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Squares in quadratical quasigroups
Vladimir Violenec

Abstract

"Geometrical" concept of square is defined and investigated in any quadratical

quasigroup.

A groupoid (@, -) is said to be quadratical if the identity
ab-a = ca - bc (1)

holds and the equation ax = b has a unique solution z € ) for any
a,b € Q (cf. |10] and |3|). Every quadratical groupoid (Q,-) is a
quasigroup, i.e. the equation za = b has a unique solution = € @ for
any a,b € (). In a quadratical quasigroup (Q, -) the identities

aa = a (idempotency), (2)
a-ba = ab-a (elasticity), (3)
ab-a = ba-b, (4)

ab-cd = ac-bd (mediality) (5)

and the equivalency
ab=c <= bc=ca (6)

hold (cf. [10]).
If C is the set of all points of an Euclidean plane and if a groupoid
(C,-) is defined so that aa = a for any a € C and for any two
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different points a,b € C' the point ab is the centre of the positively
oriented square with two adjacent vertices a and b (Fig. 1), then (C,-)
is a quadratical quasigroup. The figures in this quasigroup (C,-) can
be used for illustration of "geometrical" relations in any quadratical
quasigroup (@, -) and for motivation of the study of this quasigroup.

From now on let (@Q,-) be any quadratical quasigroup. The ele-
ments of the set () are said to be points.

If an operation e is defined on the set () by

aeb=ab-a=ca-bc, (7)

then (@, @) is an idempotent medial commutative quasigroup (cf. [2]),
i.e. the identities

aea = a, (8)
(aeb)e(ced) = (aec)e(bed), 9)
aeb = beq

hold, and the operations - and e are mutually medial, i.e. the identity
abecd = (aec)(bed) (10)

holds. For any two points a and b the point a e b is said to be the
midpoint of a and b (cf. Fig. 1).

ab de c cb
0
d b
a b
ba ad a ba
Fig. 1. Fig. 2.

Theorem 1. If any three of four products ab, be, cd, da are equal,
then all four products are equal (cf. Fig. 2).
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Proof. Let ab = bc = cd. The equality bc = cd implies by (6) db = c.
Therefore, by (4), we obtain

bd-b=db-d=cd=ab,

where from it follows bd = a and then by (6) finally da = ab. O

Corollary 1. Any three of four equalities
ab=o0, bc=o0, cd=o0, da=o0 (11)

imply the remaining equality. O

A quadrangle (a,b,c,d) is said to be a square and is denoted by
S(a,b,c,d) if any three of four products ab, be, cd, da (and then all
four products) are equal. More exactly, a quadrangle (a,b,c,d) is said
to be a square with the centre o and is denoted by S,(a,b, ¢, d) if any
three of four equalities (11) (and then all four equalities) hold.

If (e, f,g,h) is a cyclic permutation of (a, b, c,d), then S(a,b,c,d)
implies S(e, f,g,h) and S,(a,b,c,d) implies S,(e, f, g, h).

The point o is said to be the centre of a square on a segment (a,b)
if S,(a,b,c,d) holds for some points ¢ and d.

Let us prove some simple results about squares.

Theorem 2. S(a,b,c,d) implies S,(a,b,c,d), where o = aec = bed.
(cf. Fig.2)

Proof. Let S,(a,b,c,d) holds. From (11) we obtain

0(:2)00:da-cd(2aoc,

and analogously o = b e d. O

Theorem 3. The statement S(a, b, c,d) is equivalent with any of four
(and then all four) equalities

ac=d, bd=a, ca=b, db=c. (12)
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Proof. According to the proof of Theorem 1 S(a,b,c,d) implies bd =
a, db = ¢ and analogously ac = d, ca = b. Conversely, because of
cyclical permutations of (a, b, ¢, d), it suffices to prove the implications

ac=d, bd=a = S(a,b,cd),
ac=d, ca=b = S(a,b,cAd).

From ac =d and bd = a by (6) it follows cd = da and da = ab
and then Theorem 1 implies S(a,b,c,d).
If ac =d and ca = b, then we obtain

ab:a-ca@ac-a:da:ac-a@ca-c:bc

and Theorem 1 implies S(a,b,c,d) again. O

Corollary 2. For any two points a and b it holds Syep(a,ba,b, ab)
and baeab=aeb (cf. Fig.1). O

Theorem 4. Let Sy, (a',b',c,d) holds. The statements S,(a,b,c,d),
Seor(aad', bV e, dd'), Syo(a’a,b'b,dc,d'd) are equivalent.

Proof. 1t is sufficient to prove that the equalities ab = o and aa’-bb' =
00’ are equivalent if a’b’ = o’ holds. But, this is obvious, because of

ab-o =ab-a't Y aa’ - bb. O
For any point p we obviously have S,(p,p,p,p). Therefore:
Corollary 3. The following three statements:
So(a,b, e, d), Spo(pa,pb,pc,pd), Sep(ap,bp, cp,dp)

are mutually equivalent. O

Theorem 5. S,(a,b,c,d) implies S,(ba,cb,dc,ad) and ad e ba = a,
baecb=">b, chedc=c, dcead=d (cf. Fig.2).
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Proof. S,(a,b,c,d) obviously implies S,(b,c,d,a) and according to

Theorem 4 it follows S,(ba, cb, dc, ad) because of oo @ . Further we
obtain

adeba Y (aeb)(dea) L (aeb)(aed) =

(g)aaobd@aobd(g)aoa@a. |

Theorem 6. Let Sy(a',V,c,d") holds. The statements S,(a,b,c,d)
and Sep(a®a’ beb cec ded ) are equivalent.

Proof. 1t suffices to prove the equivalency of the equalities ab = o and
(aea)(beb) =o0e0 if the equality a't/ = o' holds. This is obvious
because of

abe o =abeat L (aod)(beld). O
Corollary 4. S,(a,b,c,d) <= Spe(p®a,peb,pec,ped). O
Corollary 5. S,(a,b,c,d) = S,(aeb,bec,ced dea). O

Theorem 7. If ab = ¢, bec =d, cea = ¢, aeb = f, then
be=ca=f, af =e, fb=d and Sees(e, f,d,c) (cf. Fig.3).

Fig. 3.

Proof. By Corollary 2 we have S¢(a,ba,b,c) and ba e ¢ = f. There-
fore, Corollary 4 implies Scef(e, f,d, c) because of cea = ¢, ceba = f,
ceb=d, cec=c. Further, we obtain

be=b-abZba-bZLhea=f
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ca:ab~a(:7)aob:f,

af:a(aob)@(aoa)(aob) (g)aaoab@aoc:e,
fo=(aob)b 2 (aeb)bob) L abetb P ceb=d. 0

Theorem 8. If V' and ¢ are the centres of squares on the segments
(c,a) and (a,b), then bec is the centre of a square on the segment

(V) (cf. Fig. 4).

Fig. 4.

Proof. As ca =0V and ab = ¢, so we have W =ab-caZbec. O

In the case of the quasigroup (C,-) Theorem 8 proves a statement
from [1], [7], [8], [9] and [11] which can be stated as a very famous
problem of Captain Kidd burried treasure (cf. [6] and [4]).

The rotation about a point a through a (positively oriented) right
angle is a transformation x — y of points such that xy = a.

Theorem 9. If UV, V', ¢, ¢’ are the centres of squares on the seg-
ments (c,a), (a,c), (a,b), (b,a), then the rotation about the point
bec through a right angle maps the segment (', V") onto the segment
(', ") (cf. Fig. 4).

Proof. We have the equality from the above proof and analogously

b”c/’:ac-ba@ab-cagboc. O



Squares in quadratical quasigroups 43

Theorem 10. Let S,(p,a,u,b) be fized. If (p,a’,u' V) is a square
with the center o, then (o,bed’ o', aeb) is a square with the centre
oed and aell =00, bea =0do, ba’ =ba=ueu (cf. Fig.5).

Fig. 5.

Proof. By Theorem 6 from S,(u,b,p,a) and S, (p,a’,u', V') it follows
Sosor(uep,bea’ peu' ael). But, uep=o0 and peu' =0 and we
obtain Syey(0,b @ a’ 0 a @), where from 00’ = a el/, oo =bed
follows by Theorem 3. o

In the case of the quasigroup (C,-) Theorem 10 proves a result
from [2]| and [5].
References

[1] L. Bankoff: Problem 540, Crux Math. 6 (1980), 114.

|2|] A. I. Chegodaev: Application of geometric transformation in
problem solving, (in Russian), Mat. v Skole 1962, 88 — 89.

[3] W. A. Dudek: Quadratical quasigroups, Quasigroups and Re-
lated Systems 4 (1997), 9 — 13.

[4] A. Dunkels: Problem 400, Crux Math. 4 (1978), 284.

[5] V. M. Fishman: Solving of problems by geometric transforma-
tions, (in Russian), Kvant 1975, No. 7, 30 — 35.



44 V. Volenec

[6] G. Gamow: One, Two, Three ... Infinity, Viking Press, 1947.

|7]| Hoang Chung: Teaching students creative activity, (in Russian),
Mat. v skole 1966, No. 2, 77 — 81.

|8] M. S. Klamkin and A. Liu: Problem 1605, Crux Math. 17
(1991), 14.

|9] E. A. Lihota: Variation of problem conditions in out of class
activities, (in Russian), Mat. v Skole 1983, No. 6, cover pages
3 —4.

[10] V. Volenec: Quadratical groupoids, Note di Mat. 13 (1993),
107 — 115.

[11] Problem 3, Math. Inform. Quart. 6 (1996), 213 — 214.

Department of Mathematics Received June 20, 2000
University of Zagreb

10000 Zagreb

Bijenicka c. 30

Croatia

e-mail: volenec@math.hr



