On B-algebras and quasigroups

Jung R. Cho and Hee Sik Kim

Abstract

In this paper we discuss further relations between B-algebras and quasigroups.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras $([2,3])$. It is known that the class of $B C K$ algebras is a proper subclass of the class of $B C I$-algebras. In $[4,5] \mathrm{Q} . \mathrm{P}$. Hu and X . Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. J. Neggers and H. S. Kim introduced in [8] the notion of d-algebras, i.e. algebras satisfying (1) $x x=0$, (5) $0 x=0$, (6) $x y=0$ and $y x=0$ imply $x=y$, which is another useful generalization of $B C K$-algebras, and then they investigated several relations between d-algebras and $B C K$-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim introduced in [6] a new notion, called an BH algebra, determined by (1), (2) $x 0=x$ and (6), which is a generalization of $B C H / B C I / B C K$-algebras. They also defined the notions of ideals and boundedness in BH -algebras, and showed that there is a maximal ideal in bounded $B H$-algebras. J. Neggers and H. S. Kim introduced in [9] and investigated a class of algebras which is related to several classes of algebras of interest such as $B C H / B C I / B C K$-algebras and which seems to have rather nice properties without being excessively complicated otherwise. In this paper we discuss further relations between B-algebras and other topics, especially quasigroups. This is a continuation of [9].

2. Preliminaries

A B-algebra is a non-empty set X with a constant 0 and a binary operation "." (denoted by juxtaposition) satisfying the following axioms:
(1) $x x=0$,
(2) $x 0=x$,
(3) $\quad(x y) z=x(z(0 y))$
for all $x, y, z \in X$.

Example 2.1. It is easy to see that $X=\{0,1,2,3,4,5\}$ with the multiplication:

\cdot	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

is a B-algebra.

The following result is proved in [9].

Proposition 2.2. If $(X ; \cdot, 0)$ is a B-algebra, then
(i) $x(y z)=(x(0 z)) y$,
(ii) $(x y)(0 y)=x$,
(iii) $x z=y z$ implies $x=y$
for all $x, y, z \in X$.

A B-algebra $(X ; \cdot 0)$ is said to be 0 -commutative if $x(0 y)=y(0 x)$ for any $x, y \in X$.

The B-algebra from the above example is not 0 -commutative, since we have $3 \cdot(0 \cdot 4)=2 \neq 1=4 \cdot(0 \cdot 3)$. A simple example of a 0 -commutative B-algebra is a Boolean group. It is not difficult to see that a B-algebra is a Boolean group iff it satisfies one from the following identities: $0 x=x$, $x y=y x,(x y) z=x(y z)$.

3. B-algebras and quasigroups

Lemma 3.1. Let $(X ; \cdot, 0)$ be a B-algebra. Then for all $x, y \in X$
(i) $\quad x y=0$ implies $x=y$,
(ii) $0 x=0 y$ implies $x=y$,
(iii) $0(0 x)=x$.

Proof. (i) Trivially follows from Proposition 2.2 (iii) and the fact that $0=y y$.
(ii) If $0 x=0 y$, then

$$
0=x x=(x x) 0=x(0(0 x))=x(0(0 y))=(x y) 0=x y
$$

and hence $x=y$ by (i).
(iii) For any $x \in X$, since $0 x=(0 x) 0=0(0(0 x))$ by (ii), we have $x=0(0 x)$.

Theorem 3.2. In any B-algebra the left cancellation law holds.

Proof. Assume that $x y=x z$. Then $0(x y)=0(x z)$. By Proposition 2.2 (i), we obtain that $(0(0 y)) x=(0(0 z)) x$. By Lemma 3.1 (iii) we have $y x=z x$. Hence $y=z$ by Proposition 2.2 (iii).

Let L_{a} and R_{a} be the left and right translation of X (respectively), i.e. let $L_{a}(x)=a x$ and $R_{a}(x)=x a$ for all $x \in X$.

Lemma 3.3. If $(X ; \cdot, 0)$ is a B-algebra, then
(i) L_{0} is a bijection,
(ii) $\quad R_{0}=R_{0}^{-1}=i d_{X}$,
(iii) L_{a} and R_{a} are injective for all $a \in X$,
(iv) $\quad L_{0}^{-1}(0 \cdot x)=L_{0}^{-1}\left(L_{0}(x)\right)=x$ and

$$
0 \cdot\left(L_{0}^{-1}(x)\right)=L_{0}\left(L_{0}^{-1}(x)\right)=x \text { for } x \in X
$$

Proof. (i) Since $0(0 x)=x, L_{0}^{2}=i d_{X}$ and so L_{0} is a bijection.
(ii) is a consequence of (2).
(iii) follows from Proposition 2.2 (iii) and Theorem 3.2.

Lemma 3.4. L_{a} and R_{a} are surjective for all $a \in X$.

Proof. Let $c \in X$. Putting $b=\left(L_{0}^{-1}(c)\right) \cdot(0 \cdot a)$, we obtain

$$
\begin{aligned}
L_{a}(b) & =L_{a}\left(L_{0}^{-1}(c) \cdot(0 \cdot a)\right)=a \cdot\left(L_{0}^{-1}(c) \cdot(0 \cdot a)\right) \\
& \left.=(a \cdot a) \cdot\left(L_{0}^{-1}(c)\right)\right)=0 \cdot\left(L_{0}^{-1}(c)\right)=c .
\end{aligned}
$$

Thus L_{a} is surjective.
Similarly, for $b=c \cdot\left(L_{0}^{-1}(a)\right)$ we have

$$
\begin{aligned}
R_{a}(b) & =R_{a}\left(\left(c \cdot\left(L_{0}^{-1}(a)\right)=\left(c \cdot\left(L_{0}^{-1}(a)\right)\right) \cdot a\right.\right. \\
& =\left(c \cdot\left(L_{0}^{-1}(a)\right)\right) \cdot\left(0 \cdot\left(L_{0}^{-1}(a)\right)\right)=c .
\end{aligned}
$$

by Proposition 2.2 (ii). Hence R_{a} is surjective.
Theorem 3.5. Every B-algebra is a quasigroup.
Proof. By Lemma 3.3 (iii) and Lemma 3.4.
Proposition 3.6. A B-algebra $(X ; \cdot, 0)$ satisfies the identity $(y x) x=y$ if and only if it is a loop and 0 is its neutral element.

Proof. If a B-algebra $(X ; \cdot, 0)$ satisfies the identity $(y x) x=y$, then putting $y=0$ in this identity we have $(0 x) x=0$, which by Lemma 3.1 (i) gives $0 x=x$. Hence 0 is the neutral element of $(X ; \cdot, 0)$. By Theorem 3.5 $(X ; \cdot, 0)$ is a loop.

Conversely, if 0 is the neutral element of a B-algebra ($X ; \cdot, 0$), then

$$
(y x) x=y(x(0 x))=y(x x)=y 0=y
$$

for all $x, y \in X$. This proves the proposition.
Theorem 3.7. A-algebra satisfies the identity $x(x y)=y$ if and only if it is 0 -commutative.

Proof. If a B-algebra $(X ; \cdot, 0)$ satisfies the identity $x(x y)=y$, then

$$
\begin{aligned}
(x(0 y)) y & =x(y(0(0 y)))=x(y y)=x 0=x=y(y x) \\
& =y(y(0(0 x)))=(y(0 x)) y .
\end{aligned}
$$

Hence we have $(x(0 y)) y=(y(0 x)) y$. Then, by the right cancellation law, we obtain $x(0 y)=y(0 x)$.

The converse statement is proved in [9].
Remark. A B-algebra satisfying the identity $x(x y)=y$ is not, in general, a loop. Indeed, if $(G,+, 0)$ is an abelian group, then G with the operation $x \cdot y=x-y$ is an example of a 0 -commutative B-algebra, which satisfies this identity but it is not a loop.

References

[1] R. H. Bruck: A survey of binary systems, Springer-Verlag, New York, 1971.
[2] Q. P. Hu and X. Li On BCH-algebras, Math. Seminar Notes 11 (1983), $313-320$.
[3] Q. P. Hu and X. Li: On proper BCH-algebras, Math. Japon. 30 (1985), $659-661$.
[4] K. Iséki and S. Tanaka: An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), 1 - 26.
[5] K. Iséki: On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[6] Y. B. Jun, E. H. Roh and H. S. Kim: On BH-algebras, Sci. Mathematicae 1 (1998), $347-354$.
[7] J. Meng and Y. B. Jun: BCK-algebras, Kyung Moon Sa Co., Seoul 1994.
[8] J. Neggers and H. S. Kim: On d-algebras, Math. Slovaca 49 (1999), 19-26.
[9] J. Neggers and H. S. Kim, On B-algebras, (submitted)
[10] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Inter. Math. J. 2 (2002), (to appear)

Hee Sik Kim
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
heekim@hanyang.ac.kr

