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Fuzzy subquasigroups over a t-norm

Wiestaw A. Dudek and Young Bae Jun

Abstract

In this paper, using a t-norm 7', we introduce the notion of idempotent T-fuzzy
subquasigroups of quasigroups, and investigate some of their properties. Also
we describe fuzzy subquasigroups induced by t-norms in the direct product of

quasigroups.

1. Introduction

Following the introduction of fuzzy sets by Zadeh [13], the fuzzy set
theory developed by Zadeh himself and others have found many appli-
cations in the domain of mathematics and elsewhere. For example, in
[7] Liu studied fuzzy subrings as well as fuzzy ideals in rings. Proper-
ties of some fuzzy ideals in semirings are investigated in [8]. Connec-
tions between fuzzy groups and so-called level subgroups are found in
[3], 4] and [10]. The similar results for quasigroups are proved in [6].

In this paper, using a t-norm 7', we introduce the notion of idem-
potent T-fuzzy subquasigroups of quasigroups, and investigate some
of their properties. Next we use a t-norm to construct 7T-fuzzy sub-
quasigroups in the finite direct product of quasigroups.

2. Preliminaries

As it is well known, a groupoid (G, ) is called a quasigroup if for any
a,b € G each of the equations ax = b, ra = b has a unique solution
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in G. A quasigroup may be also defined as an algebra (G, -, \, /) with
three binary operations -, \,/ satisfying the identities

(zy)/y=2, z\(zy)=vy, (/y)y=x x(x\y) =y

(cf. |2] or [9]). We say that such defined quasigroup (G,-,\,/) is an
equasigroup (i.e. equationally definable quasigroup) (9] or a primitive
quasigroup [2]. Obviously, these two definitions are equivalent because

r\y=z<=axz=y, z/y=z<=zy=nur.

A nonempty subset S of a quasigroup G = (G, -, \,/) is called a
subquasigroup if it is closed with respect to these three operations,
ie,if zxye S forall z,y €S and * € {-\,/}.

The class of all equasigroups forms a variety. This means that a
homomorphic image of an equasigroup is an equasigroup. Also every
subset of an equasigroup closed with respect to these three operations
is an equasigroup.

Note that in case when a quasigroup is defined as a set with only
one operation, a homomorphic image is not in general a quasigroup.
It is only a groupoid with division. Similarly a homomorphic preimage
of a quasigroup (G, ) is not a quasigroup. Also a subset closed with
respect to this multiplication is not a quasigroup (cf. [2]).

For the general development ot the theory of quasigroups the unipo-
tent quasigroups, i.e., quasigroups with the identity xx = yy, play an
important role. These quasigroups are connected with Latin squares
which have one fixed element in the diagonal (cf. [5]). Such quasi-
groups may be defined as quasigroups G with the special element 6
satisfying the identity zz = 6. Obviously, 6 is uniquely determined
and it is an idempotent, but, in general, it is not the (left, right)
neutral element.

To avoid repetitions we use the following conventions: "a quasi-
group G"always denotes an equasigroup (G,-,\,/); G always denotes
a nonempty set.

A function p : G — [0,1] is called a fuzzy set in a quasigroup G.
The set p, ={z € G : u(x) > a}, where a € [0,1] is fixed, is called
a level subset of u. Im(u) denotes the imege set of p.

Let u and p be two fuzzy sets defined on G. According to [13]
we say that p is contained in p, and denote this fact by p C p, iff
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pu(z) < p(z) for all o € G. Obviously u = p iff u(z) = p(z) for all
reG.

According to [6], a fuzzy set u in a quasigroup G = (G,-,\,/) is
called a fuzzy subquasigroup of G if

min{y(zy), p(z \ y), w(z/y)} = min{p(z), p(y)}

for all =,y € G. It is clear, that this condition may be written as

pw(z +y) = min{pu(z), p(y)}

forall e {-,\,/} and z,y € G.

A fuzzy subquasigroup p of a quasigroup ¢ is called normal if
p(zy) = p(yx) for all z,y € G. It is not difficult to see that p is
normal ift u(z\ y) = u(y/z) for all z,y € G.

The following two results are proved in [6].

Proposition 2.1. A fuzzy set p of a quasigroup G = (G,-,\,/) is a
fuzzy subquasigroup iff for every a € [0,1], po is either empty or a
subquasigroup of G. O

Proposition 2.2. If u is a fuzzy subquasigroup of a unipotent quasi-
group (G, -,\,/,0), then p(0) > p(x) for any = € G. O
3. T-fuzzy subquasigroup

According to [1], by a t-norm, we mean a function 7": [0,1] x [0,1] —
[0, 1] satisfying the following conditions:

(Th) T(a,1)=a,

(Ty) T(a,B) < T(c,y) whenever (<7,
(T3> T(Oé, ﬁ) = T( ,Oé) 3

(Ty) T(a,T(3,7)) = T(T(e, B),7)

A simple example of a t-norm is a function T'(«, §) = min{a, 3}.
Generally, T'(c, #) < min{a, f} and T'(«,0) = 0 for all o, 8 € [0, 1].
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Moreover, ([0, 1]; T") is a commutative semigroup with 0 as the neutral
element. In particular it is medial, i.e.,

T(T(«, ), T(,9)) = T(T(ev, ), T(5,0))

holds for all «, 3,v,d € [0, 1].
Let T} and T, be two t-norms. We say that 77 dominates 75 and
write T1 > TQ if

TI(T2<a76)7 T2<77 5)) = T2<T1(0577)7 Tl(ﬁvé))

for all «, 3,7v,6 € [0,1] (cf. [1]). Obviously 7> T for all t-norms.
The set of all idempotents with respect to 7', i.e. the set

Er={a€0,1 | T(a,a) = a}

is a subsemigroup of ([0,1],7"). If Im(u) C Er then a fuzzy set
p is called an idempotent with respect to a t-norm T (briefly: T'-
idempotent).

Definition 3.1. A fuzzy set p in G is called a fuzzy subquasigroup of
G with respect to a t-norm T ( briefly, a T-fuzzy subquasigroup ) if

w(x xy) = T(u(r), p(y))

for all z,y,z € G and * € {-\,/}.

Since min{a, f} > T(«, B) for all «, 3 € [0, 1], every fuzzy sub-
quasigroup is also a T-fuzzy subquasigroup, but not conversely as seen
in the following example.

Example 3.2. Let G = {0,a,b,c} be the Klein’s group with the
following Cayley table:

0 a b ¢
0/0 a b ¢
ala 0 ¢ b
b|b ¢ 0 a
cle b a O
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Define a fuzzy set p in G by ©(0) = 0,8, u(a) = 0,7, u(b) = 0,6,
p(c) = 0,5. It is not difficult to see that a function 7,, defined by
Tm(a, B) = max{a+ § — 1, 0} for all o, 3 € [0,1] is a t-norm.

By routine calculations, we known that pu(x xy) > T, (u(z), p(y))
for all z,y € G, which shows that u is a T),-fuzzy subquasigroup of
G, which is not T},-idempotent. It is not a fuzzy subquasigroup since
p(c) = p(ab) < min{pu(a), p(b)}.

But a fuzzy set v defined by v(0) = v(a) = 1 and v(b) = v(c) =0
is a T),-idempotent fuzzy subquasigroup of G. It is also a fuzzy sub-
quasigroup. U

Proposition 3.3. If a fuzzy set u is idempotent with respect to a
t-norm T, then T(«, ) = min{a, 5} for all o, 5 € Im(pu).

Proof. Indeed, if « and (3 are in Im(u), then
min{a, 8} > T(a, 8) > T(min{a, 3}, min{a, 5}) = min{a, 5},
which completes the proof. U

Corollary 3.4. Fvery T-idempotent fuzzy subquasigroup is also a
fuzzy subquasigroup. U

By application of Proposition 2.1 we obtain

Corollary 3.5. Fvery nonempty level set of a T-idempotent fuzzy
subquasigroup defined on a quasigroup G is a subquasigroup of G. O

Corollary 3.6. Let T be an idempotent t-norm. Then a fuzzy set
defined on a quasigroup G is a T-fuzzy subquasigroup iff it is a fuzzy
subquasigroup. U

Now we consider the converse of Corollary 3.4.

Theorem 3.7. Let a fuzzy set p on a quasigroup G be idempotent
with respect to a t-norm T . If each nonempty level set (o 1s a sub-
quasigroup of G, then w is a T-idempotent fuzzy subquasigroup.

Proof. Assume that each nonempty level set p, is a subquasigroup of
G. Then p is a fuzzy subquasigroup of G (by Proposition 2.1), and so

p(z *y) = min{p(x), u(y)} = T(p(), 1wy))
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by Proposition 3.3. Hence pu is a T-idempotent fuzzy subquasigroup
of a quasigroup G. O

Theorem 3.8. Let pu be a T-fuzzy subquasigroup of G, where T is a
t-norm and o € [0, 1]. Then

(i) if a=1, then u, is either empty or is a subquasigroup of G,
(ii) if T = min, then pu, is either empty or is a subquasigroup of G.
Proof. (i) Assume that « =1 and i, # 0. Then there exist x,y € 14
such that p(z) > 1 and p(y) > 1. Thus
p(xxy) = T(p),p(y)) > T(1,1) =1
so that x xy € puy. Hence p; is a subquasigroup of G.

(ii) is a consequence of Proposition 2.1. O

Note that a fuzzy set p defined in our Example 3.2 is a non-
idempotent 7},-fuzzy subquasigroup in which p; is empty and po¢ is
not a subquasigroup of G. This proves that the analog of Proposition
2.1 for T-fuzzy subquasigroups is not true.

4. Fuzzy sets induced by norms

Let T be a t-norm and let u and v be two fuzzy sets in G. Then the
T-product of 1 and v, denoted by [u - V], , is defined as

- V] (2) = T(pu(x), v(z))
for all z € G.
Obviously [ -v], is a fuzzy set in G such that [u-v], = [v- yl,.
Moreover, if © and v are normal, then sois [p-v],..

Theorem 4.1. Let T be a t-norm and let p and v be T-fuzzy sub-
quasigroups of G. If a t-norm T* dominates T, then T*-product
(- V), is a T-fuzzy subquasigroup of G.

Proof. Indeed, for x,y € G we have

- V] (@5 y) = T (u(e + y),v(e + y))
> T"(T(u(x), m(y)), T(v(z),v(y)))
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> T(T"(u(x), v(z)), T (1(y), v(y)))
=T([p-v],. (), [1-v],. (),

which proves that [ - v].. is a T-fuzzy subquasigroup of G. O

T*

Corollary 4.2 The T-product of T-fuzzy subquasigroups is a T'-fuzzy
subquasigroup. O

Let G and H be nonempty sets and let f : G — H be an arbitrary
mapping. If v is a fuzzy set in f(G) then p=wvo f is the fuzzy set
in GG, which is called the preimage of v under f.

It is not difficult to see that the following lemma is true.

Lemma 4.3. Let T be a t-norm and let G and H be two quasigroups.
If h:G — 'H is an onto homomorphisms of quasigroups, v is a fuzzy
subquasigroup of 'H and u the preimage of v under h, then u is a
fuzzy subquasigroup of G. Moreover, i is normal iff v is normal. If
v is T-idempotent, then so is L. O

Proposition 4.4. Let T and T™ be t-norms in which T dominates
T and let G, H be two quasigroups. If h : G — H be an onto
homomorphism of quasigroups, then for any T-fuzzy subquasigroups p
and v of 'H, we have

h=H([p - v]p) = (W) - P (W)

Proof. By Lemma 4.3 h™'(u), h=*(v) and h~*([u-v],.) are T-fuzzy
subquasigroups of G.
Moreover for © € G we have

[ (- vl )l(2) = [ ] (W) = T (p(h()), v(h(z)))
=T (b= (W](x), [~ @))(x)) = W71 (1) - A~ (V)] (),
which completes the proof. O

We say that a fuzzy set p in G has a sup property if, for all subset
S C G, there exists sg € S such that u(sg) = sup p(s). In this case
seS

for any mapping f defined on G we can define in f(G) the fuzzy set

p/ putting p/(y) = sup p(x) forall y € f(Q) (cf. [12]).
z€f~1(y)
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Let f:G — H be a homomorphisms of quasigroups and let T be
a continuous t-norm (continuous with respect to the usual topology).
Then sets A; = f~'(y1) and Ay = f~(y2), where y1,12 € f(G)
are nonempty subsets of f(G). Similarly, Az = f~*(y; * y2), where
€ {-,\,/} is a fixed operation.

Consider the set

Al*AQZ{al*(IQ, | aleAl, CLQGAQ}.

If x € Ay % Ay, then x = 21 % 29 for some x; € A; and 29 € A, and
SO

f(@) = f(z1x22) = f(21) * f22) = Y1 % Y2,
which implies = € f~'(y; * y2) = As. Thus A; * Ay C Aj for any
operation x € {-\,/}.

Therefore
Wy xy) = sup  p(z) = sup p(x)
z€ f=1(y1%y2) z€A3
z sup p(x) = sup  p(zy k32)
r€A1xAg T1E€A1, x2€A2
z  sup  T(u(@1), plz2)) .

r1€A1, 22€A2

Since t-norm 7T is (by the assumption) continuous, for every ¢ > 0
there exists 0 > 0 such that

sup p(x1) —t; <9 and  sup pu(xg) —ty <0
z1€AL x2€A2

implies

T ( sup (1), sup M(b)) —T(t1, t2) <e.

T1€AL r2€A2

This for t; = p(ay), ta = p(az), where ay € Ay, ay € Ay, gives

T < sup p(zy), sup ,u(xg)) <T(pfar), plaz)) + <.
T1€AL T €A

Consequently

Wy xys) = sup T(p(ar), p(s))

r1€A1,32€A2

>T < sup u(xy), sup M(xz)) = T(uf(yl), uf(yg)),

x1€A1 $2€A2



Fuzzy subquasigroups over a t-norm 95

which shows that u/ is a T-fuzzy subquasigroup of f(G).
Thus we have the following

Theorem 4.5. Let T be a continuous t-norm and let f be a homo-
morphism on a quasigroup G. If a T-fuzzy subquasigroup p of G has
the sup property, then p' is a T-fuzzy subquasigroup of f(G). |

Since the function "min" is a continuous t-norm, then, as a simple
consequence of the above theorem, we obtain

Corollary 4.6. If a fuzzy subquasigroup p of G has the sup property,
then p' is a fuzzy subquasigroup of f(G) for every homomorphism
f defined on G. O

5. Direct products of fuzzy subquasigroups

Let T be a fixed t-norm. If p; and po are two fuzzy sets on GGy and
G (respectively), then p defined on G; x G by the formula

M(xla x2) = T(:ul(xl)v M?(xQ))a
is a fuzzy set on G x Gg, which is denoted by pq X po.
Proposition 5.1. If py and ps are T-fuzzy subquasigroup of quasi-
groups Gy and Gy (respectively ), then py X ps is a T-fuzzy subquasi-

group of the direct product Gy x Gy. Moreover, if u1 and ps are
T-idempotent, then So is 11 X fio.

Proof. Let (z1,x2), (y1,y2) be in G; X Ga. Then

(1 X p2) (w1, 22) * (Y1, 42)) = (1 X p2) (@1 % Y1, T2 % yo)
=T(p1(z1 % Y1), pa(r2 * ya))
> T(T(pa (1), pa(y1)), T(pa(w2), p2(y2)))
=T (T(pr(21), pa(@2)), T(pa(y1)s p2(y2)))
=T((1 x p2) (1, 22), (1 X p12)(Y1, y2))-

Hence py X pg is a T-fuzzy subquasigroup of G; x Go. Obviously, if
w1 and ps are T-idempotent, then so is iy X pio. |
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The relationship between T-fuzzy subquasigroups pxv and [p-V]
can be viewed via the following diagram

d
G GxG
WX v
[ vir BV
T
1 I x1

where [ =[0,1] and d: G — G x G is defined by d(z) = (x,x).

Applying Lemma 3.2 from [1] it is not difficult to see that [u- vy
1s the preimage of pu X v under d.

Note by the way, that our T-product is different from the product
of fuzzy sets studied by Liu |7] and Sessa [11].

Now we generalize this idea to the product of n > 2 T-fuzzy sub-
quasigroups. We first need to generalize the domain of t-norm T to
n

1110, 1] as follows:

i=1
Definition 5.2. The function T, : [][0,1] — [0,1] is defined by
i=1
To(ay, g, . yon) =T, Tra (o, o i, Qg oo Q)

for all 1 <i<n,where n>2, To =T and Ty = id (identity).

Using the induction on n, we have the following two lemmas.
Lemma 5.3. For every t-norm T and every «;, B; € [0,1], where
1<2<n and n > 2, we have

T,(T (o, 51), T(2, Ba), ..., T(am, Bn))

=T(To(a1,,...,a0), Th(B1, B2, -, Bn)). O
Lemma 5.4. For a t-norm T and every a,...,a, € [0,1], where
n = 2, we have
To(ag,...,an) =T(..T(T(T(an,a0),a3),04), - . ., ()
=T (a1, T(ag, T(ag,... T(ap_1,00)...))). O
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Theorem 5.5. Let T be a t-norm and let G = [] G; be the direct
i=1
product of quasigroups {G: . If wi 18 a T-fuzzy subquasigroup of

G;, where 1 <1< n, then p= H Wi defined by

pz) = (:1_[1 i) (@1, Ty oo Tn) = Topa (1), pa(w2), - oo s pin(20))

for all © = (x1,29,...,2,) € G, is a T-fuzzy subquasigroup of G.
Moreover, if all p; are T-idempotent, then so is p.

Proof. Now let = = (x1,29,...,2,), ¥ = (Y1,%2,-..,Yn) be any ele-
ments of G = [[ G;. Then by Lemma 5.3 we have

o) = (T ) () (0, 90)

(ﬁl (T * Y1, Ta* Yoy oo Ty k¥ Yp))

=T (g1 (21 % 1), pa(@2 * Y2), - oo, (T * Yp))

2 T(T(pa (1), (1)), T(pa(z2), pa(y2)), - - T(pn(zn), 1n(yn)))
- T(Tn( 1($1)7 :U’2(x2)7 tee 7/“LTL(‘7;”>>7 Tn(ﬂl(:yl)v M2(y2)7 cee nun(yn)))
= T((];[ ) (21,2, ), (T 1) (s y2s - - Yn)

i=1

= T(p(x), py)) -
Therefore = [] p; is a T-fuzzy subquasigroup of G.

=1
Applying Lemma 5.3 it is not difficult to see that p is T-idempotent
if all p; are T-idempotent. |
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