

) ◦ xk

))
◦ (en

1 ? · · · ? em
m ).

Further, by Axiom 5(b)

en
i ◦ (x1 ? · · · ? xk) = en

i ◦
(
(en1

1 ◦ x1) ? · · · ? (en1
n1
◦ x1) ? · · · ?

? (enk
1 ◦ xk) ? · · · ? (enk

nk
◦ xk)

)
◦ (em

1 ? · · · ? em
m ) .

This, together with Axiom 6 and Proposition 3, implies

en
i ◦ (x1 ? · · · ? xk) = en

i ◦
((

en1
1 ◦ x1 ◦ (em

1 ? · · · ? em
αx1

)
)

? · · · ?

?
(
enk
nk
◦ x1 ◦ (em

1 ? · · · ? em
αxk

)
))

= e
βxp
s ◦ xp ◦ (em

1 ? · · · ? em
αxp

) ,

which completes the proof.

Theorem 1. An algebra (G, ◦, ?, e, f) of type (2, 2, 0, 0) is isomorphic to
some algebra of vector-functions if and only if it satis�es Axioms 1− 6.
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Proof. The necessity of Theorem is evident. We prove the su�ciency. For
this let (G, ◦, ?, e, f) be an algebra satisfying Axioms 1− 6 and let Gn be
the set of all elements g ∈ G such that αg = n and βg = 1. It is clear that
Gn 6= ∅ for every n ∈ N, because en

i ∈ Gn for all 1 6 i 6 n. Note that
Gn ∩ Gm = ∅ for n 6= m. Let G = ×

n∈N
Gn be the Cartesian power of the

family sets (Gn)n∈N.
For each g ∈ G we de�ne the vector-function Pg : G n → G m, where

n = αg, m = βg, putting Pg(x̄1, . . . , x̄n) = ȳ1 . . . ȳm if and only if

ȳi(k) = em
i ◦ g ◦

(
x̄1(k) ? · · · ? x̄n(k)

)
(6)

for every 1 6 i 6 m and k = 1, 2, . . .

We prove that the mapping P : g 7→ Pg is an isomorphism between
algebras (G, ◦, ?, e, f) and (Φ, ◦, ?, ∆, F ), where Φ = {Pg | g ∈ G}.

First observe that Pe = ∆ and Pf = F . Indeed, if Pe(x̄) = ȳ for some
x̄, ȳ ∈ G, then ȳ(k) = e1

1 ◦ e ◦ x̄(k) = x̄(k) for all k = 1, 2, . . . , because
e1
1 = e is the unit of (G, ◦). Thus ȳ(k) = x̄(k), k = 1, 2, . . . So, Pe(x̄) = x̄.
Hence Pe = ∆. Analogously, from Axiom 4, we deduce Pf = F .

Now prove that P (g1 ◦ g2) = P (g1) ◦ P (g2) for all g1, g2 ∈ G, i.e.

Pg1◦g2 = Pg1 ◦ Pg2 . (7)

Let ni = αgi, mi = βgi, i = 1, 2, n = max{n1 + γg2, n2} and m =
max{m1, m2 − γg1}. By Axiom 3(c) n = α(g1 ◦ g2), m = β(g1 ◦ g2).
Thus the degree and the rank of the function Pg1◦g2 are equal n and m,
respectively. Let

ȳ1 . . . ȳm = Pg1◦g2(x̄1, . . . , x̄n)

for some x̄1, . . . , x̄n, ȳ1, . . . , ȳm ∈ G. If n1 > m2 then m = m1. Therefore,
by (6), we have

ȳi(k) = em
i ◦ g1 ◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n(k)

)

for all 1 6 i 6 m and k = 1, 2, . . . Since the equation

n2 = β
(
x̄1(k) ? · · · ? x̄n2(k)

)

is true, Axiom 5(a) gives

ȳi(k) = em1
i ◦ g1 ◦

((
g2 ◦

(
x̄1(k) ? · · · ? x̄n2(k)

))
? x̄n2+1(k) ? · · · ? x̄n(k)

)
.
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Applying to this equation Axioms 2 and 6, we obtain

ȳi(k) = em1
i ◦ g1 ◦

(((
em2
1 ? · · · ? em2

m2

)
◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n2(k)

))
?

? x̄n2+1(k) ? · · · ? x̄n(k)
)

= em1
i ◦ g1 ◦

((
em2
1 ◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n2(k)

))
? · · · ?

?
(
em2
m2
◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n2(k)

))
? x̄n2+1(k) ? · · · ? x̄n(k)

)
.

Let z̄1 . . . z̄m2 = Pg2(x̄1, . . . , x̄n2) , i.e.

z̄i(k) = em2
i ◦ g2 ◦ (x̄1(k) ? · · · ? x̄n2(k))

for all 1 6 i 6 m2 and k = 1, 2, . . . Then

ȳi(k) = em1
i ◦ g1 ◦

(
z̄1(k) ? · · · ? z̄m2(k) ? x̄n2+1(k) ? · · · ? x̄n(k)

)

for all 1 6 i 6 m1 and k = 1, 2, . . . Thus

ȳ1 . . . ȳm1 = Pg1(z̄1, . . . , z̄m2 , x̄n2+1, . . . , x̄n).

Therefore

ȳ1 . . . ȳm1 = Pg1(Pg2(x̄1, . . . , x̄n2), x̄n2+1, . . . , x̄n),

i.e. ȳ1 . . . ȳm = (Pg1 ◦ Pg2)(x̄1, . . . , x̄n), which proves (7) for n1 > m2,
m = m1.

Now let n1 6 m2. Then n = n2 and m = m2 − γg1. Hence, for all
1 6 i 6 m, k = 1, 2, . . . we have

ȳi(k) = em
i ◦ g1 ◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n(k)

)

= em
i ◦ g1 ◦

(
em2
1 ? · · · ? em2

m2

)
◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n2(k)

)

= em
i ◦ g1 ◦

((
em2
1 ◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n2(k)

))
? · · · ?

?
(
em2
m2
◦ g2 ◦

(
x̄1(k) ? · · · ? x̄n2(k)

)))

= em
i ◦ g1 ◦

(
z̄1(k) ? · · · ? z̄m2(k)

)
.

Now applying Axiom 5(a) we obtain

ȳi(k) = em
i ◦

((
g1 ◦

(
z̄1(k) ? · · · ? z̄n1(k)

))
? z̄n1+1(k) ? · · · ? z̄m2(k)

)
. (8)
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If 1 6 i 6 m1, then applying Proposition 4 to (8) we get

ȳi(k) = em1
i ◦ g1 ◦

(
z̄1(k) ? · · · ? z̄n1(k)

)

for k = 1, 2, . . . Therefore

ȳ1 . . . ȳm1 = Pg1(z̄1, . . . , z̄n1).

For m1 < i 6 m we have ȳi(k) = z̄i+γg1(k), where k = 1, 2, . . . Whence
ȳm1+1 . . . ȳm = z̄n1+1 . . . z̄m2 . So,

ȳ1 . . . ȳm = Pg1(z̄1, . . . , z̄n1)z̄n1+1 . . . z̄m2 ,

which, by De�nition 1, gives ȳ1 . . . ȳm = (Pg1 ◦ Pg2)(x̄1, . . . , x̄n). Thus

Pg1◦g2(x̄1, . . . , x̄n) = (Pg1 ◦ Pg2)(x̄1, . . . , x̄n)

for all x̄1, . . . , x̄n ∈ G. This proves (7).

To verify P (g1 ? g2) = P (g1) ? P (g2) , i.e.

Pg1?g2 = Pg1 ? Pg2 (9)

for all g1, g2 ∈ G, assume that ni = αgi, mi = βgi for i = 1, 2, and n =
max{n1, n2}, m = m1 + m2. By Axiom 3(b), n = α(g1 ? g2) = α(Pg1?g2),
m = β(g1 ? g2) = β(Pg1?g2). Let

ȳ1 . . . ȳm = Pg1?g2(x̄1, . . . , x̄n)

for some x̄1, . . . , x̄n, ȳ1, . . . , ȳm ∈ G. Then, according to (6),

ȳi(k) = em
i ◦ (g1 ? g2) ◦ (x̄1(k) ? · · · ? x̄n(k)) (10)

for all 1 6 i 6 m and k = 1, 2, . . .
Assume that n1 6 n2. Then n = n2. Therefore, by Axiom 6, the

equation (10) can be written in the form

ȳi(k) = em
i ◦

((
g1◦

(
x̄1(k)?· · ·?x̄n1(k)

))
?
(
g2◦

(
x̄1(k)?· · ·?x̄n(k)

)))
. (11)

For 1 6 i 6 m1 the above equation and Proposition 4 imply

ȳi(k) = em1
i ◦ g1 ◦

(
x̄1(k), . . . , x̄n1(k)

)
, k = 1, 2, . . .
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Hence ȳ1 . . . ȳm1 = Pg1(x̄1, . . . , x̄n1).
In the same manner, for m1 + 1 6 i 6 m, we obtain

ȳi(k) = em2
i−m1

◦ g2 ◦
(
x̄1(k) ? · · · ? x̄n(k)

)
, k = 1, 2, . . .

and ȳm1+1 . . . ȳm = Pg2(x̄1, . . . , x̄n). Thus ȳ1 . . . ȳm = (Pg1?Pg2)(x̄1, . . . , x̄n).
Hence

Pg1?g2(x̄1, . . . , x̄n) = (Pg1 ? Pg2)(x̄1, . . . , x̄n)

for all x̄1, . . . , x̄n ∈ G. This proves (9) in the case n1 6 n2.
The case n2 6 n1 is analogous.

Now we prove that P is one-to-one. Let Pg1 = Pg2 for some g1, g2 ∈ G.
Then αg1 = αg2, βg1 = βg2. Therefore

em
i ◦ g1 ◦

(
x̄1(k) ? · · · ? x̄n(k)

)
= em

i ◦ g2 ◦
(
x̄1(k) ? · · · ? x̄n(k)

)
(12)

for all 1 6 i 6 m = βg1, x̄1, . . . , x̄n ∈ G, where n = αg1 and k = 1, 2, . . .
This for x̄j = ēj = (e1

1, e
2
2, . . . , e

i
i, e

i+1
i , ei+2

i , . . .) ∈ G, j = 1, . . . , n and
k = n, gives

em
i ◦ g1 ◦ (en

1 ? · · · ? en
n) = em

i ◦ g2 ◦ (en
1 ? · · · ? en

n) .

Thus em
i ◦ g1 = em

i ◦ g2 for all 1 6 i 6 m, and in the consequence

(em
1 ◦ g1) ? · · · ? (em

m ◦ g1) = (em
1 ◦ g2) ? · · · ? (em

m ◦ g2) .

Hence (em
1 ? · · · ? em

m) ◦ g1 = (em
1 ? · · · ? em

m) ◦ g2, which implies g1 = g2.

This completes the proof that P : g 7→ Pg is an isomorphism between
algebras (G, ◦, ?, e, f) and (Φ, ◦, ?,∆, F ), where Φ = {Pg | g ∈ G}.

3. Symmetrical algebras
An algebra (G, ◦, ?, e, f) of type (2, 2, 0, 0) satisfying Axioms 1−6 is called
a V -algebra.

Let G = (G, ◦, ?, e, f) be a �xed V -algebra and let G′ = (G′, ◦, ?, e′, f ′)
be some other algebra of type (2, 2, 0, 0).

De�nition 3. A homomorphism P : G → G′ is called a v-homomorphism,
if g 6= g ◦ (en

1 ? · · · ? en
n) implies P (g) 6= P (g ◦ (en

1 ? · · · ? en
n)) for any g ∈ G

and n ∈ N.
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It is easy to see that if P is a v-homomorphism of a V -algebra G onto
an algebra G′, then G′ is a V -algebra too. In this case αg = αP (g) and
βg = βP (g) for any g ∈ G. Conversely, if P is a homomorphism of a
V -algebra G onto a V -algebra G′ such that αg = αP (g) and β = βP (g) for
all g ∈ G, then P is a v-homomorphism.

De�nition 4. A subset H of a V -algebra G is called a v-ideal, if for all
x ∈ G, h1, . . . , hn ∈ H, 1 6 i 6 n, where n = αx and m = βx, the condition
em
i ◦ x ◦ (h1 ? · · · ? hn) ∈ H is satis�ed.

Generalizing the concept of dense ideals in semigroups (cf. [2]), we say
that an ideal H of a V -algebra G is dense if and only if
(a) any v-homomorphism of G, which is not an isomorphism, induces on

H a homomorphism, which is not an isomorphism,
(b) if G is a V -subalgebra of V -algebra G′ 6= G and H is a v-ideal of

G′, then there exists a v-homomorphism of G′, which is not an isomor-
phism, but induces on H an isomorphism.

Now consider the symmetrical algebra of vector-functions

T = (T (A), ◦, ?,∆, F ).

It is easy to verify that it satis�es Axioms 1− 6, i.e. it is a V -algebra.
By HA we denote the set of all functions ϕa such that a ∈ A and

ϕa(x) = a for all x ∈ A. Clearly, αϕa = βϕa = 1 for all a ∈ A and
(HA, ◦) is a semigroup of left zeros.

The following three theorems are generalizations of similar results proved
for transformation semigroups [2].

Theorem 2. The set HA is a dense v-ideal of T = (T (A), ◦, ?,∆, F ).

Proof. Let ψ ∈ T (A), ϕa1 , . . . , ϕan ∈ HA, where n = αψ and a1, . . . , an

are elements of A. Suppose that

ψ(a1, . . . , an) = b1 . . . bm

for some b1, . . . , bm ∈ A, where m = βψ. We have (Im
i ◦ψ)(a1, . . . , an) = bi

for 1 6 i 6 m, because Im
i (b1, . . . , bm) = bi. If c ∈ A, then

(Im
i ◦ ψ)(ϕa1(c), . . . , ϕan(c)) = ϕbi(c),
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i.e. (Im
i ◦ ψ ◦ (ϕa1 ? · · · ? ϕan))(c) = ϕbi(c). So,

Im
i ◦ ψ ◦ (ϕa1 ? · · · ? ϕan) = ϕbi ∈ HA.

This proves that HA is a v-ideal of T.
Now let P be a v-homomorphism of T, which is not an isomorphism.

Hence, there are ψ1, ψ2 ∈ T (A) such that ψ1 6= ψ2 and P (ψ1) = P (ψ2).
The last equation gives αP (ψ1) = αP (ψ2) and βP (ψ1) = βP (ψ2). So,
there are elements a1, . . . , an ∈ A such that

ψ1(a1, . . . , an) 6= ψ2(a1, . . . , an).

Let ψ1(a1, . . . , an) = b1 . . . bm and ψ2(a1, . . . , an) = c1 . . . cm, where n,m
are degree and rank of functions ψ1, ψ2 respectively. Thus b1 6= ci for some
1 6 i 6 m, because b1 . . . bm 6= c1 . . . cm. Whence ϕbi 6= ϕci . But

P (ϕbi) = P (Im
i ◦ ψ1 ◦ (ϕa1 ? · · · ? ϕan))

= P (Im
i ) ◦ P (ψ1) ◦ (P (ϕa1) ? · · · ? P (ϕan))

= P (Im
i ) ◦ P (ψ2) ◦ (P (ϕa1) ? · · · ? P (ϕan))

= P (Im
i ◦ ψ2 ◦ (ϕa1 ? · · · ? ϕan)) = P (ϕci).

Thus, P induces on HA a homomorphism, which is not isomorphism.
Now assume that HA is a v-ideal of V -algebra G = (G, ◦, ?, ∆, F ) and

T is a proper subalgebra of G. For each element g ∈ G we consider the
function λg ∈ T (A) de�ned in the following way:

b1 . . . bm = λg(a1, . . . , an) ⇐⇒
m∧

i=1

Im
i ◦ g ◦ (ϕa1 ? · · · ? ϕan) = ϕbi

, (13)

where n = αg, m = βg, a1, . . . , an, b1, . . . , bm ∈ A. It is not di�cult to see
that the mapping P : g 7→ λg is a v-homomorphism of G into T. Since
T (A) ⊂ G and T (A) 6= G, for g ∈ G \ T (A) we have g 6= P (g) = λg.
But P (λg) = λg, by (13). Therefore P (g) = P (λg). Thus, P is a v-
homomorphism, which is not an isomorphism, and which induces on HA

an identical isomorphism.

Theorem 3. A V -algebra G = (G, ◦, ?, e, f) is isomorphic to some symmet-
rical algebra of vector-functions if and only if it contains a dense v-ideal H,
which is a semigroup of left zeros under the operation ◦ and αh = βh = 1
for all h ∈ H.
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Proof. The necessity follows from Theorem 2. To prove the su�ciency we
consider the mapping P : G → T (H) de�ned by the formula

y1 . . . ym = P (g)(x1, . . . , xn) ⇐⇒
m∧

i=1

yi = em
i ◦ g ◦ (x1 ? · · · ? xn) (14)

for all g ∈ G and x1, . . . , xn, y1, . . . , ym ∈ H, where n = αg, m = βg. From
(14) it follows that P (e) = ∆, P (f) = F . It is not di�cult to verify that
P is a v-homomorphism, which induces on H an isomorphism. But H is a
dense v-ideal of G, therefore, according to the de�nition of a dense v-ideal,
P must be an isomorphism. Hence, a v-ideal HH is a dense v-ideal of a ho-
momorphic image of (G, ◦, ?, e, f), i.e. (P (G), ◦, ?, ∆, F ), because (HH , ◦)
is isomorphic to (H, ◦). But, by Theorem 2, a v-ideal HH is a dense v-ideal
of (T (H), ◦, ?, ∆, F ), therefore P (G) ⊂ T (H) implies P (G) = T (H). This
proves that G is isomorphic to a symmetrical algebra of vector-functions.

Let f : A → A be some one-to-one mapping. By Pf we denote the
mapping T (A) → T (A) de�ned by the condition

Pf (ϕ)(a1, . . . , an) = b1 . . . bm ⇐⇒
f−1(b1) . . . f−1(bm) = ϕ(f−1(a1), . . . , f−1(an))

for all ϕ ∈ T (A) and a1, . . . , an, b1, . . . , bm ∈ A, where n = αϕ, m = βϕ.
It is easy to see that Pf is an automorphism of T = (T (A), ◦, ?, ∆, F ).
Such de�ned automorphism is called inner.

Theorem 4. Every automorphism of T = (T (A), ◦, ?,∆, F ) is inner.

Proof. Let λ be some automorphism of T = (T (A), ◦, ?, ∆, F ), then
λ(∆) = ∆ and λ(F ) = F . Therefore λ(In

i ) = In
i for n ∈ N and any

1 6 i 6 n. This implies αϕ = αλ(ϕ) and βϕ = βλ(ϕ) for every ϕ ∈ T (A).
We have also λ(ϕa) ∈ HA for all a ∈ A. Indeed, for any ψ ∈ T (A)

such that αψ = βψ = 1, holds ϕ1 ◦ ψ = ϕa, where a ∈ A. Therefore
ϕa ◦ λ−1(ϕb) = ϕa, where b ∈ A. Thus, λ(ϕa ◦ λ−1(ϕb)) = λ(ϕa), i.e.
λ(ϕa) ◦ ϕb = λ(ϕa). Since HA is a v-ideal of T, then λ(ϕa) ◦ ϕb ∈ HA, i.e.
λ(ϕa) ∈ HA.

Now consider the one-to-one correspondence fλ : A → A such that

(a, b) ∈ fλ ⇐⇒ (ϕa, ϕb) ∈ λ

for any a, b ∈ A.
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Evidently λ(ϕa) = ϕfλ(a) and λ−1(ϕa) = ϕf−1
λ (a) for each a ∈ A.

Thus, for all ϕ ∈ T (A) and a1, . . . , an, b1, . . . , bm ∈ A, where n = αϕ,
m = βϕ, we have

b1 . . . bm = λ(ϕ)(a1, . . . , an)

⇐⇒
m∧

i=1

ϕbi = Im
i ◦ λ(ϕ) ◦ (ϕa1 ? · · · ? ϕan)

⇐⇒
m∧

i=1

ϕf−1
λ (bi)

= Im
i ◦ ϕ ◦ (ϕf−1

λ (a1) ? · · · ? ϕf−1
λ (an))

⇐⇒ f−1
λ (b1) . . . f−1

λ (bm) = ϕ(f−1
λ (a1), . . . , f−1

λ (an))

⇐⇒ b1 . . . bm = Pfλ
(ϕ)(a1, . . . , an).

So, λ = Pfλ
, i.e. λ is an inner automorphism.
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