Squares in quadratical quasigroups

Vladimir Volenec

Abstract

"Geometrical" concept of square is defined and investigated in any quadratical quasigroup.

A groupoid (Q, \cdot) is said to be *quadratical* if the identity

$$ab \cdot a = ca \cdot bc \tag{1}$$

holds and the equation ax = b has a unique solution $x \in Q$ for any $a, b \in Q$ (cf. [10] and [3]). Every quadratical groupoid (Q, \cdot) is a quasigroup, i.e. the equation xa = b has a unique solution $x \in Q$ for any $a, b \in Q$. In a quadratical quasigroup (Q, \cdot) the identities

$$aa = a$$
 (idempotency), (2)

$$a \cdot ba = ab \cdot a \quad \text{(elasticity)}, \qquad (3)$$

$$ab \cdot a = ba \cdot b, \qquad (4)$$

$$ab \cdot cd = ac \cdot bd \quad \text{(mediality)} \qquad (5)$$

$$ab \cdot a = ba \cdot b,$$
 (4)

$$ab \cdot cd = ac \cdot bd$$
 (mediality) (5)

and the equivalency

$$ab = c \iff bc = ca$$
 (6)

hold (cf. [10]).

If C is the set of all points of an Euclidean plane and if a groupoid (C, \cdot) is defined so that aa = a for any $a \in C$ and for any two

²⁰⁰⁰ Mathematics Subject Classification: 20N05 Keywords: quadratical quasigroup

V. Volenec

different points $a, b \in C$ the point ab is the centre of the positively oriented square with two adjacent vertices a and b (Fig. 1), then (C, \cdot) is a quadratical quasigroup. The figures in this quasigroup (C, \cdot) can be used for illustration of "geometrical" relations in any quadratical quasigroup (Q, \cdot) and for motivation of the study of this quasigroup.

From now on let (Q, \cdot) be any quadratical quasigroup. The elements of the set Q are said to be *points*.

If an operation \bullet is defined on the set Q by

$$a \bullet b = ab \cdot a = ca \cdot bc, \tag{7}$$

then (Q, \bullet) is an idempotent medial commutative quasigroup (cf. [2]), i.e. the identities

$$a \bullet a = a, \tag{8}$$

$$(a \bullet b) \bullet (c \bullet d) = (a \bullet c) \bullet (b \bullet d), \tag{9}$$

$$a \bullet b = b \bullet a$$

hold, and the operations \cdot and \bullet are mutually medial, i.e. the identity

$$ab \bullet cd = (a \bullet c)(b \bullet d) \tag{10}$$

holds. For any two points a and b the point $a \bullet b$ is said to be the *midpoint* of a and b (cf. Fig. 1).

Theorem 1. If any three of four products ab, bc, cd, da are equal, then all four products are equal (cf. Fig. 2).

Proof. Let ab = bc = cd. The equality bc = cd implies by (6) db = c. Therefore, by (4), we obtain

$$bd \cdot b = db \cdot d = cd = ab.$$

where from it follows bd = a and then by (6) finally da = ab.

Corollary 1. Any three of four equalities

$$ab = o, \ bc = o, \ cd = o, \ da = o$$
 (11)

imply the remaining equality.

A quadrangle (a, b, c, d) is said to be a square and is denoted by S(a, b, c, d) if any three of four products ab, bc, cd, da (and then all four products) are equal. More exactly, a quadrangle (a, b, c, d) is said to be a square with the *centre* o and is denoted by $S_o(a, b, c, d)$ if any three of four equalities (11) (and then all four equalities) hold.

If (e, f, g, h) is a cyclic permutation of (a, b, c, d), then S(a, b, c, d)implies S(e, f, g, h) and $S_o(a, b, c, d)$ implies $S_o(e, f, g, h)$.

The point o is said to be the centre of a square on a segment (a, b) if $S_o(a, b, c, d)$ holds for some points c and d.

Let us prove some simple results about squares.

Theorem 2. S(a, b, c, d) implies $S_o(a, b, c, d)$, where $o = a \bullet c = b \bullet d$. (cf. Fig. 2)

Proof. Let $S_o(a, b, c, d)$ holds. From (11) we obtain

$$o \stackrel{(2)}{=} oo = da \cdot cd \stackrel{(7)}{=} a \bullet c,$$

and analogously $o = b \bullet d$.

Theorem 3. The statement S(a, b, c, d) is equivalent with any of four (and then all four) equalities

$$ac = d, \ bd = a, \ ca = b, \ db = c.$$
 (12)

39

Proof. According to the proof of Theorem 1 S(a, b, c, d) implies bd = a, db = c and analogously ac = d, ca = b. Conversely, because of cyclical permutations of (a, b, c, d), it suffices to prove the implications

$$ac = d, bd = a \implies S(a, b, c, d),$$

 $ac = d, ca = b \implies S(a, b, c, d).$

From ac = d and bd = a by (6) it follows cd = da and da = ab and then Theorem 1 implies S(a, b, c, d).

If ac = d and ca = b, then we obtain

$$ab = a \cdot ca \stackrel{(3)}{=} ac \cdot a = da = ac \cdot a \stackrel{(4)}{=} ca \cdot c = bc$$

and Theorem 1 implies S(a, b, c, d) again.

Corollary 2. For any two points a and b it holds $S_{a \bullet b}(a, ba, b, ab)$ and $ba \bullet ab = a \bullet b$ (cf. Fig. 1).

Theorem 4. Let $S_{o'}(a', b', c', d')$ holds. The statements $S_o(a, b, c, d)$, $S_{oo'}(aa', bb', cc', dd')$, $S_{o'o}(a'a, b'b, c'c, d'd)$ are equivalent.

Proof. It is sufficient to prove that the equalities ab = o and $aa' \cdot bb' = oo'$ are equivalent if a'b' = o' holds. But, this is obvious, because of

$$ab \cdot o' = ab \cdot a'b' \stackrel{(5)}{=} aa' \cdot bb'.$$

For any point p we obviously have $S_p(p, p, p, p)$. Therefore:

Corollary 3. The following three statements:

 $S_o(a, b, c, d), \quad S_{po}(pa, pb, pc, pd), \quad S_{op}(ap, bp, cp, dp)$

are mutually equivalent.

Theorem 5. $S_o(a, b, c, d)$ implies $S_o(ba, cb, dc, ad)$ and $ad \bullet ba = a$, $ba \bullet cb = b$, $cb \bullet dc = c$, $dc \bullet ad = d$ (cf. Fig. 2).

Proof. $S_o(a, b, c, d)$ obviously implies $S_o(b, c, d, a)$ and according to Theorem 4 it follows $S_o(ba, cb, dc, ad)$ because of $oo \stackrel{(2)}{=} o$. Further we obtain

$$ad \bullet ba \stackrel{(10)}{=} (a \bullet b)(d \bullet a) \stackrel{(9)}{=} (a \bullet b)(a \bullet d) =$$
$$\stackrel{(10)}{=} aa \bullet bd \stackrel{(2)}{=} a \bullet bd \stackrel{(12)}{=} a \bullet a \stackrel{(8)}{=} a.$$

Theorem 6. Let $S_{o'}(a', b', c', d')$ holds. The statements $S_o(a, b, c, d)$ and $S_{o \bullet o'}(a \bullet a', b \bullet b', c \bullet c', d \bullet d')$ are equivalent.

Proof. It suffices to prove the equivalency of the equalities ab = o and $(a \bullet a')(b \bullet b') = o \bullet o'$ if the equality a'b' = o' holds. This is obvious because of

$$ab \bullet o' = ab \bullet a'b' \stackrel{(10)}{=} (a \bullet a')(b \bullet b').$$

Corollary 4. $S_o(a, b, c, d) \iff S_{p \bullet o}(p \bullet a, p \bullet b, p \bullet c, p \bullet d).$

Corollary 5.
$$S_o(a, b, c, d) \implies S_o(a \bullet b, b \bullet c, c \bullet d, d \bullet a).$$

Theorem 7. If ab = c, $b \bullet c = d$, $c \bullet a = e$, $a \bullet b = f$, then bc = ca = f, af = e, fb = d and $S_{c \bullet f}(e, f, d, c)$ (cf. Fig. 3).

Proof. By Corollary 2 we have $S_f(a, ba, b, c)$ and $ba \bullet c = f$. Therefore, Corollary 4 implies $S_{c\bullet f}(e, f, d, c)$ because of $c \bullet a = e$, $c \bullet ba = f$, $c \bullet b = d$, $c \bullet c = c$. Further, we obtain

$$bc = b \cdot ab \stackrel{(3)}{=} ba \cdot b \stackrel{(7)}{=} b \bullet a = f,$$

$$ca = ab \cdot a \stackrel{(7)}{=} a \bullet b = f,$$

$$af = a(a \bullet b) \stackrel{(8)}{=} (a \bullet a)(a \bullet b) \stackrel{(10)}{=} aa \bullet ab \stackrel{(2)}{=} a \bullet c = e,$$

$$fb = (a \bullet b)b \stackrel{(8)}{=} (a \bullet b)(b \bullet b) \stackrel{(10)}{=} ab \bullet bb \stackrel{(2)}{=} c \bullet b = d.$$

Theorem 8. If b' and c' are the centres of squares on the segments (c, a) and (a, b), then $b \bullet c$ is the centre of a square on the segment (c', b') (cf. Fig. 4).

Fig. 4.

Proof. As ca = b' and ab = c', so we have $c'b' = ab \cdot ca \stackrel{(7)}{=} b \bullet c$.

In the case of the quasigroup (C, \cdot) Theorem 8 proves a statement from [1], [7], [8], [9] and [11] which can be stated as a very famous problem of Captain Kidd burried treasure (cf. [6] and [4]).

The rotation about a point a through a (positively oriented) right angle is a transformation $x \mapsto y$ of points such that xy = a.

Theorem 9. If b', b'', c', c'' are the centres of squares on the segments (c, a), (a, c), (a, b), (b, a), then the rotation about the point $b \bullet c$ through a right angle maps the segment (c', b'') onto the segment (b', c'') (cf. Fig. 4).

Proof. We have the equality from the above proof and analogously

()

$$b''c'' = ac \cdot ba \stackrel{(5)}{=} ab \cdot ca \stackrel{(7)}{=} b \bullet c.$$

(-)

Theorem 10. Let $S_o(p, a, u, b)$ be fixed. If (p, a', u', b') is a square with the center o, then $(o, b \bullet a', o', a \bullet b')$ is a square with the centre $o \bullet o'$ and $a \bullet b' = oo'$, $b \bullet a' = o'o$, $ba' = b'a = u \bullet u'$ (cf. Fig. 5).

Fig. 5.

Proof. By Theorem 6 from $S_o(u, b, p, a)$ and $S_{o'}(p, a', u', b')$ it follows $S_{o \bullet o'}(u \bullet p, b \bullet a', p \bullet u', a \bullet b')$. But, $u \bullet p = o$ and $p \bullet u' = o'$ and we obtain $S_{o \bullet o'}(o, b \bullet a', o', a \bullet b')$, where from $oo' = a \bullet b'$, $o'o = b \bullet a'$ follows by Theorem 3.

In the case of the quasigroup (C, \cdot) Theorem 10 proves a result from [2] and [5].

References

- [1] L. Bankoff: Problem 540, Crux Math. 6 (1980), 114.
- [2] A. I. Chegodaev: Application of geometric transformation in problem solving, (in Russian), Mat. v škole 1962, 88 - 89.
- [3] W. A. Dudek: Quadratical quasigroups, Quasigroups and Related Systems 4 (1997), 9 - 13.
- [4] A. Dunkels: Problem 400, Crux Math. 4 (1978), 284.
- [5] V. M. Fishman: Solving of problems by geometric transformations, (in Russian), Kvant 1975, No. 7, 30 - 35.

- [6] G. Gamow: One, Two, Three ... Infinity, Viking Press, 1947.
- [7] Hoang Chung: Teaching students creative activity, (in Russian), Mat. v škole 1966, No. 2, 77 - 81.
- [8] M. S. Klamkin and A. Liu: Problem 1605, Crux Math. 17 (1991), 14.
- [9] E. A. Lihota: Variation of problem conditions in out of class activities, (in Russian), Mat. v škole 1983, No. 6, cover pages 3-4.
- [10] V. Volenec: Quadratical groupoids, Note di Mat. 13 (1993), 107-115.

Received June 20, 2000

[11] Problem 3, Math. Inform. Quart. 6 (1996), 213 – 214.

Department of Mathematics University of Zagreb 10000 Zagreb Bijenička c. 30 Croatia e-mail: volenec@math.hr