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Fuzzy subquasigroups over a t-norm

Wiesªaw A. Dudek and Young Bae Jun

Abstract
In this paper, using a t-norm T , we introduce the notion of idempotent T -fuzzy
subquasigroups of quasigroups, and investigate some of their properties. Also
we describe fuzzy subquasigroups induced by t-norms in the direct product of
quasigroups.

1. Introduction
Following the introduction of fuzzy sets by Zadeh [13], the fuzzy set
theory developed by Zadeh himself and others have found many appli-
cations in the domain of mathematics and elsewhere. For example, in
[7] Liu studied fuzzy subrings as well as fuzzy ideals in rings. Proper-
ties of some fuzzy ideals in semirings are investigated in [8]. Connec-
tions between fuzzy groups and so-called level subgroups are found in
[3], [4] and [10]. The similar results for quasigroups are proved in [6].

In this paper, using a t-norm T , we introduce the notion of idem-
potent T -fuzzy subquasigroups of quasigroups, and investigate some
of their properties. Next we use a t-norm to construct T -fuzzy sub-
quasigroups in the �nite direct product of quasigroups.

2. Preliminaries
As it is well known, a groupoid (G, ·) is called a quasigroup if for any
a, b ∈ G each of the equations ax = b, xa = b has a unique solution
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in G. A quasigroup may be also de�ned as an algebra (G, ·, \, /) with
three binary operations ·, \, / satisfying the identities

(xy)/y = x, x \ (xy) = y, (x/y)y = x, x(x \ y) = y

(cf. [2] or [9]). We say that such de�ned quasigroup (G, ·, \, /) is an
equasigroup (i.e. equationally de�nable quasigroup) [9] or a primitive
quasigroup [2]. Obviously, these two de�nitions are equivalent because

x \ y = z ⇐⇒ xz = y, x/y = z ⇐⇒ zy = x.

A nonempty subset S of a quasigroup G = (G, ·, \, /) is called a
subquasigroup if it is closed with respect to these three operations,
i.e., if x ∗ y ∈ S for all x, y ∈ S and ∗ ∈ {·, \, /}.

The class of all equasigroups forms a variety. This means that a
homomorphic image of an equasigroup is an equasigroup. Also every
subset of an equasigroup closed with respect to these three operations
is an equasigroup.

Note that in case when a quasigroup is de�ned as a set with only
one operation, a homomorphic image is not in general a quasigroup.
It is only a groupoid with division. Similarly a homomorphic preimage
of a quasigroup (G, ·) is not a quasigroup. Also a subset closed with
respect to this multiplication is not a quasigroup (cf. [2]).

For the general development ot the theory of quasigroups the unipo-
tent quasigroups, i.e., quasigroups with the identity xx = yy, play an
important role. These quasigroups are connected with Latin squares
which have one �xed element in the diagonal (cf. [5]). Such quasi-
groups may be de�ned as quasigroups G with the special element θ
satisfying the identity xx = θ. Obviously, θ is uniquely determined
and it is an idempotent, but, in general, it is not the (left, right)
neutral element.

To avoid repetitions we use the following conventions: "a quasi-
group G" always denotes an equasigroup (G, ·, \, /); G always denotes
a nonempty set.

A function µ : G → [0, 1] is called a fuzzy set in a quasigroup G.
The set µα = {x ∈ G : µ(x) > α}, where α ∈ [0, 1] is �xed, is called
a level subset of µ. Im(µ) denotes the imege set of µ.

Let µ and ρ be two fuzzy sets de�ned on G. According to [13]
we say that µ is contained in ρ , and denote this fact by µ ⊆ ρ , i�
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µ(x) 6 ρ(x) for all x ∈ G. Obviously µ = ρ i� µ(x) = ρ(x) for all
x ∈ G.

According to [6], a fuzzy set µ in a quasigroup G = (G, ·, \, /) is
called a fuzzy subquasigroup of G if

min{µ(xy), µ(x \ y), µ(x/y)} > min{µ(x), µ(y)}

for all x, y ∈ G. It is clear, that this condition may be written as

µ(x ∗ y) > min{µ(x), µ(y)}

for all ∗ ∈ {·, \, /} and x, y ∈ G.
A fuzzy subquasigroup µ of a quasigroup G is called normal if

µ(xy) = µ(yx) for all x, y ∈ G. It is not di�cult to see that µ is
normal i� µ(x \ y) = µ(y/x) for all x, y ∈ G.

The following two results are proved in [6].
Proposition 2.1. A fuzzy set µ of a quasigroup G = (G, ·, \, /) is a
fuzzy subquasigroup i� for every α ∈ [0, 1], µα is either empty or a
subquasigroup of G.

Proposition 2.2. If µ is a fuzzy subquasigroup of a unipotent quasi-
group (G, ·, \, /, θ), then µ(θ) > µ(x) for any x ∈ G.

3. T-fuzzy subquasigroup
According to [1], by a t-norm, we mean a function T : [0, 1]× [0, 1] →
[0, 1] satisfying the following conditions:

(T1) T (α, 1) = α ,
(T2) T (α, β) 6 T (α, γ) whenever β 6 γ ,
(T3) T (α, β) = T (β, α) ,
(T4) T (α, T (β, γ)) = T (T (α, β), γ)

for all α, β, γ ∈ [0, 1].

A simple example of a t-norm is a function T (α, β) = min{α, β}.
Generally, T (α, β) 6 min{α, β} and T (α, 0) = 0 for all α, β ∈ [0, 1].
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Moreover, ([0, 1]; T ) is a commutative semigroup with 0 as the neutral
element. In particular it is medial, i.e.,

T (T (α, β), T (γ, δ)) = T (T (α, γ), T (β, δ))

holds for all α, β, γ, δ ∈ [0, 1].
Let T1 and T2 be two t-norms. We say that T1 dominates T2 and

write T1 À T2 if

T1(T2(α, β), T2(γ, δ)) > T2(T1(α, γ), T1(β, δ))

for all α, β, γ, δ ∈ [0, 1] (cf. [1]). Obviously T À T for all t-norms.
The set of all idempotents with respect to T , i.e. the set

ET = {α ∈ [0, 1] | T (α, α) = α}

is a subsemigroup of ([0, 1], T ). If Im(µ) ⊆ ET then a fuzzy set
µ is called an idempotent with respect to a t-norm T (brie�y: T -
idempotent).
De�nition 3.1. A fuzzy set µ in G is called a fuzzy subquasigroup of
G with respect to a t-norm T ( brie�y, a T -fuzzy subquasigroup ) if

µ(x ∗ y) > T (µ(x), µ(y))

for all x, y, z ∈ G and ∗ ∈ {·, \, /}.

Since min{α, β} > T (α, β) for all α, β ∈ [0, 1], every fuzzy sub-
quasigroup is also a T -fuzzy subquasigroup, but not conversely as seen
in the following example.
Example 3.2. Let G = {0, a, b, c} be the Klein's group with the
following Cayley table:

· 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0



Fuzzy subquasigroups over a t-norm 91

De�ne a fuzzy set µ in G by µ(0) = 0, 8, µ(a) = 0, 7, µ(b) = 0, 6,
µ(c) = 0, 5. It is not di�cult to see that a function Tm de�ned by
Tm(α, β) = max{α + β − 1, 0} for all α, β ∈ [0, 1] is a t-norm.

By routine calculations, we known that µ(x ∗ y) > Tm(µ(x), µ(y))
for all x, y ∈ G, which shows that µ is a Tm-fuzzy subquasigroup of
G, which is not Tm-idempotent. It is not a fuzzy subquasigroup since
µ(c) = µ(ab) < min{µ(a), µ(b)}.

But a fuzzy set ν de�ned by ν(0) = ν(a) = 1 and ν(b) = ν(c) = 0
is a Tm-idempotent fuzzy subquasigroup of G. It is also a fuzzy sub-
quasigroup.
Proposition 3.3. If a fuzzy set µ is idempotent with respect to a
t-norm T , then T (α, β) = min{α, β} for all α, β ∈ Im(µ).
Proof. Indeed, if α and β are in Im(µ), then

min{α, β} > T (α, β) > T (min{α, β}, min{α, β}) = min{α, β},
which completes the proof.
Corollary 3.4. Every T -idempotent fuzzy subquasigroup is also a
fuzzy subquasigroup.

By application of Proposition 2.1 we obtain
Corollary 3.5. Every nonempty level set of a T -idempotent fuzzy
subquasigroup de�ned on a quasigroup G is a subquasigroup of G.
Corollary 3.6. Let T be an idempotent t-norm. Then a fuzzy set
de�ned on a quasigroup G is a T -fuzzy subquasigroup i� it is a fuzzy
subquasigroup.

Now we consider the converse of Corollary 3.4.
Theorem 3.7. Let a fuzzy set µ on a quasigroup G be idempotent
with respect to a t-norm T . If each nonempty level set µα is a sub-
quasigroup of G, then µ is a T -idempotent fuzzy subquasigroup.
Proof. Assume that each nonempty level set µα is a subquasigroup of
G. Then µ is a fuzzy subquasigroup of G (by Proposition 2.1), and so

µ(x ∗ y) > min{µ(x), µ(y)} = T ( µ(x), µ(y) )
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by Proposition 3.3. Hence µ is a T -idempotent fuzzy subquasigroup
of a quasigroup G.

Theorem 3.8. Let µ be a T -fuzzy subquasigroup of G, where T is a
t-norm and α ∈ [0, 1]. Then
(i) if α = 1, then µα is either empty or is a subquasigroup of G,
(ii) if T = min, then µα is either empty or is a subquasigroup of G.

Proof. (i) Assume that α = 1 and µα 6= ∅. Then there exist x, y ∈ µα

such that µ(x) > 1 and µ(y) > 1 . Thus
µ(x ∗ y) > T ( µ(x), µ(y) ) > T (1, 1) = 1

so that x ∗ y ∈ µ1. Hence µ1 is a subquasigroup of G.
(ii) is a consequence of Proposition 2.1.

Note that a fuzzy set µ de�ned in our Example 3.2 is a non-
idempotent Tm-fuzzy subquasigroup in which µ1 is empty and µ0,6 is
not a subquasigroup of G. This proves that the analog of Proposition
2.1 for T -fuzzy subquasigroups is not true.

4. Fuzzy sets induced by norms
Let T be a t-norm and let µ and ν be two fuzzy sets in G. Then the
T -product of µ and ν, denoted by [µ · ν]

T
, is de�ned as

[µ · ν]
T
(x) = T (µ(x), ν(x))

for all x ∈ G.
Obviously [µ · ν]

T
is a fuzzy set in G such that [µ · ν]

T
= [ν · µ]

T
.

Moreover, if µ and ν are normal, then so is [µ · ν]
T∗ .

Theorem 4.1. Let T be a t-norm and let µ and ν be T -fuzzy sub-
quasigroups of G. If a t-norm T ∗ dominates T , then T ∗-product
[µ · ν]

T∗ is a T -fuzzy subquasigroup of G.
Proof. Indeed, for x, y ∈ G we have

[µ · ν]
T∗ (x ∗ y) = T ∗(µ(x ∗ y), ν(x ∗ y))

> T ∗(T (µ(x), µ(y)), T (ν(x), ν(y)))
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> T (T ∗(µ(x), ν(x)), T ∗(µ(y), ν(y)))

= T ([µ · ν]
T∗ (x), [µ · ν]

T∗ (y)) ,

which proves that [µ · ν]
T∗ is a T -fuzzy subquasigroup of G.

Corollary 4.2 The T -product of T -fuzzy subquasigroups is a T -fuzzy
subquasigroup.

Let G and H be nonempty sets and let f : G → H be an arbitrary
mapping. If ν is a fuzzy set in f(G) then µ = ν ◦ f is the fuzzy set
in G, which is called the preimage of ν under f .

It is not di�cult to see that the following lemma is true.
Lemma 4.3. Let T be a t-norm and let G and H be two quasigroups.
If h : G → H is an onto homomorphisms of quasigroups, ν is a fuzzy
subquasigroup of H and µ the preimage of ν under h, then µ is a
fuzzy subquasigroup of G. Moreover, µ is normal i� ν is normal. If
ν is T -idempotent, then so is µ.
Proposition 4.4. Let T and T ∗ be t-norms in which T ∗ dominates
T and let G , H be two quasigroups. If h : G → H be an onto
homomorphism of quasigroups, then for any T -fuzzy subquasigroups µ
and ν of H, we have

h−1([µ · ν]
T∗ ) = [h−1(µ) · h−1(ν)]

T∗ .

Proof. By Lemma 4.3 h−1(µ), h−1(ν) and h−1([µ · ν]
T∗ ) are T -fuzzy

subquasigroups of G.
Moreover for x ∈ G we have

[h−1([µ · ν]
T∗ )](x) = [µ · ν]

T∗ (h(x)) = T ∗(µ(h(x)), ν(h(x)))

= T ∗([h−1(µ)](x), [h−1(ν)](x)) = [h−1(µ) · h−1(ν)]
T∗ (x),

which completes the proof.

We say that a fuzzy set µ in G has a sup property if, for all subset
S ⊆ G, there exists s0 ∈ S such that µ(s0) = sup

s∈S
µ(s). In this case

for any mapping f de�ned on G we can de�ne in f(G) the fuzzy set
µf putting µf (y) = sup

x∈f−1(y)

µ(x) for all y ∈ f(G) (cf. [12]).
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Let f : G → H be a homomorphisms of quasigroups and let T be
a continuous t-norm (continuous with respect to the usual topology).
Then sets A1 = f−1(y1) and A2 = f−1(y2), where y1, y2 ∈ f(G)
are nonempty subsets of f(G). Similarly, A3 = f−1(y1 ∗ y2), where
∗ ∈ {·, \, /} is a �xed operation.

Consider the set

A1 ∗ A2 = {a1 ∗ a2, | a1 ∈ A1, a2 ∈ A2}.
If x ∈ A1 ∗ A2, then x = x1 ∗ x2 for some x1 ∈ A1 and x2 ∈ A2, and
so

f(x) = f(x1 ∗ x2) = f(x1) ∗ f(x2) = y1 ∗ y2 ,

which implies x ∈ f−1(y1 ∗ y2) = A3. Thus A1 ∗ A2 ⊆ A3 for any
operation ∗ ∈ {·, \, /}.

Therefore
µf (y1 ∗ y2) = sup

x∈f−1(y1∗y2)

µ(x) = sup
x∈A3

µ(x)

> sup
x∈A1∗A2

µ(x) > sup
x1∈A1, x2∈A2

µ(x1 ∗ x2)

> sup
x1∈A1, x2∈A2

T (µ(x1), µ(x2)) .

Since t-norm T is (by the assumption) continuous, for every ε > 0
there exists δ > 0 such that

sup
x1∈A1

µ(x1)− t1 6 δ and sup
x2∈A2

µ(x2)− t2 6 δ

implies
T

(
sup

x1∈A1

µ(x1), sup
x2∈A2

µ(x2)

)
− T (t1, t2) 6 ε .

This for t1 = µ(a1), t2 = µ(a2), where a1 ∈ A1, a2 ∈ A2, gives

T

(
sup

x1∈A1

µ(x1), sup
x2∈A2

µ(x2)

)
6 T (µ(a1), µ(a2)) + ε .

Consequently
µf (y1 ∗ y2) > sup

x1∈A1, x2∈A2

T (µ(x1), µ(x2))

> T

(
sup

x1∈A1

µ(x1), sup
x2∈A2

µ(x2)

)
= T (µf (y1), µf (y2)) ,
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which shows that µf is a T-fuzzy subquasigroup of f(G).
Thus we have the following

Theorem 4.5. Let T be a continuous t-norm and let f be a homo-
morphism on a quasigroup G. If a T -fuzzy subquasigroup µ of G has
the sup property, then µf is a T -fuzzy subquasigroup of f(G).

Since the function "min" is a continuous t-norm, then, as a simple
consequence of the above theorem, we obtain
Corollary 4.6. If a fuzzy subquasigroup µ of G has the sup property,
then µf is a fuzzy subquasigroup of f(G) for every homomorphism
f de�ned on G.

5. Direct products of fuzzy subquasigroups
Let T be a �xed t-norm. If µ1 and µ2 are two fuzzy sets on G1 and
G2 (respectively), then µ de�ned on G1 ×G2 by the formula

µ(x1, x2) = T (µ1(x1), µ2(x2)),
is a fuzzy set on G1 ×G2, which is denoted by µ1 × µ2.

Proposition 5.1. If µ1 and µ2 are T -fuzzy subquasigroup of quasi-
groups G1 and G2 (respectively ), then µ1×µ2 is a T -fuzzy subquasi-
group of the direct product G1 × G2. Moreover, if µ1 and µ2 are
T -idempotent, then so is µ1 × µ2.
Proof. Let (x1, x2), (y1, y2) be in G1 ×G2. Then
(µ1 × µ2)((x1, x2) ∗ (y1, y2)) = (µ1 × µ2)(x1 ∗ y1, x2 ∗ y2)

= T (µ1(x1 ∗ y1), µ2(x2 ∗ y2))

≥ T (T (µ1(x1), µ1(y1)), T (µ2(x2), µ2(y2)))

= T (T (µ1(x1), µ2(x2)), T (µ1(y1), µ2(y2)))

= T ((µ1 × µ2)(x1, x2), (µ1 × µ2)(y1, y2)).

Hence µ1 × µ2 is a T -fuzzy subquasigroup of G1 × G2. Obviously, if
µ1 and µ2 are T -idempotent, then so is µ1 × µ2.
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The relationship between T -fuzzy subquasigroups µ×ν and [µ·ν]
can be viewed via the following diagram

G - G×G
d

?

[µ · ν]T

?

µ

?

ν

´
´

´
´

´
´

´
´́+

µ× ν

I ¾ I × I
T

where I = [0, 1] and d : G → G×G is de�ned by d(x) = (x, x).
Applying Lemma 3.2 from [1] it is not di�cult to see that [µ · ν]T

is the preimage of µ× ν under d.
Note by the way, that our T -product is di�erent from the product

of fuzzy sets studied by Liu [7] and Sessa [11].

Now we generalize this idea to the product of n > 2 T -fuzzy sub-
quasigroups. We �rst need to generalize the domain of t-norm T to
n∏

i=1

[0, 1] as follows:

De�nition 5.2. The function Tn :
n∏

i=1

[0, 1] → [0, 1] is de�ned by

Tn(α1, α2, . . . , αn) = T (αi, Tn−1(α1, . . . , αi−1, αi+1, . . . , αn))

for all 1 6 i 6 n, where n > 2, T2 = T and T1 = id (identity).

Using the induction on n, we have the following two lemmas.
Lemma 5.3. For every t-norm T and every αi, βi ∈ [0, 1], where
1 6 i 6 n and n > 2, we have

Tn(T (α1, β1), T (α2, β2), . . . , T (αn, βn))

= T (Tn(α1, α2, . . . , αn), Tn(β1, β2, . . . , βn)).
Lemma 5.4. For a t-norm T and every α1, . . . , αn ∈ [0, 1], where
n > 2, we have

Tn(α1, . . . , αn) = T (. . . T (T (T (α1, α2), α3), α4), . . . , αn)

= T (α1, T (α2, T (α3, . . . T (αn−1, αn) . . .))).
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Theorem 5.5. Let T be a t-norm and let G =
n∏

i=1

Gi be the direct
product of quasigroups {Gi}n

i=1. If µi is a T -fuzzy subquasigroup of
Gi, where 1 6 i 6 n, then µ =

n∏
i=1

µi de�ned by

µ(x) = (
n∏

i=1

µi)(x1, x2, . . . , xn) = Tn(µ1(x1), µ2(x2), . . . , µn(xn))

for all x = (x1, x2, . . . , xn) ∈ G, is a T -fuzzy subquasigroup of G.
Moreover, if all µi are T -idempotent, then so is µ.
Proof. Now let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) be any ele-
ments of G =

n∏
i=1

Gi. Then by Lemma 5.3 we have

µ(x ∗ y) = (
n∏

i=1

µi)((x1, x2, . . . , xn) ∗ (y1, y2, . . . , yn))

= (
n∏

i=1

µi)((x1 ∗ y1, x2 ∗ y2, . . . , xn ∗ yn))

= Tn(µ1(x1 ∗ y1), µ2(x2 ∗ y2), . . . , µn(xn ∗ yn))

> Tn(T (µ1(x1), µ1(y1)), T (µ2(x2), µ2(y2)), . . . , T (µn(xn), µn(yn)))

= T (Tn(µ1(x1), µ2(x2), . . . , µn(xn)), Tn(µ1(y1), µ2(y2), . . . , µn(yn)))

= T ((
n∏

i=1

µi)(x1, x2, . . . , xn), (
n∏

i=1

µi)(y1, y2, . . . , yn))

= T (µ(x), µ(y)) .

Therefore µ =
n∏

i=1

µi is a T -fuzzy subquasigroup of G.
Applying Lemma 5.3 it is not di�cult to see that µ is T -idempotent

if all µi are T -idempotent.
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