On intuitionistic fuzzy subquasigroups of quasigroups

Kyung Ho Kim, Wiesław A. Dudek and Young Bae Jun

Abstract

In this paper, we introduce the notion of an intuitionistic fuzzy subquasigroup of a quasigroup G, and then some related properties are investigated. Characterizations of intuitionistic fuzzy subquasigroup of a quasigroup G are given.

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [11], several researches were conducted on the generalizations of the notion of fuzzy set. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. Jun and Kim considered the intuitionistic fuzzification of near-rings [8]. In [6], Dudek introduced the notion of fuzzy subquasigroup of a quasigroup G. Fuzzy subquasigroups with respect to a norm are considered by Dudek and Jun in [7]. In this paper, we apply the concepts of intuitionistic fuzzy sets to subquasigroups of a quasigroup and introduce the notion of an intuitionistic fuzzy subquasigroup of a quasigroup, and then some related properties are investigated. Also, we discuss equivalence relations on the family of all intuitionistic fuzzy subquasigroups of a quasigroup.

²⁰⁰⁰ Mathematics Subject Classification: 20N05, 94D05, 03E72

Keywords: quasigroup, fuzzy subquasigroup, Intutionistic fuzzy subquasigroup

2. Preliminaries

A groupoid (G, \cdot) is called a *quasigroup* if each of the equations ax = b, xa = b has a unique solution for any $a, b \in G$. A quasigroup (G, \cdot) may be also defined as an algebra $(G, \cdot, \backslash, /)$ with the three binary operations $\cdot, \backslash, /$ satisfying the identies

$$(xy)/y = x$$
, $x \setminus (xy) = y$, $(x/y)y = x$ and $x(x \setminus y) = y$.

We say also that $(G, \cdot, \backslash, /)$ is an equasigroup (i.e., equationally definable quasigroup) [9] or a primitive quasigroup [3]. The quasigroup $(G, \cdot, \backslash, /)$ corresponds to quasigroup (G, \cdot) , where

$$x \setminus y = z \iff xz = y$$
 and $x/y = z \iff zy = x$.

A quasigroup is called *unipotent* if xx = yy for all $x, y \in G$. These quasigroups are connected with Latin squares which have one fixed element in the diagonal (cf. [5]). Such quasigroups may be defined as quasigroups (G, \cdot) with the special element θ satisfying the identity $xx = \theta$. In this case also $x \setminus \theta = x$ and $\theta/x = x$ for all $x \in G$.

A nonempty subset S of a quasigroup $\mathcal{G} = (G, \cdot, \backslash, /)$ is called a *subquasigroup* of \mathcal{G} if it is closed under these three operations $\cdot, \backslash, /$, i.e., if $x * y \in S$ for all $* \in \{\cdot, \backslash, /\}$ and $x, y \in S$.

By a fuzzy set μ in a set G we mean a function $\mu : G \to [0, 1]$. The complement of μ , denoted by $\overline{\mu}$, is the fuzzy set in G given by $\overline{\mu}(x) = 1 - \mu(x)$ for all $x \in G$.

For a unipotent quasigroup $\mathcal{G} = (G, \cdot, \backslash, /)$ and a fuzzy set μ in G, let G_{μ} denote the set of all elements of G such that $\mu(x) = \mu(\theta)$, i.e.,

$$G_{\mu} = \{ x \in G : \mu(x) = \mu(\theta) \}.$$

Im(μ) denote the image set of μ , $a \wedge b = \min\{a, b\}, a \vee b = \max\{a, b\}$.

An *intuitionistic fuzzy set* (IFS for short) of a nonempty set X is defined by Atanassov (cf. [2]) in the following way.

Definition 2.1. An *intuitionistic fuzzy set* A of a nonempty set X is an object having the form

$$A = \{ (x, \mu_A(x), \gamma_A(x)) : x \in X \},\$$

where the functions $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denote the

degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \leq \mu_A(x) + \gamma_A(x) \leq 1$ for all $x \in X$.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}.$

The concept of fuzzy subquasigroups was introduced in [6].

Definition 2.2. A fuzzy set μ in a quasigroup $\mathcal{G} = (G, \cdot, \backslash, /)$ is called a *fuzzy subquasigroup* of \mathcal{G} if

$$\mu(xy) \land \mu(x \backslash y) \land \mu(x/y) \ge \mu(x) \land \mu(y)$$

for all $x, y \in G$.

It is clear that this definition is equivalent to the following.

Definition 2.3. A fuzzy set μ in a quasigroup $\mathcal{G} = (G, \cdot, \backslash, /)$ is a *fuzzy subquasigroup* of \mathcal{G} if

$$\mu(x * y) \ge \mu(x) \land \mu(y)$$

for all $* \in \{\cdot, \backslash, /\}$ and all $x, y \in G$.

3. Intuitionistic fuzzy subquasigroups

In what follows let $\mathcal{G} = (G, \cdot, \backslash, /)$ denote a quasigroup, and we start by defining the notion of intuitionistic fuzzy subquasigroups.

Definition 3.1. An intuitionistic fuzzy set $A = (\mu_A, \gamma_A)$ in \mathcal{G} is called an *intuitionistic fuzzy subquasigroup* of \mathcal{G} if

(IF1) $\mu_A(x * y) \ge \mu_A(x) \land \mu_A(y)$ and $\gamma_A(x * y) \le \gamma_A(x) \lor \gamma_A(y)$ hold for all $x, y \in G$.

Proposition 3.2. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of a quasigroup \mathcal{G} , then

- (i) $\mu_A(x * y) \land \mu_A(x) = \mu_A(x * y) \land \mu_A(y) = \mu_A(x) \land \mu_A(y),$
- (ii) $\gamma_A(x * y) \lor \gamma_A(x) = \gamma_A(x * y) \lor \gamma_A(y) = \gamma_A(x) \lor \gamma_A(y)$

for all $x, y \in G$.

Proof. (i) is by Proposition 3.4 from [6].

(ii) We first consider the case x * y = xy. Since (xy)/y = x for all $x, y \in G$, we have

$$\begin{split} \gamma_A(xy) \lor \gamma_A(y) &\leqslant \left[\gamma_A(x) \lor \gamma_A(y) \right] \lor \gamma_A(y) \\ &= \gamma_A(x) \lor \gamma_A(y) = \gamma_A((xy)/y) \lor \gamma_A(y) \\ &\leqslant \left[\gamma_A(xy) \lor \gamma_A(y) \right] \lor \gamma_A(y) \\ &= \gamma_A(xy) \lor \gamma_A(y), \end{split}$$

which proves that $\gamma_A(xy) \lor \gamma_A(y) = \gamma_A(x) \lor \gamma_A(y)$.

In the similar way, using the identity $x \setminus (xy) = y$, we can show that $\gamma_A(xy) \lor \gamma_A(x) = \gamma(x) \lor \gamma_A(y)$.

Next we prove that the result for the case $x * y = x \setminus y$. Since $x(x \setminus y) = y$ for all $x, y \in G$, we get

$$\gamma_A(x) \lor \gamma_A(y) = \gamma_A(x) \lor \gamma_A(x(x \setminus y))$$

$$\leqslant \gamma_A(x) \lor [\gamma_A(x) \lor \gamma_A(x \setminus y)] = \gamma_A(x) \lor \gamma_A(x \setminus y)$$

$$\leqslant \gamma_A(x) \lor [\gamma_A(x) \lor \gamma_A(y)] = \gamma_A(x) \lor \gamma_A(y).$$

Thus $\gamma_A(x) \lor \gamma_A(x \setminus y) = \gamma_A(x) \lor \gamma_A(y).$

Noticing that $x \setminus y = z \iff xz = y$, we obtain

$$\gamma_A(x \setminus y) \lor \gamma_A(y) = \gamma_A(z) \lor \gamma_A(xz) = \gamma_A(z) \lor \gamma_A(x)$$
$$= \gamma_A(x \setminus y) \lor \gamma_A(x) = \gamma_A(x) \lor \gamma_A(y).$$

Finally, we should prove the result for the case x * y = x/y. Using the equality (x/y)y = x, we have

$$\begin{split} \gamma_A(x) &\lor \gamma_A(y) = \gamma_A \big((x/y)y \big) \lor \gamma_A(y) \\ &\geqslant \big[\gamma_A(x/y) \lor \gamma_A(y) \big] \lor \gamma_A(y) = \gamma_A(x/y) \lor \gamma_A(y) \\ &\geqslant \big[\gamma_A(x) \lor \gamma_A(y) \big] \lor \gamma_A(y) = \gamma_A(x) \lor \gamma_A(y). \end{split}$$

It follows that $\gamma_A(x/y) \lor \gamma_A(y) = \gamma_A(x) \lor \gamma_A(y)$. Since $x/y = z \iff zy = x$ for all $x, y, z \in G$, we get

$$\gamma_A(x/y) \lor \gamma_A(x) = \gamma_A(z) \lor \gamma_A(zy) = \gamma_A(z) \lor \gamma_A(y)$$
$$= \gamma_A(x/y) \lor \gamma_A(y) = \gamma_A(x) \lor \gamma_A(y).$$

This completes the proof.

Corollary 3.3. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy subquasigroup of \mathcal{G} and let $* \in \{\cdot, \backslash, /\}$. Then $\mu_A(x * y) = \mu_A(x) \land \mu_A(y)$ (resp. $\gamma_A(x * y) = \gamma_A(x) \lor \gamma_A(y)$) whenever $\mu_A(x) \neq \mu_A(y)$ (resp. $\gamma_A(x) \neq \gamma_A(y)$).

Proof. Straightforward.

Lemma 3.4. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} and e is a left (right) neutral element of (G, \cdot) , then $\mu_A(e) \ge \mu_A(x)$ and $\gamma_A(e) \le \gamma_A(x)$ for all $x \in G$.

Proof. Indeed, if ex = x, then also x/x = e and $\mu_A(e) = \mu_A(x/x) \ge \mu_A(x) \land \mu_A(x) = \mu_A(x)$. Similarly $\gamma_A(e) = \gamma_A(x/x) \le \gamma_A(x)$. \Box

Lemma 3.5. If $A = (\mu_A, \gamma_A)$ is an intuitionictic fuzzy subquasigroup of a unipotent quasigroup \mathcal{G} , then $\mu_A(\theta) \ge \mu_A(x)$ and $\gamma_A(\theta) \le \gamma_A(x)$ for all $x \in G$.

Proof. Since $xx = \theta$ for all $x \in G$, we have

$$\mu_A(\theta) = \mu_A(xx) \ge \mu_A(x) \land \mu_A(x) = \mu_A(x)$$

and

$$\gamma_A(\theta) = \gamma_A(xx) \leqslant \gamma_A(x) \lor \gamma_A(x) = \gamma_A(x)$$

for all $x \in G$.

Theorem 3.6. If $A = (\mu_A, \gamma)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} , then so is $\Box A$, where $\Box A = \{(x, \mu_A(x), 1 - \mu_A(x)) : x \in G\}.$

Proof. It is sufficient to show that $\overline{\mu_A}$ satisfies the second condition of (IF1). For any $x, y \in G$, we have

$$\overline{\mu_A}(x*y) = 1 - \mu_A(x*y) \leq 1 - \lfloor \mu_A(x) \land \mu_A(y) \rfloor$$
$$= \lfloor 1 - \mu_A(x) \rfloor \lor \lfloor 1 - \mu_A(y) \rfloor = \overline{\mu_A}(x) \lor \overline{\mu_A}(y).$$

Therefore $\Box A$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} . \Box

Theorem 3.7. Let $\mathcal{G} = (G, \cdot, \backslash, /)$ be a unipotent quasigroup. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} , then $G_{\mu} = \{x \in G : \mu_A(x) = \mu_A(\theta)\}$ and $G_{\gamma} = \{x \in G : \gamma_A(x) = \gamma_A(\theta)\}$ are subquasigroups of \mathcal{G} .

Proof. Obviously $G_{\mu} \neq \emptyset \neq G_{\gamma}$. Let $x, y \in G_{\mu}$ and $* \in \{\cdot, \backslash, /\}$. Then $\mu_A(x * y) \ge \mu_A(x) \land \mu_A(y) = \mu_A(\theta)$. Since $\mu_A(\theta) \ge \mu_A(z)$ for all $z \in G$, it follows that $\mu_A(x * y) = \mu_A(\theta)$, i.e., $x * y \in G_{\mu}$.

Similarly $x, y \in G_{\gamma}$ implies $\gamma_A(x * y) \leq \gamma_A(x) \lor \gamma_A(y) = \gamma_A(\theta)$ and so $\gamma_A(x * y) = \gamma_A(\theta)$, i.e., $x * y \in G_{\gamma}$. This completes the proof. \Box

Corollary 3.8. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} and e is a left (right) neutral element of (G, \cdot) , then $G_{\mu} = \{x \in G : \mu_A(x) = \mu_A(e)\}$ and $G_{\gamma} = \{x \in G : \gamma_A(x) = \gamma_A(e)\}$ are subquasigroups of \mathcal{G} .

For any $\alpha \in [0, 1]$ and fuzzy set μ of G, the set

$$U(\mu;\alpha) = \{x \in G : \mu(x) \ge \alpha\} \text{ (resp. } L(\mu;\alpha) = \{x \in G : \mu(x) \le \alpha\})$$

is called an *upper* (resp. *lower*) α -*level cut* of μ .

Theorem 3.9. If $A = (\mu_A, \gamma)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} , then the sets $U(\mu_A; \alpha)$ and $L(\gamma_A; \alpha)$ are subquasigroups of \mathcal{G} for every $\alpha \in \operatorname{Im}(\mu_A) \cap \operatorname{Im}(\gamma_A)$.

Proof. Let $\alpha \in \text{Im}(\mu_A) \cap \text{Im}(\gamma_A) \subseteq [0,1]$ and $* \in \{\cdot, \backslash, /\}$ and let $x, y \in U(\mu_A; \alpha)$. Then $\mu_A(x) \ge \alpha$ and $\mu_A(y) \ge \alpha$. It follows from the first condition of (IF1) that

$$\mu_A(x * y) \ge \mu_A(x) \land \mu_A(y) \ge \alpha$$
 so that $x * y \in U(\mu_A; \alpha)$.

If $x, y \in L(\gamma_A; \alpha)$, then $\gamma_A(x) \leq \alpha$ and $\gamma_A(y) \leq \alpha$, and so

$$\gamma_A(x*y) \leqslant \gamma_A(x) \lor \gamma_A(y) \leqslant \alpha.$$

Hence we have $x * y \in L(\gamma_A; \alpha)$. Therefore $U(\mu_A; \alpha)$ and $L(\gamma_A; \alpha)$ are subquasigroups of \mathcal{G} .

Theorem 3.10. Let $A = (\mu_A, \gamma_A)$ be an IFS in \mathcal{G} such that the nonempty sets $U(\mu_A; \alpha)$ and $L(\gamma_A; \alpha)$ are subquasigroups of \mathcal{G} for all $\alpha \in [0, 1]$. Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} .

Proof. Let $\alpha \in [0, 1]$. Assume that $U(\mu_A; \alpha) \neq \emptyset$ and $L(\gamma_A; \alpha) \neq \emptyset$ are subquasigroups of \mathcal{G} . We must show that $A = (\mu_A, \gamma_A)$ satisfies the condition (IF1).

Let $* \in \{\cdot, \backslash, /\}$. If the first condition of (IF1) is false, then there exist $x_0, y_0 \in G$ such that $\mu_A(x_0 * y_0) < \mu_A(x_0) \land \mu_A(y_0)$. Taking

$$\alpha_0 = \frac{1}{2} \big[\,\mu_A(x_0 * y_0) + \big[\,\mu_A(x_0) \wedge \mu_A(y_0) \big] \,\big],$$

we have $\mu_A(x_0 * y_0) < \alpha_0 < \mu_A(x_0) \land \mu_A(y_0)$. It follows that x_0, y_0 are in $U(\mu_A; \alpha_0)$ but $x_0 * y_0 \notin U(\mu_A; \alpha_0)$, which is a contradiction.

Assume that the second condition of (IF1) does not hold. Then $\gamma_A(x_0 * y_0) > \gamma_A(x_0) \lor \gamma_A(y_0)$ for some $x_0, y_0 \in G$. Let

$$\beta_0 = \frac{1}{2} \big[\gamma_A(x_0 * y_0) + \big[\gamma_A(x_0) \lor \gamma_A(y_0) \big] \big].$$

Then $\gamma_A(x_0 * y_0) > \beta_0 > \gamma_A(x_0) \lor \gamma_A(y_0)$ and so $x_0, y_0 \in L(\gamma_A; \beta_0)$ but $x_0 * y_0 \notin L(\gamma_A; \beta_0)$. This is a contradiction.

Thus (IF1) must be satisfied.

Theorem 3.11. Let \mathcal{H} be a subquasigroup of \mathcal{G} and let $A = (\mu_A, \gamma_A)$ be an IFS in \mathcal{G} defined by

$$\mu_A(x) = \begin{cases} \alpha_0 & \text{if } x \in H, \\ \alpha_1 & \text{otherwise,} \end{cases} \qquad \gamma_A(x) = \begin{cases} \beta_0 & \text{if } x \in H, \\ \beta_1 & \text{otherwise,} \end{cases}$$

for all $x \in G$ and $\alpha_i, \beta_i \in [0, 1]$ such that $\alpha_0 > \alpha_1, \beta_0 < \beta_1$ and $\alpha_i + \beta_i \leq 1$ for i = 0, 1. Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} and $U(\mu_A; \alpha_0) = H = L(\gamma_A; \beta_0)$.

Proof. Let $x, y \in G$ and let $* \in \{\cdot, \backslash, /\}$. If any one of x and y does not belong to H, then

$$\mu_A(x*y) \ge \alpha_1 = \mu_A(x) \land \mu_A(y)$$

and

$$\gamma_A(x*y) \leqslant \beta_1 = \gamma_A(x) \lor \gamma_A(y).$$

Therefore $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of a quasigroup \mathcal{G} . Obviously $U(\mu_A; \alpha_0) = H = L(\gamma_A; \beta_0)$.

Corollary 3.12. Let χ_H be the characteristic function of a subquasigroup \mathcal{H} of \mathcal{G} . Then $H = (\chi_H, \overline{\chi_H})$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} .

Theorem 3.13. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} , then

$$\mu_A(x) = \sup\{\alpha \in [0,1] : x \in U(\mu_A;\alpha)\}$$

and

$$\gamma_A(x) = \inf\{\alpha \in [0, 1] : x \in L(\gamma_A; \alpha)\}$$

for all $x \in G$.

Proof. Let $\delta = \sup\{\alpha \in [0,1] : x \in U(\mu_A; \alpha)\}$ and let $\varepsilon > 0$ be given. Then $\delta - \varepsilon < \alpha$ for some $\alpha \in [0,1]$ such that $x \in U(\mu_A; \alpha)$. This means that $\delta - \varepsilon < \mu_A(x)$ so that $\delta \leq \mu_A(x)$ since ε is arbitrary.

We now show that $\mu_A(x) \leq \delta$. If $\mu_A(x) = \beta$, then $x \in U(\mu_A; \beta)$ and so

$$\beta \in \{\alpha \in [0,1] : x \in U(\mu_A;\alpha)\}.$$

Hence

$$\mu_A(x) = \beta \leqslant \sup\{\alpha \in [0, 1] : x \in U(\mu_A; \alpha)\} = \delta$$

Therefore

$$\mu_A(x) = \delta = \sup\{\alpha \in [0,1] : x \in U(\mu_A;\alpha)\}.$$

Now let $\eta = \inf \{ \alpha \in [0, 1] : x \in L(\gamma_A; \alpha) \}$. Then

$$\inf\{\alpha \in [0,1] : x \in L(\gamma_A;\alpha)\} < \eta + \varepsilon$$

for any $\varepsilon > 0$, and so $\alpha < \eta + \varepsilon$ for some $\alpha \in [0, 1]$ with $x \in L(\gamma_A; \alpha)$. Since $\gamma_A(x) \leq \alpha$ and ε is arbitrary, it follows that $\gamma_A(x) \leq \eta$.

To prove $\gamma_A(x) \ge \eta$, let $\gamma_A(x) = \zeta$. Then $x \in L(\gamma_A; \zeta)$ and thus $\zeta \in \{\alpha \in [0, 1] : x \in L(\gamma_A; \alpha)\}$. Hence

$$\inf\{\alpha \in [0,1] : x \in L(\gamma_A;\alpha)\} \leqslant \zeta,$$

i.e., $\eta \leq \zeta = \gamma_A(x)$. Consequently

$$\gamma_A(x) = \eta = \inf\{\alpha \in [0,1] : x \in L(\gamma_A;\alpha)\},\$$

which completes the proof.

Theorem 3.14. Let $\{\mathcal{H}_{\alpha} : \alpha \in \Lambda\}$, where Λ is a nonempty subset of [0, 1], be a collection of subquasigroups of \mathcal{G} such that

- (i) $G = \bigcup_{\alpha \in \Lambda} H_{\alpha},$
- (ii) $\alpha > \beta \iff H_{\alpha} \subset H_{\beta}$ for all $\alpha, \beta \in \Lambda$.

Then an intuitionistic fuzzy set $A = (\mu_A, \gamma_A)$ defined by

$$\mu_A(x) = \sup\{\alpha \in \Lambda : x \in H_\alpha\} \text{ and } \gamma_A(x) = \inf\{\alpha \in \Lambda : x \in H_\alpha\}$$

for all $x \in G$ is an intuitionistic fuzzy subguasigroup of \mathcal{G} .

Proof. According to Theorem 3.10, it is sufficient to show that the nonempty sets $U(\mu_A; \alpha)$ and $L(\gamma_A; \beta)$ are subquasigroups of \mathcal{G} .

In order to prove that $U(\mu_A; \alpha) \neq \emptyset$ is a subquasigroup of \mathcal{G} , we consider the following two cases:

(i)
$$\alpha = \sup\{\delta \in \Lambda : \delta < \alpha\}$$
 and (ii) $\alpha \neq \sup\{\delta \in \Lambda : \delta < \alpha\}.$

Case (i) implies that

$$x \in U(\mu_A; \alpha) \iff (x \in H_\delta \text{ for all } \delta < \alpha) \iff x \in \bigcap_{\delta < \alpha} H_\delta$$

so that $U(\mu_A; \alpha) = \bigcap_{\delta < \alpha} H_{\delta}$ which is a subquasigroup of \mathcal{G} .

For the case (ii), we claim that $U(\mu_A; \alpha) = \bigcup_{\delta \geqslant \alpha} H_{\delta}$. If $x \in \bigcup_{\delta \geqslant \alpha} H_{\delta}$ then $x \in H_{\delta}$ for some $\delta \geqslant \alpha$. It follows that $\mu_A(x) \geqslant \delta \geqslant \alpha$, so that $x \in U(\mu_A; \alpha)$. This shows that $\bigcup_{\alpha \in U} H_{\delta} \subseteq U(\mu_A; \alpha)$.

 $x \in U(\mu_A; \alpha).$ This shows that $\bigcup_{\delta \geqslant \alpha} H_{\delta} \subseteq U(\mu_A; \alpha).$ Now assume that $x \notin \bigcup_{\delta \geqslant \alpha} H_{\delta}$. Then $x \notin H_{\delta}$ for all $\delta \geqslant \alpha$. Since $\alpha \neq \sup\{\delta \in \Lambda : \delta < \alpha\}$, there exists $\varepsilon > 0$ such that $(\alpha - \varepsilon, \alpha) \cap \Lambda = \emptyset$. Hence $x \notin H_{\delta}$ for all $\delta > \alpha - \varepsilon$, which means that if $x \in H_{\delta}$ then $\delta \leqslant \alpha - \varepsilon$. Thus $\mu_A(x) \leqslant \alpha - \varepsilon < \alpha$, and so $x \notin U(\mu_A; \alpha)$. Therefore $U(\mu_A; \alpha) \subseteq \bigcup_{\delta \geqslant \alpha} H_{\delta}$, and thus $U(\mu_A; \alpha) = \bigcup_{\delta \geqslant \alpha} H_{\delta}$, which is a subquasigroup of \mathcal{G} .

Now we prove that $L(\gamma_A; \beta)$ is a subquasigroup of \mathcal{G} . We consider the following two cases:

(iii)
$$\beta = \inf\{\eta \in \Lambda : \beta < \eta\}$$
 and (iv) $\beta \neq \inf\{\eta \in \Lambda : \beta < \eta\}$

For the case (iii) we have

$$x \in L(\gamma_A; \beta) \iff (x \in H_\eta \text{ for all } \eta > \beta) \iff x \in \bigcap_{\eta > \beta} H_\eta$$

and hence $L(\gamma_A; \beta) = \bigcap_{\eta > \beta} H_{\eta}$ which is a subquasigroup of \mathcal{G} .

For the case (iv), there exists $\varepsilon > 0$ such that $(\beta, \beta + \varepsilon) \cap \Lambda = \emptyset$. We will show that $L(\gamma_A; \beta) = \bigcup_{\eta \leq \beta} H_{\eta}$. If $x \in \bigcup_{\eta \leq \beta} H_{\eta}$ then $x \in H_{\eta}$ for some $\eta \leq \beta$. It follows that $\gamma_A(x) \leq \eta \leq \beta$ so that $x \in L(\gamma_A; \beta)$. Hence $\bigcup_{\eta \leq \beta} H_{\eta} \subseteq L(\gamma_A; \beta)$.

Conversely, if $x \notin \bigcup_{\eta \leqslant \beta} H_{\eta}$ then $x \notin H_{\eta}$ for all $\eta \leqslant \beta$, which implies that $x \notin H_{\eta}$ for all $\eta < \beta + \varepsilon$, i.e., if $x \in H_{\eta}$ then $\eta \ge \beta + \varepsilon$. Thus $\gamma_A(x) \ge \beta + \varepsilon > \beta$, i.e., $x \notin L(\gamma_A; \beta)$. Therefore $L(\gamma_A; \beta) \subseteq \bigcup_{\eta \leqslant \beta} H_{\eta}$ and consequently $L(\gamma_A; \beta) = \bigcup_{\eta \leqslant \beta} H_{\eta}$ which is a subquasigroup of \mathcal{G} . This completes the proof. \Box

Theorem 3.15. $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} iff μ_A and $\overline{\gamma_A}$ are fuzzy subquasigroups of \mathcal{G} .

Proof. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy subquasigroup of \mathcal{G} . Then clearly μ_A is a fuzzy subquasigroup of \mathcal{G} . Let $x, y \in G$ and $* \in \{\cdot, \backslash, /\}$. Then

$$\overline{\gamma_A}(x*y) = 1 - \gamma_A(x*y) \ge 1 - \left[\gamma_A(x) \lor \gamma_A(y)\right] \\ = \left[1 - \gamma_A(x)\right] \land \left[1 - \gamma_A(y)\right] = \overline{\gamma_A}(x) \land \overline{\gamma_A}(y).$$

Hence $\overline{\gamma_A}$ is a fuzzy subquasigroup of \mathcal{G} .

Conversely suppose that μ_A and $\overline{\gamma_A}$ are fuzzy subquasigroups of \mathcal{G} . If $x, y \in G$ and $* \in \{\cdot, \backslash, /\}$, then

$$1 - \gamma_A(x * y) = \overline{\gamma_A}(x * y) \ge \overline{\gamma_A}(x) \land \overline{\gamma_A}(y)$$
$$= \left[1 - \gamma_A(x)\right] \land \left[1 - \gamma_A(y)\right]$$
$$= 1 - \left[\gamma_A(x) \lor \gamma_A(y)\right],$$

which proves $\gamma_A(x * y) \leq \gamma_A(x) \vee \gamma_A(y)$. This completes the proof. \Box

If \mathcal{H} is a subquasigroup of \mathcal{G} , then $H = (\chi_H, \overline{\chi_H})$ is an intuitionistic fuzzy subquasigroup of \mathcal{G} from Corollary 3.12, where χ_H is the characteristic function of H.

Let $IFS(\mathcal{G})$ be the family of all intuitionistic fuzzy subquasigroups of \mathcal{G} and $\alpha \in [0,1]$ be a fixed real number. For any $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ from $IFS(\mathcal{G})$ we define two binary relations \mathfrak{U}^{α} and \mathfrak{L}^{α} on $IFS(\mathcal{G})$ as follows:

$$(A, B) \in \mathfrak{U}^{\alpha} \iff U(\mu_A; \alpha) = U(\mu_B; \alpha)$$

and

$$(A, B) \in \mathfrak{L}^{\alpha} \iff L(\gamma_A; \alpha) = L(\gamma_B; \alpha).$$

These two relations \mathfrak{U}^{α} and \mathfrak{L}^{α} are equivalence relations, give rise to partitions of $IFS(\mathcal{G})$ into the equivalence classes of \mathfrak{U}^{α} and \mathfrak{L}^{α} , denoted by $[A]_{\mathfrak{U}^{\alpha}}$ and $[A]_{\mathfrak{L}^{\alpha}}$ for any $A = (\mu_A, \gamma_A) \in IFS(\mathcal{G})$, respectively. And we will denote the quotient sets of $IFS(\mathcal{G})$ by \mathfrak{U}^{α} and \mathfrak{L}^{α} as $IFS(\mathcal{G})/\mathfrak{U}^{\alpha}$ and $IFS(\mathcal{G})/\mathfrak{L}^{\alpha}$, respectively.

If $\mathcal{S}(\mathcal{G})$ is the family of all subquasigroups of \mathcal{G} and $\alpha \in [0, 1]$, then we define two maps U_{α} and L_{α} from $IFS(\mathcal{G})$ to $\mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$ as follows:

$$U_{\alpha}(A) = U(\mu_A; \alpha)$$
 and $L_{\alpha}(A) = L(\gamma_A; \alpha),$

respectively, for each $A = (\mu_A, \gamma_A) \in IFS(\mathcal{G})$. Then the maps U_{α} and L_{α} are well-defined.

Theorem 3.16. For any $\alpha \in (0,1)$, the maps U_{α} and L_{α} are surjective from $IFS(\mathcal{G})$ onto $\mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$.

Proof. Let $\alpha \in (0, 1)$. Note that $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1})$ is in $IFS(\mathcal{G})$, where $\mathbf{0}$ and $\mathbf{1}$ are fuzzy sets in \mathcal{G} defined by $\mathbf{0}(x) = 0$ and $\mathbf{1}(x) = 1$ for all $x \in G$. Obviously, $U_{\alpha}(\mathbf{0}_{\sim}) = L_{\alpha}(\mathbf{0}_{\sim}) = \emptyset$. If \mathcal{H} is a subquasigroup of \mathcal{G} , then for the intuitionistic fuzzy subquasigroup $H = (\chi_H, \overline{\chi_H})$, $U_{\alpha}(H) = U(\chi_H; \alpha) = H$ and $L_{\alpha}(H) = L(\overline{\chi_H}; \alpha) = H$. Hence U_{α} and L_{α} are surjective. \Box

Theorem 3.17. The quotient sets $IFS(\mathcal{G})/\mathfrak{U}^{\alpha}$ and $IFS(\mathcal{G})/\mathfrak{L}^{\alpha}$ are equipotent to $\mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$ for any $\alpha \in (0, 1)$.

Proof. Let $\alpha \in (0,1)$ and let $\overline{U_{\alpha}} : IFS(\mathcal{G})/\mathfrak{U}^{\alpha} \longrightarrow \mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$ and $\overline{L_{\alpha}} : IFS(\mathcal{G})/\mathfrak{L}^{\alpha} \longrightarrow \mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$ be the maps defined by

$$\overline{U_{\alpha}}([A]_{\mathfrak{U}^{\alpha}}) = U_{\alpha}(A) \text{ and } \overline{L_{\alpha}}([A]_{\mathfrak{L}^{\alpha}}) = L_{\alpha}(A),$$

respectively, for each $A = (\mu_A, \gamma_A) \in IFS(\mathcal{G})$.

If $U(\mu_A; \alpha) = U(\mu_B; \alpha)$ and $L(\gamma_A; \alpha) = L(\gamma_B; \alpha)$ for $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ from $IFS(\mathcal{G})$, then $(A, B) \in \mathfrak{U}^{\alpha}$ and $(A, B) \in \mathfrak{L}^{\alpha}$, whence $[A]_{\mathfrak{U}^{\alpha}} = [B]_{\mathfrak{U}^{\alpha}}$ and $[A]_{\mathfrak{L}^{\alpha}} = [B]_{\mathfrak{L}^{\alpha}}$. Hence the maps $\overline{U_{\alpha}}$ and $\overline{L_{\alpha}}$ are injective.

To show that the maps $\overline{U_{\alpha}}$ and $\overline{L_{\alpha}}$ are surjective, let \mathcal{H} be a subquasigroup of \mathcal{G} . Then for $H = (\chi_H, \overline{\chi_H}) \in IFS(\mathcal{G})$ we have $\overline{U_{\alpha}}([H]_{\mathfrak{U}^{\alpha}}) = U(\chi_H; \alpha) = H$ and $\overline{L_{\alpha}}([H]_{\mathfrak{L}^{\alpha}}) = L(\overline{\chi_H}; \alpha) = H$. Also $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in IFS(\mathcal{G})$. Moreover $\overline{U_{\alpha}}([\mathbf{0}_{\sim}]_{\mathfrak{U}^{\alpha}}) = U(\mathbf{0}; \alpha) = \emptyset$ and $\overline{L_{\alpha}}([\mathbf{0}_{\sim}]_{\mathfrak{L}^{\alpha}}) = L(\mathbf{1}; \alpha) = \emptyset$. Hence $\overline{U_{\alpha}}$ and $\overline{L_{\alpha}}$ are surjective. \Box

For any $\alpha \in [0, 1]$, we define another relation \mathfrak{R}^{α} on $IFS(\mathcal{G})$ as following:

$$(A, B) \in \mathfrak{R}^{\alpha} \iff U(\mu_A; \alpha) \cap L(\gamma_A; \alpha) = U(\mu_B; \alpha) \cap L(\gamma_B; \alpha)$$

for any $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ from $IFS(\mathcal{G})$. Then the relation \mathfrak{R}^{α} is also an equivalence relation on $IFS(\mathcal{G})$.

Theorem 3.18. For any $\alpha \in (0,1)$ and any $A = (\mu_A, \gamma_A) \in IFS(\mathcal{G})$ the map $I_{\alpha} : IFS(\mathcal{G}) \longrightarrow \mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$ defined by

$$I_{\alpha}(A) = U_{\alpha}(A) \cap L_{\alpha}(A)$$

is surjective.

Proof. Indeed, if $\alpha \in (0,1)$ is fixed, then for $\mathbf{0}_{\sim} = (\mathbf{0},\mathbf{1}) \in IFS(\mathcal{G})$ we have

$$I_{\alpha}(\mathbf{0}_{\sim}) = U_{\alpha}(\mathbf{0}_{\sim}) \cap L_{\alpha}(\mathbf{0}_{\sim}) = U(\mathbf{0};\alpha) \cap L(\mathbf{1};\alpha) = \emptyset,$$

and for any $\mathcal{H} \in \mathcal{S}(\mathcal{G})$, there exists $H = (\chi_H, \overline{\chi_H}) \in IFS(\mathcal{G})$ such that $I_{\alpha}(H) = U(\chi_H; \alpha) \cap L(\overline{\chi_H}; \alpha) = H$.

Theorem 3.19. For any $\alpha \in (0,1)$, the quotient set $IFS(\mathcal{G})/\mathfrak{R}^{\alpha}$ is equipotent to $\mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$.

Proof. Let $\alpha \in (0,1)$ and let $\overline{I_{\alpha}} : IFS(\mathcal{G})/\mathfrak{R}^{\alpha} \longrightarrow \mathcal{S}(\mathcal{G}) \cup \{\emptyset\}$ be a map defined by

$$\overline{I_{lpha}}([A]_{\mathfrak{R}^{lpha}}) = I_{lpha}(A) \quad ext{ for each } [A]_{\mathfrak{R}^{lpha}} \in IFS(\mathcal{G})/\mathfrak{R}^{lpha}.$$

If $\overline{I_{\alpha}}([A]_{\mathfrak{R}^{\alpha}}) = \overline{I_{\alpha}}([B]_{\mathfrak{R}^{\alpha}})$ for any $[A]_{\mathfrak{R}^{\alpha}}, [B]_{\mathfrak{R}^{\alpha}} \in IFS(\mathcal{G})/\mathfrak{R}^{\alpha}$, then

$$U(\mu_A; \alpha) \cap L(\gamma_A; \alpha) = U(\mu_B; \alpha) \cap L(\gamma_B; \alpha),$$

hence $(A, B) \in \mathfrak{R}^{\alpha}$ and $[A]_{\mathfrak{R}^{\alpha}} = [B]_{\mathfrak{R}^{\alpha}}$. It follows that $\overline{I_{\alpha}}$ is injective.

For $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in IFS(\mathcal{G})$ we have $\overline{I_{\alpha}}(\mathbf{0}_{\sim}) = I_{\alpha}(\mathbf{0}_{\sim}) = \emptyset$. If $H \in \mathcal{S}(\mathcal{G})$, then for $H = (\chi_H, \overline{\chi_H}) \in IFS(\mathcal{G})$, $\overline{I_{\alpha}}(H) = I_{\alpha}(H) = H$. Hence $\overline{I_{\alpha}}$ is a bijective map.

References

- K. T. Atanassov: Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87 96.
- [2] K. T. Atanassov: New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137 - 142.
- [3] V. D. Belousov: Foundations of the theory of quasigroups and loops, (Russian), Nauka, Moscow 1967.
- [4] D. Çoker: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] J. Denés and A. D. Keedwell: Latin squares an their applications, New York 1974.
- [6] W. A. Dudek: Fuzzy subquasigroups, Quasigroups and Related Systems 5 (1998), 81 - 98.
- [7] W. A. Dudek and Y. B. Jun: Fuzzy subquasigroups over a t-norm, Quasigroups and Related Systems 6 (1999), 87-98.

- [8] Y. B. Jun and K. H. Kim: Intuitionistic fuzzy ideals of nearrings, J. Inst. Math. & Comp. Sci. (Math. Ser.) 12(3) (1999), 221 - 228.
- H. O. Pflugfelder: Quasigroups and loops, Introduction: Sigma Series in Pure Math., Heldermann Verlag, Berlin 7 (1990).
- [10] Y. H. Yon and K. H. Kim: Intuitionistic fuzzy filters and ideals of lattices, Far East J. Math. Sci. 1(3) (1999), 429 – 442.
- [11] L. A. Zadeh: *Fuzzy sets*, Inform. Control 8 (1965), 338 353.

Received June 21, 2000

Kyung Ho Kim Department of Mathematics, Chungju National University, Chungju 380-702, Korea e-mail: ghkim@gukwon.chungju.ac.kr

Wiesław A. Dudek Institute of Mathematics, Technical University, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland e-mail: dudek@im.pwr.wroc.pl

Young Bae Jun Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea e-mail: ybjun@nongae.gsnu.ac.kr