On quadratic B-algebras

Hee Kon Park and Hee Sik Kim

Abstract

In this paper we introduce the notion of quadratic B-algebra which is a medial quasigroup, and obtain that every quadratic B-algebra on a field X with $|X| \geqslant 3$, is a $B C I$-algebra.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and $B C I$-algebras ($[6,7]$). It is known that the class of $B C K$ algebras is a proper subclass of the class of $B C I$-algebras. In [4, 5] Q. P. Hu and X . Li introduced a wide class of abstract algebras: BCH -algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of $B C H$-algebras. J. Neggers and H. S. Kim ([10]) introduced the notion of d-algebras, i.e. algebras $(X ; *, e)$ defined by $(i) x * x=e$, (v) $e * x=e, \quad(v i) x * y=e$ and $y * x=e$ imply $x=y$, which is another useful generalization of $B C K$-algebras, and then they investigated several relations between d-algebras and $B C K$-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Y. B. Jun, E. H. Roh and H. S. Kim introduced in [8] a new notion, called an $B H$-algebra, i.e. algebras ($X ; *, e$) satisfying (i), (ii) $x * e=x$ and (vi), which is a generalization of $B C H / B C I / B C K$-algebras. They also defined the notions of ideals and boundedness in BH -algebras, and showed that there is a maximal ideal in bounded $B H$-algebras. J. Neggers, S . S. Ahn and H. S. Kim (cf. [10]) introduced the notion of a Q-algebra, and generalized some theorems discussed in $B C I$-algebras. Recently, J. Neggers and H. S. Kim introduced and investigated a class of algebras, called a B algebra ($[12,13]$), which is related to several classes of algebras of interest such as $B C H / B C I / B C K$-algebras and which seems to have rather nice

[^0]Keywords: B-algebra, Q-algebra, $B C I$-algebra
properties without being excessively complicated otherwise. B-algebras are also unipotent quasigroups which plays an important role in the theory of Latin squares (cf. [3]).

In this paper we introduce the notion of quadratic B-algebra which is a medial quasigroup, and obtain that every quadratic B-algebra on a field X with $|X| \geqslant 3$, is a $B C I$-algebra.

2. B-algebras

A B-algebra (cf. [12]) is a non-empty set X with a constant e and a binary operation $*$ satisfying the following axioms:
(i) $x * x=e$,
(ii) $x * e=x$,
(iii) $(x * y) * z=x *(z *(e * y))$
for all $x, y, z \in X$.
Example 2.1. (cf. [12]) Let X be the set of all real numbers except for a negative integer $-n$. Define a binary operation $*$ on X by

$$
x * y=\frac{n(x-y)}{n+y} .
$$

Then $(X ; *, 0)$ is a B-algebra with $e=0$.
Example 2.2. (cf. [13]) Let $X=\{0,1,2,3,4,5\}$ be a set with the following table:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X ; *, 0)$ is a B-algebra with $e=0$.
In [2] the following result is proved.

Lemma 2.3. Let $(X ; *, e)$ be a B-algebra. Then we have the following statements.
(a) If $x * y=e$ then $x=y$ for any $x, y \in X$.
(b) If $e * x=e * y$, then $x=y$ for any $x, y \in X$.
(c) $e *(e * x)=x$ for any $x \in X$.
J. Neggers, S. S. Ahn and H. S. Kim introduced in [10] the notion of Q-algebra, as an algebra ($X, ; *, e$) satisfying (i), (ii) and
(iv) $(x * y) * z=(x * z) * y$
for any $x, y, z \in X$. It is easy to see that B-algebras and Q-algebras are different notions. For example, $X=\{0,1,2,3\}$ with $*$ defined by the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

is a Q-algebra ([10]), but not a B-algebra, since $(3 * 2) * 1=0 \neq 3=$ $3 *(1 *(0 * 2))$. Example 2.2 is a B-algebra ([13]), but not a Q-algebra, since $(5 * 3) * 4=3 \neq 4=(5 * 4) * 3$.

Theorem 2.4. (cf. [10]) Every Q-algebra satisfying the conditions (iv) and (vii)

$$
(x * y) *(x * z)=z * y
$$

for any $x, y, z \in X$, is a BCI-algebra.

3. Quadratic B-algebras

Let X be a field with $|X| \geqslant 3$. An algebra $(X ; *)$ is said to be quadratic if $x * y$ is defined by

$$
x * y=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6},
$$

where $a_{1}, \ldots, a_{6} \in X$ are fixed.
A quadratic algebra $(X ; *)$ is said to be a quadratic B-algebra if for some fixed $e \in X$ it satisfies the conditions (i), (ii) and (iii). Similarly, a quadratic algebra $(X ; *)$ is said to be a quadratic Q-algebra if for some fixed $e \in X$ it satisfies the conditions (i), (ii) and (iv).

In [10] it is proved that in every quadratic Q-algebra $(X ; *, e)$ the operation $*$ has the form $x * y=x-y+e$.

We prove that the similar result is true for quadratic B-algebras.
Theorem 3.1. Let X be a field with $|X| \geqslant 3$. Then every quadratic B algebra $(X ; *, e), e \in X$, has the form $x * y=x-y+e$, where $x, y \in X$.

Proof. Let

$$
\begin{equation*}
x * y=A x^{2}+B x y+C y^{2}+D x+E y+F \tag{1}
\end{equation*}
$$

for some fixed $A, B, C, D, E, F \in X$.
Consider (i). Then

$$
\begin{equation*}
e=x * x=(A+B+C) x^{2}+(D+E) x+F . \tag{2}
\end{equation*}
$$

Let $x=0$ in (2). Then we obtain $F=e$. Hence (1) turns out to be

$$
\begin{equation*}
x * y=A x^{2}+B x y+C y^{2}+D x+E y+e \tag{3}
\end{equation*}
$$

If $y=x$ in (3), then

$$
e=x * x=(A+B+C) x^{2}+(D+E) x+e,
$$

for any $x \in X$, and hence we obtain $A+B+C=0=D+E$, i.e. $E=-D$ and $B=-A-C$. Hence (3) turns out to be

$$
\begin{equation*}
x * y=(x-y)(A x-C y+D)+e . \tag{4}
\end{equation*}
$$

Let $y=e$ in (4). Then by (ii) we have

$$
x=x * e=(x-e)(A x-C e+D)+e,
$$

i.e. $(A x-C e+D-1)(x-e)=0$. Since X is a field, either $x-e=0$ or $A x-C e+D-1=0$. Since $|X| \geqslant 3$, we have $A x-C e+D-1=0$, for any $x \in X$. This means that $A=0,1-D+C e=0$. Thus (4) turns out to be

$$
\begin{equation*}
x * y=(x-y)+C(x-y)(e-y)+e . \tag{5}
\end{equation*}
$$

To satisfy the condition (iv) we need to determine the constant C, but its computation is so complicated that we use Lemma 2.3 (iii) instead. If we replace e by x, and x by y respectively in (5), then

$$
\begin{equation*}
e * x=(e-x)+C(e-x)(e-x)+e \tag{6}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
e *(e * x) & =e *\left[(e-x)+C(e-x)^{2}+e\right] \\
& =x-C(e-x)^{2}+C(e-x)\{1+C(e-x)\}^{2} \\
& =x+C^{3}(e-x)^{4}+2 C^{2}(e-x)^{3}
\end{aligned}
$$

Since $x=e *(e * x)$, we obtain

$$
C^{2}(e-x)^{3}\{-C x+2+C e\}=0
$$

Since X is a field with $|X| \geqslant 3$, we obtain $C=0$. This means that every quadratic B-algebra $(X ; *, e)$ has the form $x * y=x-y+e$, where $x, y \in X$, completing the proof.

It follows from Theorem 3.1 that the quadratic B-algebras are medial quasigroups (cf. [1]).

Example 3.2. Let \mathcal{R} be the set of all real numbers. Define $x * y=$ $x-y+\sqrt{2}$. Then $(\mathcal{R} ; *, \sqrt{2})$ is a quadratic B-algebra.

Example 3.3. Let $\mathcal{K}=G F\left(p^{n}\right)$ be a Galois field. Define $x * y=x-y+e$, $e \in \mathcal{K}$. Then $(\mathcal{K} ; *, e)$ is a quadratic B-algebra.

As a simple consequence of Theorem 3.1 and results proved in [10] we obtain:

Proposition 3.4. Let X be a field with $|X| \geqslant 3$. Then every quadratic B-algebra on X is a Q-algebra, and conversely.

Proposition 3.5. Let X be a field with $|X| \geqslant 3$. If $(X ; *, e)$ is a quadratic B-algebra, then $(x * y) *(x * z)=z * y$ for any $x, y, z \in X$.

Proof. Straightforward.
Theorem 3.6. Let X be a field with $|X| \geqslant 3$. Then every quadratic B-algebra on X is a BCI-algebra.

Proof. It is an immediate consequence of Proposition 3.5 and Theorem 2.4.

References

[1] V. D. Belousov: Foundations of the theory of quasigroups and loops, (Russian), Nauka, Moscov 1967.
[2] J. R. Cho and H. S. Kim: On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001), $1-6$.
[3] J. Dénes and A. D. Keedwell: Latin squares and their applications, Académai Kiadó, Budapest 1974.
[4] Q. P. Hu and X. Li: On BCH-algebras, Math. Seminar Notes 11 (1983), 313 - 320.
[5] Q. P. Hu and X. Li: On proper BCH-algebras, Math. Japonica 30 (1985), $659-661$.
[6] K. Iséki and S. Tanaka: An introduction to the theory of BCKalgebras, Math. Japonica 23 (1978), 1-26.
[7] K. Iséki: On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[8] Y. B. Jun, E. H. Roh and H. S. Kim: On BH-algebras, Scientiae Math. 1 (1998), $347-354$.
[9] J. Meng and Y. B. Jun: BCK-algebras, Kyung Moon Sa Co., Seoul 1994.
[10] J. Neggers, S. S. Ahn and H. S. Kim: On Q-algebras, Int. J. Math. and Math. Sci. 27 (2001), $749-757$.
[11] J. Neggers and H. S. Kim: On d-algebras, Math. Slovaca 49 (1999), 19-26.
[12] J. Neggers and H. S. Kim: On B-algebras, (submitted)
[13] J. Neggers and H. S. Kim: A fundamental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2 (2002), (to appear)

Received April 19, 2001
Hee Kon Park, Department of Engineering Sciences, Hanyang University, Seoul 133-791, Korea

Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea, e-mail: heekim@hanyang.ac.kr

[^0]: 2000 Mathematics Subject Classification: 06F35

