Transversals in groups. 3. Semidirect product of a transversal operation and subgroup

Eugene A. Kuznetsov

Abstract

The investigation of transversals in groups beginned in [6, 7] is continued in a present article. The main aim of this article is a demonstration of a natural way of a construction of a semidirect product of a left quasigroup with two-sided unit and some group by the help of transversals.

The present article is a continuation of a cycle of works about the investigations of transversals in groups, beginned in [6, 7]. As it is known, the concept of transversal is introduced for investigation of left (right) cosets in a group by its proper subgroup. The case when this subgroup is not normal, is the most interesting one.

In [6] it was proved that the operation of $\langle E, \stackrel{(T)}{\bullet} \rangle$, corresponding to the left transversal T in a group G to its subgroup H, is a left quasigroup with two-sided unit 1. So, by the natural way, the following problem is appears define correctly such product of the left quasigroup $\langle E, \stackrel{(T)}{\bullet}, 1 \rangle$ with two-sided unit 1 and a subgroup H that the result of this product will be isomorphic to the initial group G.

The analogous investigations took place in [8, 9, 2] and especially in [10]. In these works we may see some formula (formula (7) in the present article) of a semidirect product mentioned above. But in these works the way of a construction of this formula is not clear and, moreover, the uniqueness of this formula as a formula of a semidirect product satisfying the conditions mentioned above was not shown.

²⁰⁰⁰ Mathematics Subject Classification: 20N15

Keywords: group, loop, transversal, permutation, semidirect product

The author of this article want to show the natural way of constructing of above mentioned product by the help of the concept of transversal in a group. The uniqueness of the formula (7) of semidirect product satisfying the conditions mentioned above immediately follows from the method of constructing.

1. Necessary definitions and notations

Definition 1. A system $\langle E, \cdot \rangle$ is called a *left (right) quasigroup*, if for arbitrary $a, b \in E$ the equation $x \cdot a = b$ (respectively: $a \cdot y = b$) has a unique solution in the set E. If $\langle E, \cdot \rangle$ in the same times is a left and right quasigroup, then it is called a *quasigroup*. A quasigroup containing an element e satisfying the identity $x \cdot e = e \cdot x = e$ is called a *loop*.

Definition 2. (cf. [1]) Let G be a group and H its subgroup. A complete system $T = \{t_i\}_{i \in E}$ of representatives of the left (right) cosets of H in G $(e = t_1 \in H)$ is called a *left (right) transversal in G to H*.

Let $T = \{t_i\}_{i \in E}$ be a left transversal in G to H. We can define correctly (see [1, 7]) the following operation on the set E (E is an index set; left cosets in G to H are numbered by indexes from E):

$$x \stackrel{(T)}{\cdot} y = z \quad \stackrel{def}{\Longleftrightarrow} \quad t_x t_y = t_z h, \quad h \in H.$$

In [7] it is proved that $\langle E, \cdot \rangle$ is a left quasigroup with two-sided unit 1.

Below we assume (for simplicity) that $Core_G(H) = e$ and we study a permutation representation \hat{G} of a group G by its left cosets of a subgroup H. According to [5], we have $\hat{G} \cong G$, where

$$\hat{g}(x) = y \quad \stackrel{def}{\iff} \quad gt_x H = t_y H.$$

Note that $\hat{H} = St_1(\hat{G}).$

Lemma 1. ([6], Lemma 4) Let T be an arbitrary left transversal in G to H. Then the following statements are true:

- 1. $\hat{h}(1) = 1 \quad \forall h \in H.$
- 2. For any $x, y \in E$ $\hat{t}_x(y) = x \stackrel{(T)}{\cdot} y; \quad \hat{t}_1(x) = \hat{t}_x(1) = x;$

$$\hat{t}_x^{-1}(y) = x \bigvee^{(T)} y; \quad \hat{t}_x^{-1}(1) = x \bigvee^{(T)} 1; \quad \hat{t}_x^{-1}(x) = 1,$$

where $\stackrel{(T)}{\setminus}$ is the left division in $\langle E, \stackrel{(T)}{\cdot}, 1 \rangle$ (i.e. $x \stackrel{(T)}{\setminus} y = z \iff x \stackrel{(T)}{\cdot} z = y$).

Since an arbitrary element $g \in G$ is contained in some left coset of H in G, then it can be a uniquely represented in the form:

$$g = t_u h, \tag{1}$$

where $t_u \in T, h \in H$.

Let $g_1g_2 = g_3$ be the product of two arbitrary elements of G. According to the representation (1) we have

$$t_x h_1 t_y h_2 = t_z h_3. (2)$$

Let $x \stackrel{(T)}{\cdot} y = x \bullet y$. In view of Lemma 1 we have

$$z = \hat{t}_z(1) = \hat{t}_z \hat{h}_3(1) = \hat{t}_x \hat{h}_1 \hat{t}_y \hat{h}_2(1) = \hat{t}_x \hat{h}_1 \hat{t}_y(1) = \hat{t}_x \hat{h}_1(y) = x \bullet \hat{h}_1(y).$$
(3)

Applying (2) and (3) we obtain

$$h_3 = t_z^{-1} t_x h_1 t_y h_2 = t_{x \bullet \hat{h}_1(y)}^{-1} t_x h_1 t_y h_2 = (t_{x \bullet \hat{h}_1(y)}^{-1} t_x t_{\hat{h}_1(y)}) (t_{\hat{h}_1(y)}^{-1} h_1 t_y h_1^{-1}) h_1 h_2,$$

which implies

$$t_x h_1 t_y h_2 = t_{x \bullet \hat{h}_1(y)} (t_{x \bullet \hat{h}_1(y)}^{-1} t_x t_{\hat{h}_1(y)}) (t_{\hat{h}_1(y)}^{-1} h_1 t_y h_1^{-1}) h_1 h_2.$$
(4)

Now let

$$\begin{aligned} l_{a,b} &\rightleftharpoons t_{a\bullet b}^{-1} t_a t_b, \\ \varphi(u,h) &\rightleftharpoons t_{\hat{h}(u)}^{-1} h t_u h^{-1} \end{aligned}$$

(for details see [10]).

Lemma 2. The following sentences are true:

- 1) $\hat{l}_{a,b} \in \hat{H}$ for any $a, b \in E$.
- 2) $\hat{\varphi}(u,h) \in \hat{H}$ for any $u \in E$ and $h \in H$.

Proof. 1) For any $a, b \in E$ we have

$$\hat{l}_{a,b}(1) = \hat{t}_{a\bullet b}^{-1} \hat{t}_a \hat{t}_b(1) = \hat{t}_{a\bullet b}^{-1} \hat{t}_a(b) = \hat{t}_{a\bullet b}^{-1}(a \bullet b) = (a \bullet b) \backslash (a \bullet b) = 1,$$

i.e. $\hat{l}_{a,b} \in St_1(\hat{G}) = \hat{H}.$

- 2) For any $u \in E$ and $h \in H$ we obtain

$$\hat{\varphi}(u,h)(1) = \hat{t}_{\hat{h}(u)}^{-1} \hat{h} \, \hat{t}_u \hat{h}^{-1}(1) = \hat{t}_{\hat{h}(u)}^{-1} \hat{h} \, \hat{t}_u(1) = \hat{t}_{\hat{h}(u)}^{-1} \hat{h} \, (u) = (\hat{h} \, (u)) \backslash (\hat{h} \, (u)) = 1,$$

i.e. $\hat{\varphi}(u,h) \in St_1(\hat{G}) = \hat{H}.$

Remark 1. All permutations $\hat{l}_{a,b}$ generate the group

$$LI(\langle E, \cdot, 1 \rangle) \rightleftharpoons \langle \hat{l}_{a,b} | a, b \in E \rangle,$$

which is called a *left inner mapping group* of operation $\langle E, \cdot, 1 \rangle$. In view of Lemma 2 we have

$$LI(\langle E, \cdot, 1 \rangle) \subseteq \hat{H}.$$
(5)

Remark 2. In [10] it is shown that $\hat{\varphi}(u, LI(\langle E, \cdot, 1 \rangle)) \subset LI(\langle E, \cdot, 1 \rangle)$, for any $u \in E$, i.e. all elements of the group $LI(\langle E, \cdot, 1 \rangle)$ satisfy both the conditions of Lemma 2.

2. Semidirect products

The investigations in the previous chapter lead us in the natural way to the definition of a product of the left quasigroup $\langle E, \bullet, 1 \rangle$ with two-sided unit 1 and a group H (satisfying some conditions connected with the operation in $\langle E, \bullet, 1 \rangle$).

Let $\langle E, \bullet, 1 \rangle$ be a left quasigroup with two-sided unit 1 and let H be a permutation group on the set E $(H \subseteq St_1(S_E))$ such that

$$\forall a, b \in E \quad l_{a,b} = L_{a \bullet b}^{-1} L_a L_b \in H,$$

$$\forall u \in E, \ \forall h \in H \quad \varphi(u,h) = L_{h(u)}^{-1} h L_u h^{-1} \in H,$$
(6)

where L_a is the left translation by a in $\langle E, \bullet, 1 \rangle$. In the set

$$E \times H = \{(u, h) | u \in E, h \in H\}$$

we define the operation

$$(u,h_1) * (v,h_2) \stackrel{def}{=} (u \bullet h_1(v), l_{u,h_1(v)}\varphi(v,h_1)h_1h_2)$$
(7)

(see [10]). In view of (6) this definition is correct.

On the set E we define the function:

$$(u,h): E \to E, (u,h)(x) \stackrel{def}{=} u \bullet h(x).$$
(8)

Lemma 3. The following sentences are true:

The function (u, h): E → E is an action, i.e.
 (a) it is a permutation on the set E,

- (b) if $(u, h_1)(x) = (v, h_2)(x)$ for all $x \in E$, then u = v and $h_1 = h_2$,
- 2. $(u, h_1)((v, h_2)(x)) = ((u, h_1) * (v, h_2))(x)$ for any $x \in E$, where * is defined by (7),
- 3. (1, id) is an unit of $\langle E \times H, * \rangle$,
- 4. $(h^{-1}(u\backslash 1), (L_uhL_{h^{-1}(u\backslash 1)})^{-1})$ is an inverse element of (u,h) in $\langle E \times H, *, (1,id) \rangle$,
- 5. $G = \langle E \times H, *, (1, id) \rangle$ is a group.

Proof. 1a. According to (8), we have $(u,h)(x) = u \bullet h(x) = L_u h(x)$. Because L_u is a permutation of the set E, then also $L_u h$ is a permutation of E. Obviously (1, id)(x) = x.

1b. If $(u, h_1)(x) = (v, h_2)(x)$ for all $x \in E$, then $L_u h_1(x) = L_v h_2(x)$. This for x = 1 gives $L_u = L_v$. Thus u = v. Hence $h_1(x) = h_2(x)$ for all $x \in E$, and, in the consequence, $h_1 = h_2$.

2. For $\alpha = (u, h_1)$ and $\beta = (v, h_2)$ we have

$$\alpha(\beta(x)) = (u, h_1)((v, h_2)(x)) = (u, h_1)(v \bullet h_2(x))$$

= $u \bullet h_1(v \bullet h_2(x)) = L_u h_1 L_v h_2(x)$.

But on the other hand

$$\begin{aligned} ((u,h_1)*(v,h_2))(x) &= (u \bullet h_1(v), l_{u,h_1(v)}\varphi(v,h_1)h_1h_2)(x) \\ &= (u \bullet h_1(v)) \bullet L_{u \bullet h_1(v)}^{-1} L_u L_{h_1(v)} L_{h_1(v)}^{-1} h_1 L_v h_1^{-1} h_1 h_2(x) \\ &= L_{u \bullet h_1(v)} L_{u \bullet h_1(v)}^{-1} L_u h_1 L_v h_2(x) = L_u h_1 L_v h_2(x) \,. \end{aligned}$$

So $(u, h_1)((v, h_2)(x)) = ((u, h_1) * (v, h_2))(x).$

3. According to the previous paragraph we have

$$((u, h_1) * (v, h_2))(x) = L_u h_1 L_v h_2(x),$$
(9)

which gives

$$((1, id) * (u, h))(x) = L_1 id L_u h(x) = L_u h(x) = (u, h)(x)$$

for any $x \in E$. Thus (1, id) * (u, h) = (u, h).

We obtain also

$$((u,h)*(1,id))(x) = L_u h L_1 i d(x) = L_u h(x) = (u,h)(x).$$

Hence (u, h) * (1, id) = (u, h), which proves that (1, id) is a two-sided unit.

4. According to the general properties of $\{L_u\}_{u\in E}$ in $LM(\langle E, \bullet, 1\rangle)$ to $LI(\langle E, \bullet, 1\rangle) \subseteq H$ we have $L_u^{-1} = L_{u\setminus 1}h'$ for some $h' \in H$. So

$$(h^{-1}(u\backslash 1), (L_u h L_{h^{-1}(u\backslash 1)})^{-1}) = (h^{-1}(u\backslash 1), L_{h^{-1}(u\backslash 1)}^{-1} h^{-1} L_u^{-1})$$

= $(h^{-1}(u\backslash 1), L_{h^{-1}(u\backslash 1)}^{-1} h^{-1} L_{u\backslash 1} h h'') = (h^{-1}(u\backslash 1), \varphi(u\backslash 1, h^{-1}) h'') \in E \times H.$

But by (9) we have also

$$((u,h) * (h^{-1}(u \setminus 1), (L_u h L_{h^{-1}(u \setminus 1)})^{-1})(x)$$

= $L_u h L_{h^{-1}(u \setminus 1)} L_{h^{-1}(u \setminus 1)}^{-1} h^{-1} L_u^{-1}(x) = x,$

which proves $(u, h) * (h^{-1}(u \setminus 1), (L_u h L_{h^{-1}(u \setminus 1)})^{-1} = (1, id).$ In the same way

$$\begin{split} ((h^{-1}(u\backslash 1), (L_u h L_{h^{-1}(u\backslash 1)})^{-1} * (u, h))(x) \\ &= L_{h^{-1}(u\backslash 1)} L_{h^{-1}(u\backslash 1)}^{-1} h^{-1} L_u^{-1} L_u h(x) = x \end{split}$$

implies $(h^{-1}(u \setminus 1), (L_u h L_{h^{-1}(u \setminus 1)})^{-1} * (u, h) = (1, id).$

5. It is a simple consequence of 2, 3 and 4.

Lemma 4. Let $G = \langle E \times H, *, (1, id) \rangle$ be a group. Then

- 1. $\hat{H} = \langle H^*, *, (1, id) \rangle$ (where $H^* \rightleftharpoons \{(1, h) | h \in H\}$) is a subgroup of G and it is isomorphic to the group H.
- 2. $\hat{T} \rightleftharpoons \{(u, id) | u \in E\}$ is a left transversal in G to its subgroup \hat{H} and the operation of $\langle E, \stackrel{(\hat{T})}{\bullet}, 1 \rangle$ coincides with the operation of $\langle E, \bullet, 1 \rangle$.

Proof. 1. According to (9) we have

$$((1, h_1) * (1, h_2))(x) = h_1 h_2(x) = (1, h_1 h_2)(x),$$

which proves that $\hat{H} = \langle H^*, *, (1, id) \rangle$ is a subgroup of G. Moreover, the bijection $\psi : H^* \to H$, $\psi((1, h)) = h$ defines an isomorphism between groups \hat{H} and H.

2. In view of (9) we have

$$((u, id) * (1, h))(x) = L_u id L_1 h(x) = L_u h(x) = (u, h)(x),$$

which gives (u, id) * (1, h) = (u, h). Then for any $u \in E$ the set

$$H_u \rightleftharpoons (u, id) * H^* = \{(u, h) | h \in H\}$$

is a left coset of \hat{H} in G. Obviously $(u, id) \in H_u$ and $(1, id) \in H_1 = \hat{H}$. So, $\hat{T} \rightleftharpoons \{(u, id) | u \in E\}$ is a left transversal in G to its subgroup

So, $T \rightleftharpoons \{(u, id) | u \in E\}$ is a left transversal in G to its subgroup \hat{H} . Moreover, for $\langle E, \stackrel{(\hat{T})}{\bullet}, 1 \rangle$ we have $u \stackrel{(\hat{T})}{\bullet} v = z$, (u, id) * (v, id) = (z, h), $z = u \bullet v$ and $h = l_{u,v}$, which implies $u \stackrel{(\hat{T})}{\bullet} v = u \bullet v$.

3. The case of a left A_l -loop

Note that if in the previous part of this work the permutation $h \in H$ is an automorphism of $\langle E, \bullet, 1 \rangle$, then any $u, x \in E$ we have

$$hL_u h^{-1}(x) = h(u \bullet h^{-1}(x)) = h(u) \bullet x = L_{h(u)}(x).$$

Thus $hL_uh^{-1} = L_{h(u)}$ and $\varphi(u, h) = L_{h(u)}^{-1}hL_uh^{-1} = L_{h(u)}^{-1}L_{h(u)} = id.$

This means that the study of the general construction of a semidirect product from the previous chapter can be interesting in the case when

$$LI(\langle E, \bullet, 1 \rangle) \subseteq H \subseteq Aut(\langle E, \bullet, 1 \rangle).$$

In this case the left loop $\langle E, \bullet, 1 \rangle$ is a left special loop (left A_l -loop) and (7) can be written in the form

$$(u, h_1) * (v, h_2) = (u \bullet h_1(v), l_{u, h_1(v)} h_1 h_2).$$
(10)

Obviously such defined product has all properties mentioned in Lemmas 3 and 4.

Remark 3. By Lemma 3, for any $u \in E$ and $h \in H$ we have

$$(u,h)^{-1} = (h^{-1}(u \setminus 1), (L_u L_{u \setminus 1} h)^{-1}),$$

and, in the consequence, $(u, id)^{-1} = (u \setminus 1, (L_u L_{u \setminus 1})^{-1}).$

Remark 4. Formula (10) coincides with the formula of a gyrosemidirect product of a left gyrogroup and its gyroautomorphism group (see [11, 4]).

References

 R. Baer: Nets and groups. 1. Trans. Amer. Math. Soc. 46 (1939), 110-141.

- [2] I. Burdujan: Some remarks about geometry of quasigroups, (Russian), Mat. Issled. 39 (1976), 40 - 53.
- [3] V. D. Belousov: Foundations of quasigroup and loop theory, (Russian), Nauka, Moscow 1967.
- [4] T. Foguel and A. Ungar: Transversals, loops and gyrogroups, Preprint of NDSY, 1998.
- [5] M. I. Kargapolov and Yu. I. Merzlyakov: Foundations of group theory, (Russian), 3rd edition, Nauka, Moscow 1982.
- [6] E. A. Kuznetsov: Transversals in groups. 1. Elementary properties, Quasigroups and Related Systems 1 (1994), 22-42.
- [7] E. A. Kuznetsov: Transversals in groups. 2. Loop transversals in a group by the same subgroup, Quasigroups and Related Systems 6 (1999), 1 12.
- [8] L. V. Sabinin: About equivalence of the categories of loops and homogeneous spaces, (Russian), Dokl. AN SSSR, 205 (1972), 533 – 537.
- [9] L. V. Sabinin: About geometry of loops, (Russian), Mat. zametki, 12 (1972), 605 616.
- [10] L. V. Sabinin and O. I. Mikheev: Quasigroups and differential geometry, Chapter XII in the book Quasigroups and loops: Theory and Applications, Helderman-Verlag, Berlin 1990, 357 – 430.
- [11] A. Ungar: Thomas Precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Foundations of Physics, 27 (1997), 881-951.

Institute of Mathematics and Computer Science Academy of Sciences of Moldova str. Academiei 5 MD-2028 Chishinau MOLDOVA e-mail: ecuz@math.md Received August 20, 2001