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46 F. Lemieux, C. Moore and D. Thérienis determined by two di�erent generalizations of solvability, whih we allpolyabelianness (being a ertain kind of produt of Abelian groups) and
M-solvability (having a solvable multipliation group) [17℄.In this paper, we attempt to generalize the onept of nilpotene, bybuilding on Thérien's result that nilpotent groups are haraterized byounting subwords up to some onstant size [20℄. In the non-assoiativease, we expet subwords to beome subtrees, and so we explore loopswhih ount subtrees of onstant size. We �nd that many of the propertiesof nilpotent groups hold true for these loops as well.The paper is strutured as follows. After de�ning some terms in alge-bra, we review the properties of nilpotent groups and their ability to ountsubwords. We then introdue the notion of subtree ounting and de�nesubtree-ounting loops. We prove a number of algebrai results relatingthese to nilpotent and M-nilpotent loops. We onlude with several smallexamples and a number of open questions related to omputational om-plexity. 2. Algebrai de�nitionsFor the theory of quasigroups and loops, we refer the reader to [1, 7, 8, 18℄.We will use the following terms, and additional de�nitions are given in thetext.By a groupoid (G, ·) is mean a binary operation f : G×G → G, written
f(a, b) = a · b or simply ab. The order of a groupoid is the number ofelements in G, written |G|.A quasigroup is a groupoid whose multipliation table is a Latin square,in whih eah symbol ours one in eah row and eah olumn. Equiv-alently, for every a, b there are unique elements a/b and a\b suh that
(a/b) · b = a and a · (a\b) = b; thus the left (right) anellation propertyholds, that bc = bd (resp. cd = bd) implies c = d.An identity is an element 1 suh that 1 · a = a · 1 = a for all a. A loopis a quasigroup with an identity.A groupoid is assoiative if a ·(b ·c) = (a ·b) ·c for all a, b, c. A semigroupis an assoiative groupoid, and a monoid is a semigroup with identity. Agroup is an assoiative quasigroup; groups have inverses and an identity. Ina group, the order of an element a is the smallest p > 0 suh that ap = 1(or pa = 0 in an Abelian group).Two elements a, b ommute if a · b = b · a. A groupoid is ommutative ifall pairs of elements ommute. Commutative groups are also alled Abelian.



Subtree-ounting loops 47We will use + instead of · for produts in an Abelian group, and all theidentity 0 instead of 1. The simplest Abelian group is the yli group
Zp = {0, 1, . . . , p − 1}, the set of integers with addition mod p.A subgroupoid (subquasigroup, subloop, et.) of a �nite groupoid G is asubset H ⊆ G suh that b1 · b2 ∈ H for all b1, b2 ∈ H. The subgroupoidgenerated by a set S, onsisting of all possible produts of elements in S, iswritten 〈S〉.A homomorphism is a funtion ϕ from one groupoid (A, ·) to another
(B, ⋆) suh that ϕ(a · b) = ϕ(a) ⋆ ϕ(b). An isomorphism is a one-to-one andonto homomorphism; we will write A ∼= B if A and B are isomorphi.An equivalene relation is a relation ∼ that is re�exive and transitive.Its index is the number of equivalene lasses. An equivalene relation is aongruene with respet to G if a ∼ b and c ∼ d implies that ac ∼ bd. (Forin�nite quasigroups, we also demand that a/c ∼ b/d and a\c ∼ b\d.) Wean then de�ne a groupoid G/∼ whose elements are ∼'s equivalene lasses,and the obvious map from G to G/∼ is a homomorphism. Conversely, forany homomorphism ϕ we an de�ne a ongruene a ∼ b if ϕ(a) = ϕ(b).The groupoid G/∼ is alled a quotient or fator of G. A groupoid is simpleif it has no fators other than {1} and itself.A divisor is a fator of a subgroupoid. Sine a sub of a fator is thefator of a sub, the divisor relation is the transitive losure of the sub andfator relations.The left (right) osets of a subloop H ⊆ G are the sets

aH = {ah |h ∈ H} and Ha = {ha |h ∈ H}for eah a ∈ G. A subloop H is normal if the following hold for all a, b ∈ G:
aH = Ha, a(bH) = (ab)H, and (aH)b = a(Hb)Then the relation

a ∼ b if a = bh for some h ∈ His a ongruene, the left and right osets oinide, and the osets form aquotient subloop G/H.The ommutator of two elements in a loop is [a, b] = ab / ba, i.e. theunique element suh that ab = [a, b](ba). The assoiator of three ele-ments is [a, b, c] = (ab)c / a(bc), i.e. the unique element suh that (ab)c =
[a, b, c](a(bc)). The subloop 〈[G, G], [G, G, G]〉 generated by all possible om-mutators and assoiators in a loop G is alled the ommutator-assoiator



48 F. Lemieux, C. Moore and D. Thériensubloop or derived subloop G′. It is normal, and it is the smallest subloopsuh that the quotient G/G′ is an Abelian group.The derived series of a loop G is the series of normal subloops
G = G0 ⊃ G1 ⊃ G2 ⊃ · · ·where Gi+1 = G′

i. A loop is solvable of degree k if Gk = {1}.The enter of a loop is the set of elements that assoiate and ommutewith everything,
Z(G) = {c | cx = xc, c(xy) = (xc)y = x(yc) for all x, y ∈ G}.It is a normal subloop of G, and is always an Abelian group.The upper entral series of a loop is {1} = Z0 ⊂ Z1 ⊂ · · · where Zi+1/Ziis the enter of G/Zi. The lower entral series is G = Γ0 ⊃ Γ1 ⊃ · · · where

Γi+1 = 〈[G, Γi], [G, G, Γi]〉 is generated by the ommutators and assoiatorsof Γi with elements of G. A loop is nilpotent of lass k if Zk = G or if
Γk = {1}; these turn out to be equivalent and k is the same in either ase.In a groupoid G, we an de�ne left and right multipliation as funtions
La(b) = a · b and Ra(b) = b · a, namely the rows and olumns of themultipliation table. The left (right) multipliation semigroupML(G) (resp.
MR(G)) is the set of funtions on G generated by the La (resp. the Ra),and the multipliation semigroup is the set of funtions generated by both.If G is a quasigroup, the La and Ra are permutations, so ML(G), MR(G)and M(G) are groups.A pseudovariety is a lass of groupoids V suh that subgroups, fators,and �nite diret produts of groupoids in V are also in V . The solvable andnilpotent loops both form pseudovarieties.For a given alphabet A, we de�ne the groupoid A(+) as the smallest setthat inludes A and suh that whenever f and g belong to A(+) then theirformal produt (fg) also belongs to A(+). It is isomorphi to the set ofnon-empty binary trees whose leaves are labelled with elements of A, or theset of parenthesized words generated by the grammar S → (S · S), S → A.The free groupoid over A is the set A(∗) = A(+) ∪{1}, where 1 is the emptytree. The free monoid over A is the assoiative version of this, namely theset A∗ of �nite words over A, where the produt is by onatenation and 1is the empty word.The yield of a labelled tree is the word formed by reading its leavesfrom left to right, whih is learly a homomorphism from A(∗) to A∗. Thusfree monoids are fators of free groupoids under the ongruene that iden-ti�es trees with the same yield, and so removes the non-assoiativity of thegroupoid.



Subtree-ounting loops 49Moreover, every �nite groupoid (monoid) is a divisor of the free groupoid(monoid) over some �nite alphabet, i.e. it an be derived from a free objetby imposing some ongruene with a �nite index.The length of a word w, or the number of leaves in a tree w, is denoted
|w|. Exept for the free algebras, all loops used in this paper are �nite.3. Nilpotene and subword ountingCounting subwords is a well-known operation in ombinatorial algebra (e.g.Ch. 6 of [14℄). If x and w are two words over some alphabet A, then |x|w isthe number of ways that x an be written

x = y0w1y1w2 · · ·wkykwhere w1w2 · · ·wk = w and yi ∈ A∗. For instane, |abab|ab = 3. (Note thatmany authors write (

x
w

) instead of |x|w.) If x and y are both words over A,we an de�ne the subword ounts of their produt reursively:
|xy|w =

∑

u, v ∈ A∗

uv = w

|x|u|y|v (1)summing over all the ways to break w into a pair of words.In a group or monoid, we an de�ne two words as equivalent if theyevaluate to the same element. It is interesting to ask what exatly abouta long word makes it evaluate to one element or another; di�erent groupsare `sensitive' to di�erent properties of the word. To make this preise,we say that a language L ⊂ A∗ is reognized by a monoid M if there isa homomorphism h from A∗ to M , and a subset K ⊂ M , suh that L =
h−1(K). In other words, h maps eah symbol of A to an element of M , and
L is the set of words where the resulting string evaluates to an aeptingelement of M .In the assoiative ase, Thérien [20℄ showed that nilpotent groups areexatly those that are sensitive to ounting subwords up to a ertain �xedlength. Spei�ally, de�ne an equivalene lass ∼p

k that ounts, mod p,subwords of length up to k:
x ∼p

k y if |x|u ≡ |y|u mod p for all |u| 6 kIt is easy to show from Equation 1 that this is a ongruene. Then we have



50 F. Lemieux, C. Moore and D. ThérienTheorem 1 (Thérien). If a group G has order p and is generated by melements, it is nilpotent of lass k if and only if it is a divisor of A∗/∼p
kwhere A is the free monoid on m symbols. Therefore, any language reog-nized by G is a union of equivalene lasses of ∼p

k.Thus nilpotent groups an be haraterized ompletely by the ombina-toris of subwords.For instane, if we take the free group with two generators a and b andount the subwords a, b, ab and ba mod 2, we get an 8-element group
{1, a, b, ab, ba, aba, bab, abab}Note, for instane, that abab = baba sine (mod 2) both have zero a's, zero

b's, one ab, and one ba. Furthermore, abab ommutes with every element.The reader an hek that this is isomorphi to the dihedral group D4, thesymmetries of the square, where a and b orrespond to re�etions aroundaxes 45◦ apart, and abab is a 180◦ rotation.Similarly, if we have two generators i and j and we ount i's and j'smod 2, but ombine the ounts of ii, jj and ji by adding them togethermod 2, we get the quaternion group Q8 = {±1,±i,±j,±k}. The ombinedount of ii, jj and ji gives the sign if ij = k is de�ned as positive, whihmakes sense sine i2 = j2 = −1 and ji = −k.To put it di�erently, {a, b}∗/∼2
2 is a 32-element group, of whih both

D4 and Q8 are fators. (Sine there are six subwords of length 6 2, namely
a, b, aa, ab, ba and bb, in priniple this group ould have 64 elements.However, subword ounts are not independent of eah other.)4. Subtree-ounting loopsIn the non-assoiative ase, subwords presumably beome subtrees. Count-ing subtrees is atually simpler than ounting subwords, sine there is onlyone way to divide a binary tree into smaller ones. The intuitive de�nitionseems to be the following, where x, y, u, v are elements of the free groupoid
A(∗) and a, b ∈ A are generators:

|1|a = 0
|a|1 = 0
|a|a = 1
|a|b = 0

|(xy)|a = |x|a + |y|a
|(xy)|(uv) = |x|(uv) + |y|(uv) + |x|u|y|v



Subtree-ounting loops 51Given p > 2 and k > 0, de�ne x ∼p
k y i� |x|u ≡ |y|u (mod p) for all

u ∈ A(∗) of size at most k. The following lemma follows diretly from thede�nition:Lemma 2. The relation ∼p
k is a ongruene of �nite index.De�ne Dp

k = {x ∈ A(∗) |x ∼p
k 1}Lemma 3. A(∗)/∼p

k is a �nite loop with identity Dp
kProof. We want to prove that (xy) ∼p

k (xz) implies y ∼p
k qz (the proof ofleft anellation is symmetri). It su�es to show that for all s ∈ A(∗) ofsize less than k, |(xy)|s = |(xz)|s implies that |y|s = |z|s.The proof is by mathematial indution on |s| . This is lear when

|s| 6 1. Otherwise s = (uv) and
|(xy)|s ≡ |x|s + |y|s + |x|u|y|v

≡ |x|s + |z|s + |x|u|z|v
≡ |(xz)|s (mod p)Hene, there exists some onstant c = |x|u suh that

|y|s + c|y|v ≡ |z|s + c|z|v (mod p)By the indutive hypothesis, we have that |y|v ≡ |z|v. So, we obtain
|y|(uv) ≡ |z|(uv) and y ∼p

k z.De�nition 1. Loops that divide A(∗)/∼p
k are alled subtree-ounting loopsof lass k.When a subtree-ounting loop is express as an algebra (G, ·, \, /), wean dedue how to ount subtrees in quotients x/y and y\x :Lemma 4.

a) |x/y|a ≡ |y\x|a ≡ |x|a − |y|a if a ∈ A

b) |x/y|uv ≡ |x|uv − |y|uv − |x/y|u |y|v

c) |y\x|uv ≡ |x|uv − |y|uv − |y|u |y\x|vProof.
|x|a ≡ |(x/y)y|a ≡ |x/y|a + |y|a

|x|uv ≡ |(x/y)y|uv ≡ |x/y|uv + |y|uv + |x/y|u |y|vand similarly for y\x.



52 F. Lemieux, C. Moore and D. ThérienThe de�nition of A(∗)/∼p
k implies that for any s, t ∈ A(+) satisfying

s ∼p
k t, we have that s and t evaluate to the same element in A(∗)/ ∼p

k.This property is generalized in the following lemma.Lemma 5. A loop G is subtree-ounting if and only if there exists twopositive integers k and p suh that for any s, t ∈ G(+) satisfying s ∼p
k t,we have that s and t evaluate to the same element in G.Proof. Let G be a subtree ounting loop and onsider �rst the speial asewhere G = A(∗)/∼p

k. Without loss of generality, we an assume that A ⊆ G,whih means that A is a basis for G. By de�nition, we know that for all
x, y ∈ A(+), if x ∼p

k y, then x and y evaluate to the same element in G.Let h : G → A(+) be any mapping suh that h(g) evaluates to g, for all
g ∈ G and suh that h(a) = a for all a ∈ A. We an extend h in the naturalway to a groupoid morphism h : G(+) → A(+). Thus, for any t ∈ G(+), wehave that t and h(t) evaluate to the same element in G.Let u ∈ G(+) be suh that |u| 6 k, let X(u) be the set of all leaves of uthat are in A, and let Y (u) be the set of all other leaves. Given v ∈ A(+),we are interested by the ourrenes of v in h(u) that ontains all the leavesfrom X(u) and at least one leaf from h(g), for eah g ∈ Y (u). We denotethe number of suh ourrenes with ‖h(u)‖v. We have

|h(s)|v =
∑

u ∈ G(+)

|u| 6 |v|

|s|u · ‖h(u)‖vHene, s ∼p
k t implies that h(s) ∼p

k h(t) and that s and t evaluate to thesame element in G.Consider now the general ase where G divides A(∗)/ ∼p
k. Let S be asubloop of G and let h : S → G be a loop morphism. De�ne the fun-tion h−1 : G → S by hoosing h−1(g) to be any element in S suh that

h(h−1(g)) = g and extend it in the natural way to a groupoid morphism
h−1 : G(+) → (h−1(G))(+).Let x, y ∈ G(+) be suh that x ∼p

k y. Then, we must have h−1(x) ∼p
k

h−1(y) and, sine h−1(x) and h−1(y) belong to A(∗)/∼p
k, they both evaluateto the same element in S. Sine h is a morphism, x and y must evaluate tothe same element in G.The other diretion of the proof is immediate.



Subtree-ounting loops 535. Properties of subtree-ounting loopsLet G = A(∗)/ ∼p
k where p > 2 and k > 1. Let η : A(∗) → A(∗)/ ∼p

kbe the natural morphism. For 0 6 i 6 k, let Dp
i = {x ∈ A(∗) |x ∼p

i 1}and de�ne ∆p
i = η(Dp

i ), a normal subloop of G. We an then de�ne thefollowing desending series of normal subloops, whih we all the subtreeseries:
G = ∆p

0 ⊇ ∆p
1 ⊇ · · · ⊇ ∆p

k = {1}This series an still be de�ned if G is a proper divisor of A(∗)/∼p
k. In thisase, there exists a subloop S ⊆ A(∗)/∼p

k and a loop morphism h : S → G.Hene, it su�es to de�ne ∆p
i = h(η(Dp

i ) ∩ S).Commutators and assoiators are ontained in various ∆p
j beause theirounts of small subtrees anel out, as the next two lemmas show.Lemma 6. If x ∈ ∆p

k and y ∈ ∆p
l , then their ommutator [x, y] ∈ ∆p

k+l+1.Proof. Let S be de�ned as above. We observe that any ommutator y of
G is the morphi image of a ommutator x in S. Hene, if x ∈ η(Dp

i ) then
y ∈ ∆p

i . Consequently, it su�es to onsider the ase where G = A(∗)/∼p
k.The reader an show that |[x, y]|a = 0 (mod p) for all a ∈ A, and that

|[x, y]|uv ≡ |x|u |y|v − |y|u |x|v − |[x, y]|u |yx|v (mod p)If |[x, y]|w ≡ 0 for all words shorter than uv, then the last term is zero, andthe �rst two terms are also zero unless |u| > k and |v| > l or vie versa.Thus the shortest subword with nonzero ount in [x, y] has length at least
k + l + 2, so [x, y] ∈ ∆k+l+1.Lemma 7. If x ∈ ∆p

k, y ∈ ∆p
l , and z ∈ ∆p

m, then their assoiator
[x, y, z] ∈ ∆p

k+l+m+2.Proof. Again, it is su�ient to onsider the ase where G = A(∗)/∼p
k. Asin the previous lemma, |[x, y, z]|a ≡ 0 for all a ∈ A. If u = rs and v = tw,then

|[x, y, z]|uv ≡ |x|r |y|s |z|tw − |x|rs |y|t |z|w − |[x, y, z]|u |(xy)z|v (mod p)(the �rst and seond terms, respetively, disappear if |u| = 1 or |v| = 1). Sothe shortest word with nonzero ount must be the produt of three wordsof length greater than k, l and m respetively; its length is then at least
k + l + m + 3, so [x, y, z] ∈ ∆k+l+m+2.



54 F. Lemieux, C. Moore and D. ThérienThérien's result [20℄ shows that in the assoiative ase, subtree-ountingand nilpotene are the same thing. In the non-assoiative ase, this is stilltrue in one diretion:Theorem 8. If a loop G is subtree-ounting of lass k, it is nilpotent oflass k.Proof. Assume G divides A(∗)/∼p
k for some p and k. Reall the de�nitionof the lower entral series Γi. We have ∆p

0 = Γ0 = G, and Γi ⊂ ∆p
i followsby indution from lemmas 3 and 4 for all i > 0. Therefore, if ∆p
k = {1},then Γk = {1}.If the loop is ommutative, we an make this stronger:Theorem 9. If a loop G is ommutative and subtree-ounting of lass k,it is nilpotent of lass ⌈k/2⌉.Proof. ∆p

0 = Γ0 = G, and if all ommutators are the identity, then Γi ⊂ ∆p
2ifollows by indution from lemma 4 for all i ≥ 0. Therefore, if ∆p

k = {1},then Γj = {1} where 2j > i.Nilpotene implies solvability [7℄, but we an show that a loop's solv-ability degree is exponentially smaller than its subtree-ounting lass:Theorem 10. If a loop G is subtree-ounting of lass k, it is solvableof degree ⌈log2(k + 1)⌉. If it is also ommutative, it is solvable of degree
⌈log3(k + 1)⌉.Proof. Reall the de�nition of the derived series Gi. We have ∆p

0 = G0 =
G, and Gj ⊂ ∆p

i implies Gj+1 ⊂ ∆p
2i+1 by lemmas 3 and 4. Therefore,

Gi ⊂ ∆p

2i−1
for all i ≥ 0, so if ∆p

k = {1} then Γj = {1} where 2j ≥ k + 1.If all ommutators are the identity, then Gj ⊂ ∆p
i implies Gj+1 ⊂ ∆p

3i+2by lemma 4. Therefore Gi ⊂ ∆p

3i−1
, so if ∆p

k = {1} then Γj = {1} where
3j ≥ k + 1.We lose this setion with a haraterization of the �rst few lasses ofsubtree-ounting loops. Reall that the enter of a loop is the set of elementsthat ommute and assoiate with all other elements. We also say that aloop is assoiator-distributive if [wx, y, z] = [w, y, z] [x, y, z] and similarly onthe other two variables. Then:Theorem 11. Suppose a loop is subtree-ounting of lass k. If k = 1, it isan Abelian group. If k = 2, it is a group and nilpotent of lass 2. If k = 3,it is assoiator-distributive and its assoiators are in its enter.



Subtree-ounting loops 55Proof. If k = 1, all ommutators and assoiators are the identity by lemmas3 and 4. If k = 2, all assoiators are the identity by lemma 4, so it is agroup and is subword-ounting of lass 2. If k = 3, we an hek that anassoiator [u, v, w] ommutes with any element x by ounting subtrees. If
|s| 6 3,

|x [u, v, w]|s ≡ |x|s + |[u, v, w]|s ≡ |[u, v, w] x|s (mod p)sine [u, v, w] ontains no subtrees of size 1 or 2 by Lemma 7. A similarargument shows that an assoiator assoiates with any pair of elements. Toshow assoiator-distributivity, sine [wx, y, z] ontains no subtrees of size 1or 2, we just have to ount subtrees of size 3. If a, b, c ∈ A, then
|[wx, y, z]|(ab)c ≡ |wx|a |y|b |z|c (mod p)

≡ (|w|a + |x|a) |y|b |z|c (mod p)

≡ |[w, y, z]|(ab)c + |[x, y, z]|(ab)c (mod p)

≡ |[w, y, z][x, y, z]|(ab)c (mod p)and similarly for a(bc).6. M-nilpotene and nilpoteneIf we think of left and right multipliation as funtions La(b) = ab and
Ra(b) = ba, the La and Ra are permutations given by the rows and olumnsof the multipliation table. Reall that the left (right) multipliation groupof a loop G is the group generated by the La (resp. Ra), and the multipli-ation group M(G) is generated by both.In [17℄, we used the idea of M-solvability, the property of having asolvable multipliation group, to address the omplexity of expression eval-uation in loops. Here, we will say that a loop is M-nilpotent of lass k ifits multipliation group is nilpotent of lass k, and left (right) M-nilpotentif its left (right) multipliation group is.The following inlusions are known [7, 21℄:

M-nilpotent ⇒ nilpotent ⇒ M-solvable ⇒ solvableFor groups, M(G) is in the variety generated by G, so M-nilpotene andnilpotene oinide. In the non-assoiative ase, however, the M-nilpotentloops are a proper sublass of the nilpotent ones. For instane, the following



56 F. Lemieux, C. Moore and D. Thérienloop is nilpotent of lass 2:
1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 2 1
4 3 6 5 1 2
5 6 1 2 3 4
6 5 2 1 4 3Its derived subloop {1, 2} is also its enter. However, its left, right and fullmultipliation groups are all equal to a 24-element group whih is solvableof degree 2 but not nilpotent.Then we an show that subtree-ounting loops are M-nilpotent:Theorem 12. If a loop G is subtree-ounting of lass k, then it is M-nilpotent of lass k.Proof. De�ne a spine as a tree where every node has at most one hildwhih is not a leaf. An element of M(G) is haraterized by its ation onthe elements of G. Sine the multipliations La and Ra add leaves on theleft and right, an element of M(G) orresponds to |G| spines of the sameshape, one for eah element. For instane, LaRbLc orresponds to the spines

a((cx)b) for eah x ∈ G as shown in �gure 1.
x

a

c

a

b
c

cx xc

b

x

a
a

b
bFigure 1: A spine orresponding to m = LaRbLc and its subtrees of size 3.Let m ∈ M(G), and all these spines m(x) for eah x ∈ G. For eah x,the spines m(x) have two kinds of subtrees, namely those that don't inlude

x and those that do. If a subtree of m(x) of size k doesn't inlude x, itorresponds to a subword of m of size k. If it does inlude x, it orrespondsto a subword of m of size k − 1. In either ase, the subtrees of m(x) areditated by the subwords of m of the same size or smaller.Therefore, if m1, m2 ∈ M(G) have the same subword ounts of size kor less, then for all x their spines m1(x) and m2(x) have the same subtreeounts of size k or less. Sine G is subtree-ounting of lass k, m1(x) =
m2(x) for all x ∈ G, but this means that m1 = m2. Thus M(G) is subword-ounting of lass k, and by theorem 1 it is nilpotent of lass k.



Subtree-ounting loops 57We an also obtain a partial onverse to the last part of theorem 11, witha purely algebrai orollary. Reall the notion of assoiator-distributivityfrom the previous setion. Then:Theorem 13. If a loop G has the following properties:
• G is assoiator-distributive, and
• all of G's assoiators are in its enter, and
• there is a set of generators A for G suh that the subgroup of MR(G)generated by their right multipliations, 〈{Ra | a ∈ A}〉 is nilpotentof lass k,then it is subtree-ounting of lass max(3, k). Therefore, G is M-nilpotentof lass max(3, k).Proof. If we are given a tree in G(∗), we start by rewriting it as a tree in

A(∗) by replaing elements of G with produts of elements of A. Now de�nea (left) omb in A(∗) as a tree where every node's right hild, if it has one, isa leaf. Indutively, the empty tree is a omb, and ca is a omb if c is a omband a ∈ A. Sine the parenthesization of a omb is �xed, we an denote itwithout ambiguity by its yield, e.g. ((ab)c)d is simply denoted abcd.Then we start by onverting an arbitrary tree to a omb with the sameyield whih is equivalent with respet to G, keeping trak of the assoiatorsas we do so. We do this indutively, �rst transforming subtrees of depth2, then subtrees of depth 3, and so on. Suppose that at some point in thisproess we are about to transform a subtree t. If t is already a omb, thereis nothing to do. Otherwise, t = ba where b = b1 · · · bk and a = a1 · · · al aretwo ombs of size k > 1 and l > 2, where bj , ai ∈ A for all j, i. To applythe transformation, we use the following:
ba = b(a1 · · · al)

= (b(a1 · · · al−1)) al [b, a1 · · · al−1, al]...
= (b1 · · · bka1 · · · al)

∏l
i=2[b, a1 · · · ai−1, ai]Sine assoiators are in the enter of G, eah one an be moved to the sideof the expression as it is reated.Now sine G is assoiator-distributive, we an write this produt ofassoiators as

k
∏

j=1

l
∏

i=2

i−1
∏

h=1

[bj , ah, ai]



58 F. Lemieux, C. Moore and D. ThérienThere is a bijetion between the assoiators [bj , ah, ai] in this produt andthe subtrees bj(ahai) of size 3 rooted at the node where b and a meet. Byindution, the transformation of a tree into a left omb reates preisely oneassoiator [a, b, c] for eah subtree a(bc) where a, b, c ∈ A.Thus we an onvert a tree into an equivalent omb, and the produt ofassoiators it takes to do this is a funtion only of subtrees of size 3. Sinea left omb in A(∗) is formed by omposing a series of right multipliations
Ra for a ∈ A, and sine these generate a nilpotent group of lass k, we anevaluate the omb by ounting subombs of size k. Sine the omb has thesame yield as the original tree, this is the same as ounting subtrees of size
k in the original tree and ombining subtrees of the same yield.Thus the value of the tree is determined by ounting subtrees of size
max(3, k), so G is subtree-ounting of this lass. Finally, G is M-nilpotentof lass max(3, k) by Theorem 12.Obviously, the third ondition of Theorem 13 is satis�ed whenever Gis right-M-nilpotent of lass k. For instane, onsider the otonion loop
O16, whih onsists of 16 elements {±1,±i,±j,±k,±E,±I,±J,±K}. Itsmultipliation table is

1 i j k E I J K

i −1 k −j I −E −K J

j −k −1 i J K −E −I

k j −i −1 K −J I −E

E −I −J −K −1 i j k

I E −K J −i −1 −k j

J K E −I −j k −1 −i

K −J I E −k −j i −1whih we extend to elements with minus signs in the obvious way. Just asthe quaternions are ommutative up to a sign, the otonions are assoia-tive up to a sign. Sine all ommutators and assoiators are in the enter
{±1}, O16 is nilpotent of lass 2. Moreover, the reader an hek that itis assoiator-distributive and its right multipliation group (whih has 128elements) is nilpotent of lass 2. Therefore, it is subtree-ounting of lass3, and its full multipliation group (whih has 1024 elements) is nilpotentof lass 3.The reader might hope that all nilpotent loops of lass 2 are assoiator-distributive. This is not the ase, as we will show below.



Subtree-ounting loops 597. ExamplesIf we take the free groupoid on one generator {1, a, aa, a(aa), (aa)a, . . .} andonsider equivalene lasses that ount subtrees up to size 3 (mod 2), then
{a}(∗)/ ∼2

3 is a subtree-ounting loop of lass 3 with 8 elements. It is anextension of Z2 by Z4, and its multipliation table is
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 8 7 3 4 2 1
6 5 7 8 4 3 1 2
7 8 6 5 1 2 4 3
8 7 5 6 2 1 3 4

(2)
The eight elements an be represented by 1, 2 = a((aa)a), 3 = aa, 4 =
a(a(a((aa)a))), 5 = a, 6 = a(a((aa)a)), 7 = (aa)a, and 8 = a(aa). Infat, there are no non-assoiative subtree-ounting loop with fewer than 8elements, sine the smallest non-assoiative nilpotent loops have 6 elements,and these all have a multipliation group Z2 ≀Z3 of order 24 that is solvablebut not nilpotent (here ≀ is the wreath produt [12℄).Counting subtrees of size 3 mod p for larger p gives lass 3 loops of size
cp2 where c appears to depend only on p(mod 6) :

c =















1 if p(mod 6) = 1 or 5
2 if p(mod 6) = 2 or 4
3 if p(mod 6) = 3
6 if p(mod 6) = 0We have heked this for p 6 25, and we onjeture it is true for all p.Counting subtrees up to size 4(mod 2) gives a subtree-ounting loop of lass4 with 128 = 27 elements, and ounting mod 3 gives 729 = 36 elements.All of these loops are generated by a single element, like the free groupoidof whih they are fators. For an example with two generators, if we take thefree groupoid on two generators a, b and impose the relations a2 = b2 = 1and xy = yx for all x, y, we get a subtree-ounting loop of lass 3 with 16



60 F. Lemieux, C. Moore and D. Thérienelements. Its multipliation table is
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
5 6 7 8 1 2 3 4 13 14 15 16 10 9 12 11
6 5 8 7 2 1 4 3 14 13 16 15 9 10 11 12
7 8 5 6 3 4 1 2 15 16 13 14 12 11 10 9
8 7 6 5 4 3 2 1 16 15 14 13 11 12 9 10
9 10 11 12 13 14 15 16 1 2 3 4 7 8 5 6
10 9 12 11 14 13 16 15 2 1 4 3 8 7 6 5
11 12 9 10 15 16 13 14 3 4 1 2 5 6 7 8
12 11 10 9 16 15 14 13 4 3 2 1 6 5 8 7
13 14 15 16 10 9 12 11 7 8 5 6 1 2 3 4
14 13 16 15 9 10 11 12 8 7 6 5 2 1 4 3
15 16 13 14 12 11 10 9 5 6 7 8 3 4 1 2
16 15 14 13 11 12 9 10 6 5 8 7 4 3 2 1where the generators are (say) 5 = a and 9 = b. Counting (mod 3),

(mod 4), and mod 5 gives loops of 81, 256, and 625 elements respetively.Going bak to a one-symbol alphabet and ounting (mod 2) the �vesubtrees of depth 2 or less, a, aa, (aa)a, a(aa) and (aa)(aa), gives a 16-element loop
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 5 6 9 10 11 12 1 2 14 13 15 16 8 7
4 3 6 5 10 9 12 11 2 1 13 14 16 15 7 8
5 6 7 8 2 1 4 3 13 14 16 15 10 9 11 12
6 5 8 7 1 2 3 4 14 13 15 16 9 10 12 11
7 8 1 2 13 14 15 16 6 5 9 10 12 11 3 4
8 7 2 1 14 13 16 15 5 6 10 9 11 12 4 3
9 10 11 12 4 3 6 5 15 16 7 8 2 1 14 13
10 9 12 11 3 4 5 6 16 15 8 7 1 2 13 14
11 12 14 13 16 15 9 10 7 8 1 2 4 3 6 5
12 11 13 14 15 16 10 9 8 7 2 1 3 4 5 6
13 14 15 16 8 7 2 1 12 11 4 3 5 6 9 10
14 13 16 15 7 8 1 2 11 12 3 4 6 5 10 9
15 16 10 9 11 12 14 13 3 4 6 5 7 8 2 1
16 15 9 10 12 11 13 14 4 3 5 6 8 7 1 2



Subtree-ounting loops 61Here {1, 2} is a normal subloop, and dividing it out gives the 8-element loop(2) above.If we ount just the balaned trees a, aa and (aa)(aa) up to depth 2,we get another 8-element loop,
1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5
3 4 5 6 7 8 1 2
4 1 6 7 8 5 2 3
5 6 7 8 1 2 3 4
6 7 8 5 2 3 4 1
7 8 1 2 3 4 5 6
8 5 2 3 4 1 6 7where the generator is (say) 2 = a. This loop is not isomorphi to (2) sineonly two elements give the identity when squared. It is ommutative butnot assoiative, sine (22)3 = 5 but 2(23) = 1. However, like (2) it is anextension of Z2 by Z4.In fat, all loop extensions of Z2 by Z4 are nilpotent and M-nilpotent,sine Z2 ≀ Z4 is nilpotent of lass 4. Similarly, all loop extensions of Z2 by

Z
2
2 are M-nilpotent, sine Z2 ≀Z

2
2 is nilpotent of lass 3. We do not know ifall of these are subtree-ounting.This loop also shows that, unlike the derived series and the entral lowerseries, the subtree series an halt for a while and then ontinue downward.

∆1 = {1, 3, 5, 7} is generated by 3 = a2 and is isomorphi to Z4, while ∆2and ∆3 oinide and are both {1, 5 = (aa)(aa)}. Finally, ∆4 = {1}. Thus
∆0 ⊃ ∆1 ⊃ ∆2 = ∆3 ⊃ ∆4.In general, ounting (mod 2) balaned trees with one generator up to depth

k gives a subtree-ounting loop of lass 2k and size 2k+1. Thus, in the non-assoiative ase, a loop of size n an have a subtree-ounting degree linear in
n, whereas the nilpotene degree of a loop an be at most logarithmi in n.This suggests that determining when a given loop is not subtree-ountingmay require exponentially more omputation than telling when a loop isnot nilpotent.As these examples show, we an hoose to ount some subset S of theset of trees of size less than or equal to k, instead of all of them. This will bea ongruene, and so will give a well-de�ned loop, if and only if S is losedunder subtrees, i.e. uv ∈ S implies u ∈ S and v ∈ S. For instane, we anhoose to ount subtrees up to a ertain depth rather than a ertain size;



62 F. Lemieux, C. Moore and D. Thérienbalaned subtrees up to a ertain depth; left or right ombs of a ertaindepth; and so on.If we de�ne loops as (balaned) subtree-ounting of depth k in the obviousway, we haveLemma 14. If a loop is subtree-ounting of lass k, then it is (balaned)subtree-ounting of depth k. If it is (balaned) subtree-ounting of depth d,then it is subtree-ounting of lass 2d.Proof. A subtree of size k is ontained in a balaned subtree of depth atmost k, and a subtree of depth d has size at most 2d.However, a tree whih is not a omb is not ontained in a omb ofany size, so the subomb-ounting loops might be a proper sublass of thesubtree-ounting ones. 8. Open questionsWe have introdued the lass of subtree-ounting loops and show that it isa sublass of the M-nilpotent loops. However, we still don't know if thisinlusion is strit. If so, it would be interesting to have some examples andinvestigate their ombinatorial properties.A more basi problem is that we have no deision algorithm to deter-mine if a �nite loop G of order g is subtree-ounting. This is equivalent todetermining if there exist p and k suh that G divides A(∗)/ ∼p
k for somealphabet A. If G is subtree-ounting, then we an take p = g and A = Gsine it must be a morphi image of H = G(∗)/ ∼p

k. Sine G/∆p
1 is anabelian group divided by Zp, then g must be a multiple of p. This impliesthat G divides G(∗)/∼g

k.Finding k seems to be more di�ult. However, we observe that in orderto ompute the number of subtrees of depth d > 1, it seems neessary tohave some information about the number of subtrees of depth d − 1. Thissuggests that the number of elements in a subtree-ounting loop G of lass
k must be at least log k and that G must divide G(∗)/∼g

2g . We onjeturethat this is true, in whih ase a deision algorithm would exist.Another set of open questions ome from the theory of omputationalomplexity, espeially low-level parallel omplexity lasses. For instane,



Subtree-ounting loops 63expressions and iruits over solvable groups an be evaluated in the lasses
ACC

0 and ACC
1, while over non-solvable groups these problems are NC

1-omplete and P-omplete respetively (see [3, 4, 15℄ for de�nitions of theselasses and proofs of these results). Similarly, equations over nilpotentgroups an be solved in polynomial time, while for non-solvable groups thisproblem is NP-omplete [11℄ and for solvable groups quasipolynomial timeis believed to su�e. Finally, languages de�ned over groups have onstantmultiplayer ommuniation omplexity if and only if they are nilpotent [19℄.Subtree-ounting loops an be shown to have many of the same om-plexity properties as nilpotent groups, suggesting that subtree-ounting mayplay the same role for loops that nilpotene does for groups. However, wehave not yet been able to prove the onverse omputational hardness re-sults for non-subtree-ounting loops. In partiular, we would like to knowif any expressions or programs over non-subtree-ounting loops an alwaysexpress the logial AND of an arbitrary number of variables. We hope thattehniques from loop theory an be applied to this and other omplexity-theoreti questions.Aknowledgements. F.L and D.T. where supported by grants fromFCAR (Québe) and NSERC (Canada). D.T where also supported by agrant from the von Humbolt Foundation. C.M. is grateful to MGill Uni-versity for a delightful visit to Montréal, and to Molly Rose and Spootie theCat for their support. We also thank William C. Waterhouse and MihaelKinyon for helpful onversations.Referenes[1℄ A. A. Albert: Quasigroups I, Trans. Amer. Math. So. 54 (1943),
507 − 519, and Quasigroups II, Trans. Amer. Math. So. 55 (1944),
401 − 419.[2℄ D. A. Barrington: Bounded-width polynomial-size branhing pro-grams reognize exatly those languages in NC

1, J. Comput. SystemSi. 38 (1989), 150 − 164.[3℄ D. A. Mix Barrington and D. Thérien: Finite monoids and the�ne struture of NC
1, Journal of the ACM 35 (1988), 941 − 952.



64 F. Lemieux, C. Moore and D. Thérien[4℄ M. Beaudry, P. MKenzie, P. Péladeau, and D. Thérien: Cir-uits with monoidal gates, Pro. STACS (1993), 555 − 565.[5℄ M. Beaudry and P. MKenzie: Ciruits, matries, and nonasso-iative omputation, J. Comput. System Si. 50 (1995), 441 − 455.[6℄ M. Beaudry, F. Lemieux, and D. Thérien: Finite loops reog-nize exatly the regular open languages, Pro. 24th International Col-loquium on Automata, Languages and Programming, Leture Notes inComputer Siene 1256, Springer-Verlag 1997, 110 − 120.[7℄ R. H. Bruk: Contributions to the theory of loops, Trans. Amer.Math. So. 60 (1946), 245 − 354.[8℄ R. H. Bruk: A survey of binary systems, Springer-Verlag 1966.[9℄ S. R. Buss: The Boolean formula value problem is in ALOGTIME,Pro. 18th ACM Symp. on the Theory of Computing (1987), 123−131.[10℄ H. Caussinus and F. Lemieux: The omplexity of omputing overquasigroups, Pro. 14th annual FST&TCS (1994), 36 − 47.[11℄ M. Goldman and A. Russell: The omplexity of solving equationsover �nite groups, Pro. 14th Annual IEEE Conferene on Computa-tional Complexity 1999.[12℄ P. Hall: The theory of groups, Mamillan 1959.[13℄ F. Lemieux: Finite groupoids and their appliations to omputationalomplexity, Ph. D. Thesis, Shool of Computer Siene, MGill Uni-versity, Montréal 1996.[14℄ M. Lothaire: Combinatoris on words, Enylopedia of Mathematisand its appliations, (G.-C. Rota, Ed.) Addison-Wesley 1983.[15℄ C. Moore: Prediting non-linear ellular automata quikly by deom-posing them into linear ones, Physia D 111 (1998), 27 − 41.[16℄ C. Moore: Quasi-linear ellular automata, Proeedings of the Interna-tional Workshop on Lattie Dynamis, Physia D 103 (1997), 100−132.[17℄ C. Moore, D. Thérien, F. Lemieux, J. Berman, and A. Drisko:Ciruits and expressions with non-assoiative gates, J. Comput. SystemSi. (to appear)



Subtree-ounting loops 65[18℄ H. O. P�ugfelder: Quasigroups and loops: An Introdution, Helder-mann Verlag 1990.[19℄ J.-F. Raymond, P. Tesson and D. Thérien: An algebrai approahto ommuniation omplexity: Pro. 25th International Colloquium onAutomata, Languages and Programming, Leture Notes in ComputerSiene 1443, Springer-Verlag 1998, 29 − 40.[20℄ D. Thérien: Subword ounting and nilpotent groups, Combinatoris onWords, Progress and Perspetives, (Larry Cummings, Ed.) AademiPress 1983, 297 − 306.[21℄ A. Vesanen: Solvable groups and loops, J. Algebra 180 (1996), 862−
876. Reeived November 1, 2001François LemieuxDépartement d'informatique et de mathématique, Université du Québe à Chioutimi,555 boulevard de l'Université, Chioutimi (Québe), Canada G7H 2B1e-mail: �emieux�uqa.aCristopher MooreComputer Siene Department, University of New Mexio, Farris Engineering Center,Room 157, Albuquerque (NM), USA 87131 and the Santa Fe Institute, 1399 Hyde ParkRoad, Santa Fe (NM) USA 87501e-mail: moore�s.unm.eduDenis ThérienShool of Computer Siene, MGill University, 3480 University Street, MConnell En-gineering Building Room 318, Montréal (Québe), Canada H3A 2A7e-mail: denis�s.mgill.a


