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On some old and new problems in n-ary groups

Wiesław A. Dudek

Abstract

In this paper some old unsolved problems connected with skew elements in n-ary groups
are discussed.

1. Introduction

A nonempty set G together with one n-ary operation f : Gn −→ G is called
an n-ary groupoid and is denoted by 〈G, f〉. We say that this groupoid
is i-solvable or solvable at the place i if for all a1, ..., an, b ∈ G there exists
xi ∈ G such that

f(a1, ..., ai−1, xi, ai+1, ..., an) = b . (1)

If this solution is unique, we say that this groupoid is uniquely i-solvable.
An n-ary groupoid which is uniquely i-solvable for every i = 1, 2, . . . , n is
called an n-ary quasigroup or n-quasigroup (cf. [3]).

We say that an n-ary groupoid 〈G, f 〉 is (i, j)-associative if

f(a1, ..., ai−1, f(ai, ..., ai+n−1), ai+n, ..., a2n−1)

= f(a1, ..., aj−1, f(aj , ..., aj+n−1), aj+n, ..., a2n−1),

holds for all a1, . . . , a2n−1 ∈ G. If an n-ary operation is (i, j)-associative for
every i, j ∈ {1, . . . , n}, then it is called associative. An n-ary groupoid with
an associative operation is called an n-ary semigroup or n-semigroup. An
n-semigroup which is also an n-quasigroup is called an n-ary group (briefly:
n-group) or a polyadic group (cf. [31]) .
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For n = 2 it is an ordinary group. For infinite n, where n is a countable
infinite number, it is an infinitary group. Unfortunately all such groups are
trivial (have only one element), but there are non-trivial infinitary quasi-
groups and semigroups (cf. [4]). In connection with this we assume through-
out the whole text that 3 6 n < ∞.

The first idea of such generalization of groups was presented by E. Kas-
ner in the lecture at the fifty-third annual meeting of the American As-
sociation for the Advancement of Science, reported by L. G. Weld in The
Bulletin of the American Mathematical Society in 1904 (cf. [25]), but the
first formal definition was given by W. Dörnte in the paper [6] based on his
dissertation prepared under the inspiration of E. Noether.

Sets with one n-ary operation having different properties were investi-
gated by many authors. For example, J. Certaine [5] and D. H. Lehmer
[27] described some natural ternary (i.e. n = 3) operations defined on a
group. Some ternary groupoids having interesting applications to projec-
tive and affine geometry were considered by R. Baer [2], H. Prüfer [32], A.
K. Sushkevich [39] and V. V. Vagner [41]. Ternary quasigroups are used in
[37] and [38] to the characterization of Mendelsohn and Steiner quadruple
systems.

On the other hand, G. A. Miller [28] described sets of group elements
involving only products of more than n elements. Some n-ary operations
have interesting applications in physics. For example, Y. Nambu [29] pro-
posed in 1973 the generalization of classical Hamiltonian mechanics based
on the Poisson bracket to the case when the new bracket, now called the
Nambu bracket, is an n-ary operation on classical observables. The au-
thor of [40] suspects that different n-ary structures such as n-Lie algebras,
Lie ternary systems and linear spaces with additional internal n-ary op-
erations, might clarify many important problems of modern mathematical
physics (Yang-Baxter equation, Poisson-Lie groups, quantum groups). For
example, ternary Z3–graded algebras are important (cf. [26]) for their ap-
plications in physics of elementary interactions. Unfortunately, from the
mathematical point of view all such structures are rather complicated, es-
pecially for n > 3.

The above definition of an n-ary group is a generalization of H. Weber’s
formulation of axioms of groups. Similar generalization of L. E. Dickson’s
axioms one leads to n-ary groups 〈G, f 〉 derived from a group 〈G, · 〉, i.e. to
n-ary groups with the operation

f(x1, x2, . . . , xn) = x1 · x2 · . . . · xn

(cf. [1] and [33]). But for every n > 3 there are n-groups which are not
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derived from any group (cf. [6], [9], [10]).
E. L. Post observed in [31] that under the assumption of the n-ary

associativity it suffices only to postulate the existence of the solution of (1)
at the place i = 1 and i = n, or at one place i other than 1 and n. Then
one can prove uniqueness of the solution of (1) for all i = 1, 2, . . . , n.

Also the assumption on the associativity can be given in the weaker
form. For example, in [18] the following theorem is proved.

Theorem 1. (Dudek, Głazek, Gleichgewicht 1977) An n-ary groupoid
〈G, f 〉 is an n-ary group if and only if (at least) one of the following condi-
tions is satisfied:

a) the (i, i + 1)-associative law holds for some i ∈ {2, . . . , n− 2} and the
equation (1) is uniquely solvable for i and some k > i,

b) the (1, 2)-associative law holds and the equation (1) is solvable for
i = n and uniquely solvable for i = i,

c) the (n−1, n)-associative law holds and the equation (1) is solvable for
i = 1 and uniquely solvable for i = n.

The class of n-ary groups can be characterized also as the class of n-ary
semigroups with two binary operations satisfying two simple identities, or
as the class of n-ary semigroups in which some two equations containing
only two variables are solvable (cf. [13]).

2. Skew elements and endomorphisms

According to the definition of an n-ary group 〈G, f 〉 for every x ∈ G there
exists only one z ∈ G such that

f(x, ..., x, z) = x .

This element is called skew to x and is denoted by x̄. Since for every
x ∈ G there exists only one x, the above equation induces on G the new
unary operation ¯ : x → x̄ . This means that an n-ary group 〈G, f 〉 can
be considered as an algebra 〈G, f,¯ 〉 of type (n, 1) with two fundamental
operations: an n-ary one f and an unary one ¯ : x → x̄ , which gives
some analogy with the binary case when a group is considered as an algebra
〈G, ·, −1 〉 of type (2, 1). In a binary group we have xe = x for all x and some
fixed e. For n = 3 this identity can be generalized to the form f(x, e, e) = x
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or f(x, x, e) = x. The first form, for a ternary group derived from a binary
group 〈G, · 〉, implies that e is the neutral element of 〈G, · 〉, the second –
that e is the inverse of x (in 〈G, · 〉, obviously). Thus, in some sense, the
skew element is a common generalization of the identity and the inverse
element of a binary group.

In n-ary groups derived from binary groups we have x̄ = x2−n and

f(y, x, . . . , x̄, . . . , x) = f(x, . . . , x̄, . . . , x, y) = y (2)

for all x, y, where x̄ can appear at any place under the sign of the n-ary
operation. This shows that in an n-ary group derived from a group 〈G, · 〉
of the exponent n− 2 the neutral element of 〈G, · 〉 is skew to every x ∈ G.
In an n-ary group derived from a group 〈G, · 〉 of the exponent n − 3 we
have x̄ = x−1 and x̄ 6= ȳ for all x 6= y. If the exponent of 〈G, · 〉 is equal
to n− 1, then x̄ = x for all x ∈ G.

An element x = x̄ is called idempotent. It is also defined by the equation
f(x, . . . , x) = x. For every n > 3 there are n-ary groups without idempo-
tents and n-ary groups in which only some elements are idempotent (cf.
[10]). A group in which all elements are idempotent is called an idempotent
group.

The operation ¯: x → x̄ plays an important role in the theory of n-ary
groups and in their applications to affine geometry (cf. [21] and [35]). This
operation can be used also to the definition of n-ary groups (cf. [23] and
[18]). The minimal axioms system defining of n-ary groups is given in the
following theorem proved in [8].

Theorem 2. (Dudek 1980) The class of n-ary groups 〈G, f 〉 coincides with
the variety of all (1, 2)-associative n-ary groupoids 〈G, f 〉 with an additional
unary operation ¯ : x → x̄ satisfying the identity (2), where x̄ appears at
one fixed place.

It is not difficult to see that in an n-ary group 〈G, f 〉 derived from a
commutative group the following identity holds:

f(x1, x2, . . . , xn) = f(
−
x1,

−
x2, . . . ,

−
xn) . (3)

It holds also in the non-commutative 8-group derived from the group S3 and
in every idempotent n-group. For x1 = x2 = . . . = xn = x it is satisfied in
any n-ary group.

From the proof of Theorem 3 in [22] it immediately follows that this
identity holds in all medial (in the sense of Belousov [3]) n-ary groups, i.e.
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in all n-ary groups in which the identity

f(f(x11, x12, . . . , x1n), f(x21, x22, . . . , x2n), . . . , f(xn1, xn2, . . . , xnn))

= f(f(x11, x21, . . . , xn1), f(x12, x22, . . . , xn2), . . . , f(x1n, x2n, . . . , xnn))

is satisfied. For n = 2 it is the standard medial (entropic) law, which in
the case of groups gives the commutativity. For n > 3 it not implies the
commutativity of n-ary groups.

Since an n-ary group 〈G, f 〉 is medial if and only if there exists a ∈ G
such that f(x, a, . . . , a, y) = f(y, a, . . . , a, x) for all x, y ∈ G (cf. [8]), the
Hosszú theorem (cf. [24]) suggests the following result proved in [10].

Theorem 3. (Dudek 1988) If for an n-ary group 〈G, f 〉 there exists a
commutative group 〈G,+〉, an element b ∈ G, and an automorphism ϕ of
〈G,+〉 such that ϕ(b) = b, ϕn−1(x) = x for all x ∈ G and

f(x1, x2, . . . , xn) = x1 + ϕ(x2) + ϕ2(x3) + . . . + ϕn−2(xn−1) + xn + b ,

then (3) is satisfied.

Unfortunately the converse statement is not true.

In connection with this the following problem was posed in [10].

Problem 1. Describe the class of all n-ary groups satisfying (3), i.e. the
class of n-ary groups for which h(x) =

−
x is an endomorphism.

For n = 3 the answer is simple, because as proved W. Dörnte (cf. [6])

in all ternary groups we have f(x, y, z) = f(
−
z,
−
y,
−
x). This means that a

ternary group satisfies (3) if and only if it is medial.
For n > 3 the problem is open. We know only the partial answer basing

on the general connections between homomorphisms of n-ary groups and
homomorphisms of their retracts (Theorem 2 from [20]).

Theorem 4. A mapping h : G → G is an endomorphism of an n-ary group
〈G, f 〉 if and only if there exists a ∈ G such that

(i) h(f(x, a, . . . , a, y)) = f(h(x), b, . . . , b, h(y)),

(ii) h(f(
−
a, x, a, . . . , a)) = f(b̄, h(x), b, . . . , b ),

(iii) h(f(
−
a,
−
a, . . . ,

−
a ) ) = f(b̄, b̄, . . . , b̄ )
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for all x, y ∈ G and b = h(a).
Proof. Let h : G → G be an endomorphism of an n-ary group 〈G, f 〉. If
h(a) = b, then, according to the identity (2) and Theorem 2,

h(y) = h(f(y, a, . . . , a, ā) = f(h(y), b, . . . , b, h(ā)),

which gives h(ā) = b̄. Now, the conditions (i), (ii) and (iii) are obvious.
Conversely, assume that a mapping h : G → G satisfies the above three

conditions for all x, y ∈ G, some fixed a ∈ G and b = h(a).
From the proof of Hosszú theorem given by E. I. Sokolov (cf. [36] or

[19]) it immediately follows that 〈G,+〉, where x + y = f(x, a, . . . , a, y),
is a binary group, ϕ(x) = f(

−
a, x, a, . . . , a) its automorphism such that for

c = f(
−
a,
−
a, . . . ,

−
a) the following identity

f(x1, x2, . . . , xn) = x1 + ϕ(x2) + ϕ2(x3) + . . . + ϕn−1(xn) + c (5)

holds. Similarly, for x ¦ y = f(x, b, . . . , b, y), ψ(x) = f(b̄, x, b, . . . , b) and
d = f(b̄, b̄, . . . , b̄), we have

f(x1, x2, . . . , xn) = x1 ¦ ψ(x2) ¦ ψ2(x3) ¦ . . . ¦ ψn−1(xn) ¦ d .

Thus h(x + y) = h(x) ¦ h(y) by (i), h(ϕ(x)) = ψ(h(x)) by (ii), and
h(c) = d by (iii). Therefore

h(f(x1, x2, . . . , xn)) = h(x1 + ϕ(x2) + ϕ2(x3) + . . . + ϕn−1(xn) + c)

= h(x1) ¦ ψ(h(x2)) ¦ ψ2(h(x3)) ¦ . . . ¦ ψn−1(h(xn)) ¦ d

= f(h(x1), h(x2), . . . , h(xn)) ,

which proves that h is an endomorphism.

Putting in the above theorem h(x) =
−
x, we obtain

Corollary 1. An n-ary group 〈G, f 〉 satisfies (3) if and only if there exists
a ∈ G such that

(i) f(x, a, . . . , a, y) = f(
−
x,
−
a, . . . ,

−
a,
−
y ),

(ii) f(ā, x, a, . . . , a) = f(
=
a,
−
x,
−
a, . . . ,

−
a ),

(iii) f(ā, ā, . . . , ā) = f(
=
a,

=
a, . . . ,

=
a )

for all x, y ∈ G, where
=
a is skew to

−
a.
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Corollary 2. An n-ary group 〈G, f 〉 with an idempotent a ∈ G satisfies
(3) if and only if for all x, y ∈ G, we have

(i) f(x, a, . . . , a, y) = f(
−
x, a, . . . , a,

−
y ),

(ii) f(a, x, a, . . . , a) = f(a,
−
x, a, . . . , a ).

Proof. Indeed, if a ∈ G is an idempotent, then
−
a = a and, in the con-

sequence,
=
a = a, which together with f(a, . . . , a) = a gives the condition

(iii) from Corollary 1. The rest is obvious.

In the same manner as Theorem 4, putting x + y = f(x,
−
a, a, . . . , a, y),

ϕ(x) = f(a, x,
−
a, a, . . . , a), c = f(a, a, . . . , a) and x ¦ y = f(x, b̄, b, . . . , b, y),

ψ(x) = f(b, x, b̄, b, . . . , b), d = f(b, b, . . . , b), we can prove

Theorem 5. A mapping h : G → G is an endomorphism of an n-ary group
〈G, f 〉 if and only if there exists a ∈ G such that

(i) h(f(x,
−
a, a, . . . , a, y)) = f(h(x), b̄, . . . , b, h(y)),

(ii) h(f(a, x,
−
a, a, . . . , a)) = f(b, h(x), b̄, b, . . . , b),

(iii) h(f(a, a, . . . , a)) = f(b, b, . . . , b)

for all x, y ∈ G and b = h(a).

Putting in this theorem h(x) =
−
x, we obtain

Corollary 3. An n-ary group 〈G, f 〉 satisfies (3) if and only if there exists
a ∈ G such that

(i) f(x, ā, a, . . . , a, y) = f(
−
x,

=
a,
−
a, . . . ,

−
a,
−
y ),

(ii) f(a, x, ā, a, . . . , a) = f(
−
a,
−
x,

=
a,
−
a, . . . ,

−
a ),

(iii) f(a, a, . . . , a) = f(
−
a,
−
a, . . . ,

−
a )

for all x, y ∈ G, where
=
a is skew to

−
a.

Corollary 4. If an n-ary group 〈G, f 〉 has an element a ∈ G such that

(i) f(x, ā, a, . . . , a, y) = f(
−
x,
−
a, a, . . . , a,

−
y ),

(ii) f(a, x, ā, a, . . . , a) = f(a,
−
x,
−
a, a, . . . , a )

for all x, y ∈ G, then h(x) =
−
x is an endomorphism of 〈G, f 〉.
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Proof. It is not difficult to verify (using (2) and Theorem 2) that for x+y =

f(x,
−
a, a, . . . , a, y), ϕ(x) = f(a, x,

−
a, a, . . . , a) and c = f(a, a, . . . , a) the

identity (5) holds. Obviously 〈G,+〉 is a group and a is its neutral element.
Thus a = a+a and, in the consequence,

−
a = a + a =

−
a +

−
a by (i). Hence

−
a = a and c = a. Therefore, in our case, the identity (5) has the form

f(x1, x2, . . . , xn) = x1 + ϕ(x2) + ϕ2(x3) + . . . + ϕn−1(xn) .

But, by (i) and (ii), for all x, y ∈ G we have x + y =
−
x +

−
y, ϕ(x) = ϕ(

−
x),

which gives

f(x1, x2, . . . , xn) = x1 + ϕ(x2) + ϕ2(x3) + . . . + ϕn−1(xn)

=
−
x1 +ϕ(

−
x2) + ϕ2(

−
x3) + . . . + ϕn−1(

−
xn)

= f(
−
x1,

−
x2, . . . ,

−
xn) .

Hence h(x) =
−
x is an endomorphism of an n-ary group 〈G, f 〉.

The converse is not true. Indeed, in an n-ary group 〈Z, f 〉, where Z is
the set of integers, f(x1, . . . , xn) = x1+ . . .+xn+1, h(x) =

−
x = (2−n)x−1

is an endomorphism, but (i) and (ii) are not satisfied. Moreover in this n-

ary group
−
x 6= −

y for x 6= y. But there are n-groups in which
−
x =

−
y for all

x, y. In such n-groups one fixed element is skew to all others. Obviously
this element is an idempotent. This suggest the following characterization
given in [11].

Theorem 6. (Dudek 1990) An n-ary group satisfies the identity
−
x =

−
y if

and only if it is derived from a binary group of the exponent t |n− 2.

If an element a is skew to all x ∈ G, then an n-group 〈G, f〉 is derived
from a binary group 〈G, ◦ 〉, where x ◦ y = f(x, a, . . . , a, y). Obviously a is
the identity of 〈G, ◦ 〉. Moreover, by (2), for all x ∈ G we have

a = f(a, x, . . . , x,
−
x ) = f(a, x, . . . , x, a) ,

which implies the identity

f(a, x, . . . , x, a) = f(a, y, . . . , y, a) . (9)
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Conversely, if there exists a ∈ G such that (9) holds for all x, y ∈ G,
then f(a, x, . . . , x, a) = f(a, . . . , a). Therefore, applying (2), we obtain

f(a, . . . , a,
−
a ) = a = f(a, x, . . . , x,

−
x ) = f(a, x, . . . , x, f(a, . . . , a,

−
a,
−
x ))

= f(f(a, x, . . . , x, a), a, . . . , a,
−
a,
−
x )

= f(f(a, . . . , a), a, . . . , a,
−
a,
−
x ) = f(a, . . . , a, f(a, . . . , a,

−
a,
−
x ))

= f(a, . . . , a,
−
x ) ,

which implies
−
a =

−
x for all x ∈ G.

Thus the following theorem is true.

Theorem 7. An n-ary group satisfies the identity
−
x =

−
y if and only if there

exists a ∈ G such that (9) holds for all x, y ∈ G.

Problem 2. Describe n-ary groups in which
−
x 6= −

y for all x 6= y.

Problem 3. When h(x) =
−
x is an automorphism ?

Let x̄(0) = x and let x̄(k+1) be the skew element to x̄(k), where k > 0.
In other words, x̄(0) = x, x̄(1) =

−
x, x̄(2) =

=
x, x̄(3) =

≡
x, etc.

For example, in a 4-group derived from the additive group Z8, we have
−
x≡ 6x (mod 8),

=
x≡ 4x (mod 8) and x̄(k) ≡ 0 (mod 8) for k > 3. In the

n-group derived from the additive group of integers: x̄(k) 6= x̄(t) for all
x 6= 0 and k 6= t. But in any ternary group

=
x = x for all x (cf. [6]).

If x̄(k) = x and ȳ(t) = y for some k, t > 1, then
−
x=

−
y if and only if

x = y. If h(x) =
−
x is an automorphism, then h(x) = x̄(k) is an auto-

morphism, too. The converse is not true, because h(x) =
=
x is an identity

automorphism of any ternary group, but h(x) =
−
x is an automorphism only

in the case when this group is medial.

Problem 4. Describe the class Wk of n-ary groups in which h(x) = x̄(k)

is an endomorphism (automorphism).

Obviously W1 ⊂ W2 ⊂ W3 ⊂ . . . ⊂ W0. When Wk = Wk+1 ?

As a simple consequence of Theorem 4, for h(x) = x̄(k), we obtain
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Corollary 5. h(x) = x̄(k) is an endomorphism of an n-ary group 〈G, f 〉
if and only if there exists a ∈ G such that

(i) f(x, a, . . . , a, y)
(k)

= f(x̄(k), ā(k), . . . , ā(k), ȳ(k) ),

(ii) f(ā, x, a, . . . , a)
(k)

= f(ā(k+1), x̄(k), ā(k), . . . , ā(k) ),

(iii) f(ā, ā, . . . , ā)
(k)

= f(ā(k+1), ā(k+1), . . . , ā(k+1) )

for all x, y ∈ G.

Corollary 6. If an n-ary group 〈G, f 〉 contains an element a such that
a = ā(k), then h(x) = x̄(k) is an endomorphism of 〈G, f 〉 if and only if

(i) f(x, a, . . . , a, y)
(k)

= f(x̄(k), a, . . . , a, ȳ(k) ),

(ii) f(ā, x, a, . . . , a)
(k)

= f(ā, x̄(k), a, . . . , a ),

(iii) f(ā, ā, . . . , ā)
(k)

= f(ā, ā, . . . , ā )

for all x, y ∈ G.

Corollary 7. If an n-ary group 〈G, f 〉 contains an idempotent a, then
h(x) = x̄(k) is an endomorphism if and only if

(i) f(x, a, . . . , a, y)
(k)

= f(x̄(k), a, . . . , a, ȳ(k) ),

(ii) f(a, x, a, . . . , a)
(k)

= f(a, x̄(k), a, . . . , a )

for all x, y ∈ G.

We finish this section by the following problem.

Problem 5. Describe the class Uk of n-ary groups in which x̄(k) = y(k)

for all elements x, y.

The class Uk contains n-ary groups with only one k-skew element, i.e.
n-ary groups in which there exists only one element a such that a = x̄(k)

for all x. Obviously U1 ⊂ U2 ⊂ U3 ⊂ . . .

It is not difficult to see that a ternary group belongs to Uk if and only
if it is trivial (has only one element). The class U1 coincides with the class
of all n-ary groups derived from binary groups of the exponent t|n − 2
(Theorem 6). Generally, all n-ary groups derived from the binary group of
the exponent t | (n−2)k belong to Uk, but Uk contains also other groups.
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3. Sequences

Now we consider the sequence

x, x̄ , x̄(2) , x̄(3) , x̄(4) , . . . , x̄(k) , . . .

If an n-ary group 〈G, f 〉 is finite, then obviously x̄(k) = x̄(t) for some k 6= t.
(In a 6-ary group derived from the additive group Z12 for x = 1 we have:
1, 8, 4, 8, 4, 8, 4, . . . ) But in some infinite n-ary groups (for example in an
n-ary group derived from the additive group of integers) x̄(k) 6= x̄(t) for all
k 6= t.

In connection with this the following two problems were posed in [10].

Problem 6. Describe infinite n-ary groups in which x(k) 6= x(m) for all
k 6= m and all x ∈ G.

Problem 7. Describe n-ary groups in which there exists a natural number
k such that x(k) = x(m) for all m > k and all x ∈ G.

Following E. L. Post (cf. [31], p.282), we define the n-ary power putting

x<k> =





f(x<k−1>, x, . . . , x) for k > 0,
x for k = 0,
y : f(y, x<−k−1>, x, . . . , x) = x for k < 0,

i.e. x<0> = x ,

x<1> = f(x, x, . . . , x) ,

x<2> = f(x<1>, x, x, . . . , x) ,

x<3> = f(x<2>, x, x, . . . , x) ,
. . . . . . . . . . . . . . . . . .

A minimal natural number k (if it exists) such that x<k> = x is called
an n-ary order of x and is denoted by ordn(x).

It is not difficult to verify that the following exponential laws hold

f(x<s1>, x<s2>, . . . , x<sn>) = x<s1+s2+...+sn+1>,

(x<r>)<s> = x<rs(n−1)+s+r> = (x<s>)<r>.

Using the above laws we can see that x̄ = x<−1> and, in the consequence

x̄(2) = (x<−1>)<−1> = x<n−3>,

x̄(3) = ((x<−1>)<−1>)<−1>,
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and so on. Generally: x̄(k) = (x̄(k−1))<−1> for all k > 1. This implies that
x̄(k) = x<Sk> for

Sk = −
k−1∑

i=0

(2− n)i =
(2− n)k − 1

n− 1

Obviously ordn(x̄) is a divisor of ordn(x), and ordn(x) is a divisor of
Card(G). This last fact is a simple conclusion from Lagrange’s theorem for
finite n-ary groups (sf. [31], p.222). Hence

ordn(x) > ordn(x̄) > ordn(x̄(2)) > ordn(x̄(3)) > . . .

The first natural questions are:

1. When ordn(x) = ordn(x̄) ?

2. When there exists k such that ordn(x̄(k)) = ordn(x̄(t)) for all t > k ?

3. When lim
t→∞ ordn(x(t)) = 1 ?

From some results obtained by E. L. Post for a finite n-ary group gene-
rated by one element (cf. [31], p.283), we can deduce that

ordn(x<s>) =
ordn(x)

gcd{s(n− 1) + 1, ordn(x)}

whenever ordn(x) is finite. Therefore for k > 1, we have

ordn(x̄(k)) = ordn(x<sk>) =
ordn(x)

gcd{n− 2, ordn(x)} .

Thus
ordn(x) > ordn(x̄) = ordn(x̄(2)) = ordn(x̄(3)) = . . .

Moreover, ordn(x̄) = ordn(x) < ∞ if and only if ordn(x) and n − 2 are
relatively prime. Obviously lim

t→∞ ordn(x(t)) = 1 if and only if ordn(x) is a
divisor of n− 2.

This, together with Theorem 2 from [7], gives the following characteri-
zation of orders of skew elements.

Theorem 5. If ordn(x) = pα1
1 pα2

2 . . . pαm
m , where p1, p2, . . . , pm are prime

numbers, then for all t > 1 we have ordn(x̄(t)) = 1 or ordn(x̄(t)) =
pα1
1 pα2

2 . . . pαk
k , where k 6 m and p1 - n− 2, p2 - n− 2, . . . , pk - n− 2.
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Corollary 8. If every prime divisor of Card(G) is a divisor of n−2, then
all skew elements of an n-ary group 〈G, f〉 are idempotent.

A commutative n-ary group with this property is derived from some
(commutative) binary group. All idempotents of such n-ary group are neu-
tral elements in the sense of W. Dörnte (cf. [6]). The set of all neutral
elements of a given n-ary group is empty or forms a commutative n-ary
subgroup of this group (cf. [17]).

4. Special subgroups

An element x of an n-ary group 〈G, f〉 is called potent if for some natural
k > 1 an element x<k> is idempotent. For any natural n > 3 there exist
infinitely many pairwise non-isomorphic n-ary groups containing at least
one potent element (cf. [17]). It is not difficult to see that x is potent if
and only if x<1> is idempotent, or equivalently, if and only if ordn(x) is a
divisor of n.

Problem 8. When the set of all potents of a given n-ary group is an n-ary
(normal) subgroup ?

In [10] is considered the class Vk of n-ary groups in which x(k) = x
holds for all x. This class is a variety, Vk ∩Vk+1 = V1 and Vk ⊂ Vkm

for any natural k, m. Any Vk contains the variety of medial n-ary groups
(and in the consequence – the variety of all commutative n-ary groups).
But it contains also non-medial n-ary groups. V2k contains the variety of
ternary groups.

Problem 9. Describe the variety Vk .

Note that if h(x) = x̄(k) is an endomorphism of an n-ary group, then
the relation

x ρk y ⇐⇒ x(k) = y(k)

is a congruence on 〈G, f〉 and

G(k) = {x(k) | x ∈ G}

is an n-ary subgroup of 〈G, f〉. Also

E(k) = {x ∈ G | x(k) = x}
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is an n-ary subgroup, if it is non-empty.
Generally E(k) ⊂ G(k), but in some cases E(k) = G(k). For example, in

ternary groups we have E(2k) = G(2k) for all natural k. Unfortunately, this
not implies E(2k+1) = G(2k+1). Nevertheless in ternary groups G(k) = G
for all k.

Moreover, E(k) ∈ Vk, E(1) ⊂ E(k), E(s) ⊂ E(sk), E(s)∩E(s+1) = E(1),
G(k+1) = (G(k))(1) and

G ⊃ G(1) ⊃ G(2) ⊃ G(3) ⊃ ...

In finite n-ary groups G(k) = G(k+1) = ... for some k ∈ N , but in an
n-ary group derived from the additive group of integers G(k) 6= G(m) for
all k 6= m.

Problem 10. Describe the class of all n-ary groups (or only medial groups)
satisfying the descending chain condition for G(k).

If G(k) = G for some k > 1, then also G(1) = G. Conversely, if
G(1) = G, then G(2) = (G(1))(1) = G, and, in the consequence, G(k) = G
for all k > 1. Thus the question on the equation G(k) = G can be reduced
to the question on the equation G(1) = G.

Problem 11. Describe n-ary groups in which G(1) = G.

G(k) and E(k) are n-ary subgroups also in some n-ary groups in which
h(x) = x̄(k) is not an endomorphism. A simple illustration of such situation
is a 4-group derived from the symmetric group S3. In this 4-group we have
G(k) = G(1) = E(1) = E(k) = { z ∈ S3 | z3 = e } and x̄(k) = x̄ for all
x ∈ S3, but f(a, z, a, z) 6= f(

−
a,
−
z,
−
a,
−
z) for a = ( 1 2 ), y = ( 1 2 3 ).

Problem 12. Describe n-ary groups in which G(1) is an n-ary subgroup.

Problem 13. Describe n-ary groups in which E(k) is an n-ary subgroup.

In a distributive n-ary group, i.e. in an n-ary group satisfying the iden-
tity

f(x1, ..., xn) = f(x1, ..., xi−1,
−
xi, xi+1, ..., xn) , (10)

where i = 1, 2, ..., n, we have

x(n−1) = x = x<n−1>
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(cf. [14]). In such n-ary group all elements have the same finite n-ary order
which is a divisor of n− 1. Moreover, if ordn(x) = k, then x<t> = x̄(k−t)

and x̄(t) = x<k−t> for t = 0, 1, . . . , k. Thus the smallest n-ary subgroup
containing x has the form

Cx = {x, x<1>, . . . , x<k−1>} = {x, x̄, . . . , x(k−1)} ,

where k = ordn(x). Obviously Cx is commutative and has no proper sub-
groups. This suggest the following theorem proved in [14].

Theorem 6. (Dudek 1995) Any distributive n-ary group is a set-theoretic
union of disjoint cyclic and isomorphic n-ary groups without proper sub-
groups.

Theorem 7. (Dudek 1995) Let a ◦ b = f(a, x, . . . , x, b), where x is an ar-
bitrary element of a distributive n-ary group 〈G, f〉. Then Cx is a normal
subgroup of 〈G, ◦〉 and every coset of Cx in 〈G, ◦〉 is an n-ary subgroup of
〈G, f〉 isomorphic to 〈Cx, f〉.

Problem 14. Prove or disprove the converse of the above theorems.

A distributive n-ary group is a set-theoretic union of commutative sub-
groups but it is not commutative in general. Indeed, if t > 2, (t−1)|(n−1)
and p = tn−1 − 1, then ϕ(x) ≡ tx(mod p) is an automorphism of the addi-
tive group Zp such that ϕn−1(x) ≡ x(mod p) for all x ∈ Zp and ϕ(b) ≡ b
for b = 1 + t + t2 + . . . + tn−2. It is not difficult to see that Zp with the
operation

f(x1, x2, . . . , xn) = (x1 + ϕ(x2) + . . . + ϕn−2(xn−1) + xn + b)(mod p)

is a distributive n-ary group in which x̄(k) ≡ (x − kb)(mod p). This n-ary
group is a set-theoretic union of t disjoint commutative n-ary subgroups
C0, C1, . . . , Ct−1, but it is only medial.

Any medial distributive n-ary group 〈G, f〉 is autodistributive (cf. [9]),
i.e. the operation f is distributive with respect to itself. This means that
for every i = 1, 2, . . . , n the following identity is satisfied

f(x1, . . . , xi−1, f(y1, y2, . . . , yn), xi+1, . . . , xn) =

f(f(x1, . . . , xi−1, y1, xi+1, . . . , xn), . . . , f(x1, . . . , xi−1, yn, xi+1, . . . , xn)).

Any autodistributive n-ary group is distributive (cf. [9]), but for any
n > 3 there exists at least one idempotent distributive n-ary group which
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is not autodistributive. Such n-ary group can be induced by the group
(C3, •) and its automorphism ϕ(x, y, z) = (αx, α2y, αz), where C is the set
of complex numbers,

(x, y, z) • (a, b, c) = (x + a, b + xc + y, z + c)

and α is a primitive (n − 1)-th root of unity (see [14], Theorem 6). For
any n > 7 there are also non-idempotent distributive groups which are not
autodistributive. Ternary distributive groups are autodistributive and vice
versa. For n = 4, 5, 6 the problem is open.

In a distributive n-ary group 〈G, f〉 the operation ¯ : x → x̄ is an au-
tomorphism and induces the cyclic invariant subgroup Auts̄ 〈G, f〉 in the
group of all automorphism Aut 〈G, f〉 and in the group Auts 〈G, f〉 of all
splitting-automorphism in the sense of Płonka (cf. [30]).

Problem 15. Describe the structure of groups: Aut 〈G, f〉/Auts̄ 〈G, f〉,
Aut 〈G, f〉/Auts 〈G, f〉 and Auts 〈G, f〉/Auts̄ 〈G, f〉.

If h is a splitting-automorphism of 〈G, f〉, then (as it is not difficult to
see) h(x) = hn(x) for every x ∈ G.

Problem 16. When Auts 〈G, f〉 = Auts̄ 〈G, f〉 ?

Note by the way (cf. [14]), that if 〈H, f〉 is an n-ary subgroup of an
autodistributive n-ary group 〈G, f〉, then for every i = 1, . . . , n and for all
a1, a2, . . . , an ∈ G the coset

{ f(a1, . . . , ai−1, h, ai+1, . . . , an) |h ∈ H}
is an n-ary subgroup of 〈G, f〉 isomorphic to 〈H, f〉.

Moreover, in medial autodistributive n-ary groups

{ f(a1, . . . , ai−1, h, ai+1, . . . , an) |h ∈ G(k)} = G(k) = G

for all k > 0, and

{ f(a1, . . . , ai−1, h, ai+1, . . . , an) |h ∈ E(t)} = E(t) = G

for t such that x<t> = x for all x ∈ G. In this case we have also G(k) = G
and E(t) = G.

Unfortunately, this situation is not characteristic for medial autodis-
tributive n-ary groups, because it takes place in some non-medial and non-
autodistributive n-ary groups, too.
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5. Fuzzy subgroups

By a fuzzy set µ in a set G we mean a function µ : G → [0, 1]. The set

L(µ, t) = {x ∈ G : µ(x) > t},

where t ∈ [0, 1] is fixed, is called a level subset of µ.
A fuzzy set µ defined on a binary groupoid 〈G, ·〉 is called a fuzzy

subgroupoid of G if µ(x · y) > min{µ(x), µ(y)} for all x, y ∈ G. A fuzzy
set µ defined on a quasigroup 〈G, ·, \, /〉 is called a fuzzy subquasigroup of
G if µ(x ∗ y) > min{µ(x), µ(y)} for all x, y ∈ G and ∗ ∈ {·, \, /}. A fuzzy
set µ defined on a group 〈G, ·〉 is called a fuzzy subgroup (or Rosenfeld’s
fuzzy subgroup) of G if it is a fuzzy subgroupoid such that µ(x−1) > µ(x)
(or equivalently: µ(x−1) = µ(x) ) for all x ∈ G. (See the series of papers in
Fuzzy Sets and Systems.)

The above concepts can be extended to n-ary systems in the way pro-
posed in [16]. Namely, a fuzzy set µ defined on an n-ary groupoid 〈G, f〉
will be called an n-ary fuzzy subgroupoid of G if

µ(f(x1, x2, . . . , xn)) > min{µ(x1), . . . , µ(xn)}

will be satisfied for all x1, . . . , xn ∈ G.
This extension is good because for n = 2 it gives the standard defini-

tion. Moreover, all main results obtained for n = 2 can be proved also for
n > 2 (cf. [16]).

Theorem 8. (Dudek 2000) A fuzzy set µ of an n-ary groupoid 〈G, f〉 is
an n-ary fuzzy subgroupoid of G if and only if for every t ∈ [0, 1], L(µ, t)
is either empty or an n-ary subgroupoid of 〈G, f〉. Moreover, any n-ary
subgroupoid of 〈G, f〉 can be realized as a level subgroupoid of some n-ary
fuzzy subgroupoid.

Theorem 9. (Dudek 2000) If a fuzzy set µ of an n-ary groupoid 〈G, f〉 has
the finite set of values t0 > t1 > . . . > tm and S0 ⊂ S1 ⊂ . . . ⊂ Sm = G are
n-ary subgroupoids of 〈G, f〉 such that µ(Sk \ Sk−1) = tk for 0 6 k 6 m,
where S−1 = ∅, then µ is an n-ary fuzzy subgroupoid.

Theorem 10. (Dudek 2000) If every n-ary fuzzy subgroupoid µ defined
on 〈G, f〉 has the finite set of values, then every descending chain of n-ary
subgroupoids of 〈G, f〉 terminates at finite step.
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A fuzzy set µ defined on G is said to be normal if there exists x ∈ G such
that µ(x) = 1. A simple example of normal fuzzy sets are characteristic
functions of subsets of G.

If an n-ary groupoid 〈G, f〉 is unipotent (cf. [12]), i.e. if there exists an
element θ ∈ G such that f(x, x, . . . , x) = θ for all x ∈ G, then a fuzzy set
µ defined on G is normal if and only if µ(θ) = 1.

The set N (G) of all normal n-ary fuzzy subgroupoids defined on an
n-ary groupoid 〈G, f〉 is partially ordered by the relation

µ v ρ ⇐⇒ µ(x) 6 ρ(x)

for all x ∈ G.
For any n-ary fuzzy subgroupoid µ of 〈G, f〉 there exists ρ ∈ N (G) such

that µ v ρ. Moreover, if 〈G, f〉 is unipotent, then the maximal element of
(N (G),v) is either constant or characteristic function of some subset of G.

An n-ary subquasigroup of an n-ary quasigroup 〈G, f〉 must be defined
as a non-empty subset S of G closed with respect to n + 1 operations
f, f (1), . . . , f (n), i.e. as a subset S of G such that g(x1, . . . , xn) ∈ S for all
x1, . . . , xn ∈ S and all g ∈ F = {f, f (1), f (2), . . . , f (n)}, where f (i) is the
i-th inverse operation of f (cf. [3] or [13]). This means that an n-ary fuzzy
quasigroup must be defined as a fuzzy set such that

µ(g(x1, x2, . . . , xn)) > min{µ(x1), . . . , µ(xn)}

for all x1, . . . , xn ∈ G and g ∈ F .
For such defined n-ary fuzzy quasigroups many of classical results are

proved in (cf. [16]).
The problem is with the fuzzification on n-ary groups. As it is well

known (cf. [6]), a non-empty subset S of an n-ary group 〈G, f〉 is an n-ary
subgroup of 〈G, f〉 if it is closed with respect to f and x̄ ∈ S for every
x ∈ S. Thus, by the analogy to the binary case, an n-ary fuzzy subgroup
can be defined as an n-ary fuzzy subgroupoid µ such that µ(x̄) > µ(x) for
all x ∈ G or as an n-ary fuzzy subgroupoid µ such that µ(x̄) = µ(x) for all
x ∈ G.

Unfortunately these two concepts are not equivalent. Indeed, it is not
difficult to see that in the unipotent 4-ary group derived from the additive
group Z4 the map µ defined by µ(0) = 1 and µ(x) = 0.5 for all x 6= 0 is an
example of fuzzy subgroupoid in which µ(x̄) > µ(x) for all x ∈ Z4. Thus
µ is a fuzzy subgroup in the first sense. It is not a fuzzy subgroup in the
second sense because for x = 2 we have µ(x̄) > µ(x).
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These two concepts of an n-ary fuzzy group are equivalent for ternary
groups and for all n-ary groups satisfying the identity x̄(k) = x, where k > 0
depends (or not) on x.

Problem 17. Find the connection between n-ary fuzzy subgroups of a given
n-ary group and fuzzy subgroups of its binary retracts (creating group).

6. r-adic skew elements

r-adic skew elements were introduced by S. A. Rusakov (cf. [34]) as a
generalization of skew elements and were used to the investigation of some
properties of n-ary groups connected with their subgroups.

According to [34], an element ã of an n-ary group 〈G, f〉 is called skew
of type k and is denoted by ā(k,1) if the equation

f(a<k−1>, a, . . . , a, ã) = a

is satisfied. By the r-adic skew element of type k, where k, r ∈ N and
ā(k,0) = a, we mean an element

ā(k, r) = ā(k,r−1)
(k,1)

.

It is easy to see that ā(1, r) = ā(r), i.e. r-adic skew elements of type k = 1
are skew in the sense of Dörnte.

Moreover, r-adic skew elements of type k can be used to the definition
of n-ary groups and have similar (but not identical) properties as elements
skew in the sense of Dörnte. For example, ā(k,r) = a<Skr>, where

Skr =
(1− k(n− 1))r − 1

n− 1

and

ordn(ā(k,r)) =
ordn(a)

gcd{(k(n− 1)− 1)r, ordn(a)} .

But on the other hand, in a ternary group derived from the additive group
of integers we have ā = −a, ā(2) = a and ā(k,r) 6= ā(k,t) = (1−2k)ta for all
k > 1 and r 6= t. In this group we have also ā(14,t) = ā(2,3t) for all t ∈ N .

Problems for r-adic skew elements are similar to the problems posed for
skew elements in the sense of Dörnte. For example, when ā(k,r) = a or
when h(x) = x̄(k,r) is an automorphism.
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