Invertible elements in associates and semigroups. 2

Fedir M. Sokhatsky and Olena Yurevych

Abstract

This work is a continuation of [12]. Some additional invertibility criteria for elements of associates and n-ary semigroups are found. The corresponding axiomatics for polyagroups and n-ary groups are established.

The study of (i, j)-associative (n + 1)-ary groupoids is reduced in [8] to the study of so-called associate of the type (s, n), where s|n. A bracketting rule and a decomposition of the main operation was described in [10]. Some criteria of invertibility of elements are found in [12]. Here, we give some additional criteria of invertibility and find axiomatics for polyagroups and *n*-groups.

The following theorem is proved in [10]

Theorem 1. Let (Q, f) be an associate of a type (r, s, n). If the words w_1 and w_2 differ from each other by the bracketting only and the coordinate of every f's occurrence in the words w_1 and w_2 is divisible by r and also there exists a one-to-one correspondence between f's occurrences in the word w_1 and those in the word w_2 such that the corresponding coordinates are congruent modulo s, then the formula $w_1 = w_2$ is an identity in (Q, f).

By the coordinate of the *i*-th occurrence of the symbol f in a word w is mean a number of all individual variables and constants, appearing

¹⁹⁹¹ Mathematics Subject Classification: 20N15

Keywords: associate, invertible element

in the word w from the beginning of w to the *i*-th occurrence of the operation symbol f.

A transformation $\lambda_{i,a}$ of the set Q, which is determined by the equality

$$\lambda_{i,a}(x) = f(\overset{i}{a}, x, \overset{n-i}{a}), \tag{1}$$

is said to be an *i*-th shift of the groupoid (Q, f) induced by an element a. Hence, the *i*-th shift is a partial case of the translation (see [1]). If the *i*-th shift is a substitution of the set Q, then the element a is called *i*-invertible. If an element a is *i*-invertible for all $i = 0, 1, \ldots, n$, then it is called invertible. Invertible elements in *n*-semigroups are described by Gluskin in [6] and [7].

The following theorem is proved in [12]

Theorem 2. An element $a \in Q$ is invertible in an associate (Q, f) of the type (s, n) iff there exists an element $\bar{a} \in Q$ such that

$$f(\bar{a}, a, \dots a, x) = x, \qquad f(x, a, \dots a, \bar{a}) = x \tag{2}$$

for all $x \in Q$.

1. Criterion of invertibility

Corollary 1. An element a is invertible in an associate (Q, f) of the type (s, n) iff there exist \hat{a} and \check{a} such that

$$f(\hat{a}, a, \dots, a, x) = x, \qquad f(x, a, \dots, a, \breve{a}) = x \tag{3}$$

hold for all $x \in Q$.

Proof. If an element a is r-multiple invertible, then (2) are true according to Theorem 2. Therefore (3) with $\hat{a} = \breve{a} = \bar{a}$ hold.

Conversely, assume that (3) hold. Putting $x = \check{a}$ in the first equality, and $x = \hat{a}$ in the second, we obtain

 $f(\hat{a}, a, \dots, a, \breve{a}) = \breve{a}$ and $f(\hat{a}, a, \dots, a, \breve{a}) = \hat{a}$.

Hence $\hat{a} = \breve{a}$. Thus (2) hold.

The invertibility of a follows from Theorem 2.

Lemma 1. If an element a is i-invertible in an associate (Q, f) of the type (s, n), then every i-th skew element to a is also j-th skew for all $j \equiv i \pmod{s}$.

Proof. Since the *i*-th shift induced by a is a substitution of the set Q, then

$$a = \lambda_{i,a}^{-1} \lambda_{i,a}(a) \stackrel{(1)}{=} \lambda_{i,a}^{-1} f(\overset{n+1}{a}) \stackrel{(1)}{=} \lambda_{i,a}^{-1} f(\overset{j}{a}, \lambda_{i,a} \lambda_{i,a}^{-1}(a), \overset{n-j}{a})$$

$$\stackrel{(4)}{=} \lambda_{i,a}^{-1} f(\overset{j}{a}, f(\overset{i}{a}, \overline{a}^{i}, \overset{n-i}{a}), \overset{n-j}{a}) \stackrel{T1}{=} \lambda_{i,a}^{-1} f(\overset{i}{a}, f(\overset{j}{a}, \overline{a}^{i}, \overset{n-j}{a}), \overset{n-i}{a})$$

$$\stackrel{(1)}{=} \lambda_{i,a}^{-1} \lambda_{i,a} f(\overset{j}{a}, \overline{a}^{i}, \overset{n-j}{a}) = f(\overset{j}{a}, \overline{a}^{i}, \overset{n-j}{a}).$$

Thus $f(a^j, \bar{a}^i, a^{n-j}) = a$. This means, that \bar{a}^i is the *j*-th skew to *a*. \Box

If an element a of a multiary groupoid is *i*-invertible, then the element $\lambda_{i,a}^{-1}(a)$ coincides with the *i*-th skew of the element a, which is denoted by \bar{a}^i ($\bar{a} := \bar{a}^0$) and is determined by the equality

$$f(\overset{i}{a}, \bar{a}^{i}, \overset{n-i}{a}) = a.$$
(4)

The following theorem is valid.

Theorem 3. In any associate (Q, f) of the type (s, n) for any element a and for any i = 0, 1, ..., n - 1; $k = 1, ..., \frac{n}{s} - 1$ the following conditions are equivalent:

- 1) a is invertible;
- 2) a is i- and (n-i)-invertible;
- 3) there exist elements \hat{a} and \breve{a} from Q such that

$$f(\overset{i}{a}, \overset{n-i-1}{a}, x) = x \quad and \quad f(x, \overset{n-i-1}{a}, \breve{a}, \overset{i}{a}) = x \tag{5}$$

hold for all $x \in Q$.

4) a is ks-invertible.

Proof. 1) \Rightarrow 2) by the definition of invertibility.

2) \Rightarrow 3). Since the element *a* is *i*- and (n - i)-invertible, the *i*-th and (n - i)-th shifts are substitutions of the set *Q*.

Let $i \leq n-s$. To prove the relation (5), we consider the following equalities:

$$\begin{aligned} x &= \lambda_{i,a}^{-1} \lambda_{i,a}(x) \stackrel{(1)}{=} \lambda_{i,a}^{-1} f(\overset{i}{a}, x, \overset{n-i}{a}) \\ & \stackrel{L1}{=} \lambda_{i,a}^{-1} f(\overset{i}{a}, x, \overset{s-1}{a}, f(\overset{n-s-i}{a}, \overline{a}^{(n-i)}, \overset{i+s}{a}), \overset{n-s-i}{a}) \\ & \stackrel{T1}{=} \lambda_{i,a}^{-1} f(\overset{i}{a}, f(x, \overset{n-i-1}{a}, \overline{a}^{(n-i)}, \overset{i}{a}), \overset{n-i}{a}) \\ & \stackrel{(1)}{=} \lambda_{i,a}^{-1} \lambda_{i,a} f(x, \overset{n-i-1}{a}, \overline{a}^{(n-i)}, \overset{i}{a}) = f(x, \overset{n-i-1}{a}, \overline{a}^{(n-i)}, \overset{i}{a}). \end{aligned}$$

Hence, the second equality from (5) holds.

To prove the first, observe that

$$\begin{aligned} x &= \lambda_{n-i,a}^{-1} \lambda_{n-i,a}(x) \stackrel{(1)}{=} \lambda_{n-i,a}^{-1} f\binom{n-i}{a}, x, \stackrel{i}{a} \\ &\stackrel{L_{1}}{=} \lambda_{n-i,a}^{-1} f\binom{n-s-i}{a}, f\binom{i+s}{a}, \bar{a}^{i}, \stackrel{n-s-i}{a}, x, \stackrel{i}{a}) \\ &\stackrel{T_{1}}{=} \lambda_{n-i,a}^{-1} f\binom{n-i}{a}, f\binom{i}{a}, \bar{a}^{i}, \stackrel{n-i-1}{a}, x), \stackrel{i}{a}) \\ &\stackrel{(1)}{=} \lambda_{n-i,a}^{-1} \lambda_{n-i,a} f\binom{i}{a}, \bar{a}^{i}, \stackrel{n-i-1}{a}, x) = f\binom{i}{a}, \bar{a}^{i}, \stackrel{n-i-1}{a}, x). \end{aligned}$$

This proves that for $i \leq n-s$ the relation (5) holds.

Let i > s. At first, we prove the validity of the relations

$$f(\overset{i-s}{a}, \bar{a}^{i}, \overset{n-i+s-1}{a}, x) = x,$$
(6)

$$f(x, \overset{n-i+s-1}{a}, \bar{a}^{(n-i)}, \overset{i-s}{a}) = x.$$
(7)

Make a chain of conclusions:

$$x = \lambda_{i,a}^{-1} \lambda_{i,a}(x) \stackrel{(1)}{=} f(\overset{i}{a}, \lambda_{i,a}^{-1}(x), \overset{n-i}{a}) \stackrel{(4)}{=} \lambda_{i,a}^{-1} f(\overset{i-s}{a}, f(\overset{i}{a}, \overline{a}^{i}, \overset{n-i}{a}), \overset{s-1}{a}, x, \overset{n-i}{a})$$

$$\stackrel{T1}{=} \lambda_{i,a}^{-1} f(\overset{i}{a}, f(\overset{i-s}{a}, \overline{a}^{i}, \overset{n-i+s-1}{a}, x), \overset{n-i}{a})$$

$$\stackrel{(1)}{=} \lambda_{i,a}^{-1} \lambda_{i,a} f(\overset{i-s}{a}, \overline{a}^{i}, \overset{n-i+s-1}{a}, x) = f(\overset{i-s}{a}, \overline{a}^{i}, \overset{n-i+s-1}{a}, x).$$

This proves (6). To prove (7) note that

$$x = \lambda_{n-i,a}^{-1} \lambda_{n-i,a}(x) \stackrel{(1)}{=} \lambda_{n-i,a}^{-1} f(\stackrel{n-i}{a}, x, \stackrel{i}{a})$$

$$\stackrel{(4)}{=} \lambda_{n-i,a}^{-1} f(\stackrel{n-i}{a}, x, \stackrel{s-1}{a}, f(\stackrel{n-i}{a}, \overline{a}^{(n-i)}, \stackrel{i}{a}), \stackrel{i-s}{a})$$

$$\stackrel{T1}{=} \lambda_{n-i,a}^{-1} f(\stackrel{n-i}{a}, f(x, \stackrel{n-i+s-1}{a}, \overline{a}^{(n-i)}, \stackrel{i-s}{a}), \stackrel{i}{a})$$

$$\stackrel{(1)}{=} \lambda_{n-i,a}^{-1} \lambda_{n-i,a} f(x, \overset{n-i+s-1}{a}, \bar{a}^{(n-i)}, \overset{i-s}{a}) = f(x, \overset{n-i+s-1}{a}, \bar{a}^{(n-i)}, \overset{i-s}{a}).$$

Using the obtained relation, we get correctness of the first of equalities (5). Indeed,

$$x \stackrel{(6)}{=} f(\stackrel{i-s}{a}, \bar{a}^{i}, \stackrel{n-i+s-1}{a}, x) \stackrel{(4)}{=} f(f(\stackrel{i}{a}, \bar{a}^{i}, \stackrel{n-i}{a}), \stackrel{i-s-1}{a}, \bar{a}^{i}, \stackrel{n-i+s-1}{a}, x)$$
$$\stackrel{T1}{=} f(\stackrel{i}{a}, \bar{a}^{i}, \stackrel{n-i-1}{a}, f(\stackrel{i-s}{a}, \bar{a}^{i}, \stackrel{n-i+s-1}{a}, x)) \stackrel{(6)}{=} f(\stackrel{i}{a}, \bar{a}^{i}, \stackrel{n-i-1}{a}, x).$$

In the same way:

$$\begin{aligned} x &\stackrel{(7)}{=} f(x, \overset{n-i+s-1}{a}, \bar{a}^{(n-i)}, \overset{i-s}{a}) \\ &\stackrel{(4)}{=} f(x, \overset{n-i+s-1}{a}, \bar{a}^{(n-i)}, \overset{i-s-1}{a}, f(\overset{n-i}{a}, \bar{a}^{(n-i)}, \overset{i}{a})) \\ &\stackrel{T1}{=} f(f(x, \overset{n-i+s-1}{a}, \bar{a}^{(n-i)}, \overset{i-s}{a}), \overset{n-i-1}{a}, \bar{a}^{(n-i)}, \overset{i}{a}) \stackrel{(6)}{=} f(x, \overset{n-i-1}{a}, \bar{a}^{(n-i)}, \overset{i}{a}), \end{aligned}$$

which proves the second equality from (5). Thus 2) implies 3).

3) \Rightarrow 4). If i = 0, then (5) implies (3), which, by Corollary 1, proves that a is an invertible element. In particular, it is *j*-invertible for all j.

If i > 0, then for

$$\hat{a} := f(\overset{i}{a}, f(\bar{a}^{i}, \overset{n-1}{a}, \bar{a}^{i}), \overset{n-i-1}{a}, \bar{a}^{(n-i)}),$$
(8)

$$\breve{a} := f(\bar{a}^{i}, \overset{n-i-1}{a}, f(\bar{a}^{(n-i)}, \overset{n-1}{a}, \bar{a}^{(n-i)}), \overset{i}{a})$$
(9)

we have

$$\begin{split} f(\hat{a}, \overset{n-1}{a}, x) &\stackrel{(8)}{=} f(f(\overset{i}{a}, f(\bar{a}^{i}, \overset{n-1}{a}, \bar{a}^{i}), \overset{n-i-1}{a}, \bar{a}^{(n-i)}), \overset{n-1}{a}, x) \\ &\stackrel{T1}{=} f(\overset{i}{a}, f(\bar{a}^{i}, \overset{n-i-1}{a}, f(\overset{i}{a}, \bar{a}^{i}, \overset{n-i-1}{a}, \bar{a}^{(n-i)}), \overset{i}{a}), \overset{n-i-1}{a}, x) \\ &\stackrel{(5)}{=} f(\overset{i}{a}, f(\bar{a}^{i}, \overset{n-i-1}{a}, \bar{a}^{(n-i)}, \overset{i}{a}), \overset{n-i-1}{a}, x) \\ &\stackrel{(5)}{=} f(\overset{i}{a}, \bar{a}^{i}, \overset{n-i-1}{a}, x) \stackrel{(5)}{=} x. \end{split}$$

The second equality from (3) may be proved in the same way. Indeed,

$$f(x, \overset{n-1}{a}, \breve{a}) \stackrel{(9)}{=} f(x, \overset{n-1}{a}, f(\bar{a}^{i}, \overset{n-i-1}{a}, f(\bar{a}^{(n-i)}, \overset{n-1}{a}, \bar{a}^{(n-i)}), \overset{i}{a}))$$
$$\stackrel{T1}{=} f(x, \overset{n-i-1}{a}, f(\overset{i}{a}, f(\bar{a}^{i}, \overset{n-i-1}{a}, \bar{a}^{(n-i)}, \overset{i}{a}), \overset{n-i-1}{a}, \bar{a}^{(n-i)}), \overset{i}{a})$$

$$\stackrel{(5)}{=} f(x, \overset{n-i-1}{a}, f(\overset{i}{a}, \bar{a}^{i}, \overset{n-i-1}{a}, \bar{a}^{(n-i)}), \overset{i}{a}) \stackrel{(5)}{=} f(x, \overset{n-i-1}{a}, \bar{a}^{(n-i)}, \overset{i}{a}) \stackrel{(5)}{=} x.$$

Hence, the relations (3) are valid and therefore, by Corollary 1, the element a is invertible.

4) \Rightarrow 1). Let $j \equiv 0 \pmod{s}$, 0 < j < n, i.e. j = ks, where $k = 1, \ldots, n/s - 1$, and let an element a be j-invertible.

Since the element a is ks-invertible, the ks-th shift is a substitution of the set Q. Observe that for

$$y := \lambda_{ks,a}^{-1}(z), \qquad z := \lambda_{ks,a}(y). \tag{10}$$

the following two equalities hold

$$\lambda_{ks,a}^{-1} f(z, \overset{ks-1}{a}, x, \overset{n-ks}{a}) = f(\lambda_{ks,a}^{-1}(z), \overset{n-1}{a}, x),$$
(11)

$$\lambda_{ks,a}^{-1} f(\overset{ks}{a}, x, \overset{n-ks-1}{a}, z) = f(x, \overset{n-1}{a}, \lambda_{ks,a}^{-1}(z)).$$
(12)

Indeed,

$$\begin{split} \lambda_{ks,a}^{-1} f(z, \overset{ks-1}{a}, x, \overset{n-ks}{a}) &\stackrel{(10)}{=} \lambda_{ks,a}^{-1} f(\lambda_{ks,a}(y), \overset{ks-1}{a}, x, \overset{n-ks}{a}) \\ &\stackrel{(1)}{=} \lambda_{ks,a}^{-1} f(f(\overset{ks}{a}, y, \overset{n-ks}{a}), \overset{ks-1}{a}, x, \overset{n-ks}{a}) \\ &\stackrel{T1}{=} \lambda_{ks,a}^{-1} f(\overset{ks}{a}, f(y, \overset{n-1}{a}, x), \overset{n-ks}{a}) \\ &\stackrel{(1)}{=} \lambda_{ks,a}^{-1} \lambda_{ks,a} f(y, \overset{n-1}{a}, x) \stackrel{(1)}{=} f(y, \overset{n-1}{a}, x) \\ &\stackrel{(10)}{=} f(\lambda_{ks,a}^{-1}(z), \overset{n-1}{a}, x). \end{split}$$

Similarly

$$\lambda_{ks,a}^{-1} f(\overset{ks}{a}, x, \overset{n-ks-1}{a}, z) \stackrel{(1)}{=} \lambda_{ks,a}^{-1} f(\overset{ks}{a}, x, \overset{n-ks-1}{a}, f(\overset{ks}{a}, y, \overset{n-ks}{a}))$$
$$\stackrel{T1}{=} \lambda_{ks,a}^{-1} f(\overset{ks}{a}, f(x, \overset{n-1}{a}, y), \overset{n-ks}{a})$$
$$\stackrel{(1)}{=} \lambda_{ks,a}^{-1} \lambda_{ks,a} f(x, \overset{n-1}{a}, y)$$
$$\stackrel{(1)}{=} f(x, \overset{n-1}{a}, y) \stackrel{(10)}{=} f(x, \overset{n-1}{a}, \lambda_{ks,a}^{-1}(z)).$$

Now, putting z := a in (11) we obtain

$$\lambda_{ks,a}^{-1} f(\overset{ks}{a}, x, \overset{n-ks}{a}) = f(\lambda_{ks,a}^{-1}(a), \overset{n-1}{a}, x),$$
$$\lambda_{ks,a}^{-1} \lambda_{ks,a}(x) = f(\bar{a}^{ks}, \overset{n-1}{a}, x),$$

which together with the definitions of a shift and the definition of a skew element gives

$$x = f(\bar{a}^{ks}, {}^{n-1}_{a}, x) \tag{13}$$

for all $x \in Q$. This means, that the first equality from (3) holds. To verify the second one we put z = a in (12). Then

$$\lambda_{ks,a}^{-1}f(\overset{ks}{a}, x, \overset{n-ks}{a}) = f(x, \overset{n-1}{a}, \lambda_{ks,a}^{-1}(a)),$$

which, as in the previous case, implies

$$\lambda_{ks,a}^{-1}\lambda_{ks,a}(x) = f(x, \overset{n-1}{a}, \bar{a}^{ks})$$

Thus

$$x = f(x, \overset{n-1}{a}, \bar{a}^{ks}) \tag{14}$$

for all $x \in Q$. Corollary 1 and (13), (14) imply the invertibility of a. This completes the proof of Theorem 3.

Note, that for binary semigroups the following assertion is valid.

Lemma 2. Let (Q, \cdot) be a binary semigroup and shift $\lambda_{0,a}$ $(\lambda_{1,a})$ be a substitution of Q, then the element $e_r := \lambda_{0,a}^{-1}(a)$ $(e_\ell := \lambda_{1,a}^{-1}(a))$ is a right (respectively left) unit, and $a_r^{-1} := \lambda_{0,a}^{-2}(a)$ $(a_\ell^{-1} := \lambda_{1,a}^{-2}(a))$ is a right (respectively left) inverse element of the element a in semigroup (Q, \cdot) .

Proof. Indeed,

$$\lambda_{0,a}(x \cdot e_r) = x \cdot e_r \cdot a = x \cdot \lambda_{0,a}(e_r) = x \cdot \lambda_{0,a} \lambda_{0,a}^{-1}(a) = x \cdot a = \lambda_{0,a}(x).$$

Since $\lambda_{0,a}$ is a substitution of the set Q, then the proved equality

$$\lambda_{0,a}(x \cdot e_r) = \lambda_{0,a}(x)$$

gives $x \cdot e_r = x$ for all $x \in Q$, that is the element e_r is a right unit element in the semigroup (Q, \cdot) .

In the same way one can prove that e_{ℓ} is a left unit element in (Q, \cdot) .

To establish that the element a_r^{-1} is a right inverse of a, note that

$$\lambda_{0,a}(a \cdot a_r^{-1}) = a \cdot a_r^{-1} \cdot a = a \cdot \lambda_{0,a} \lambda_{0,a}^{-2}(a) = a \cdot \lambda_{0,a}^{-1}(a) = a \cdot e_r = a.$$

Applying $\lambda_{0,a}^{-1}$ to the equality $\lambda_{0,a}(a \cdot a_r^{-1}) = a$, we get

$$a \cdot a_r^{-1} = \lambda_{o,a}^{-1}(a) = e_r.$$

Hence, the element a is right invertible.

Similarly we can prove that the element a_{ℓ}^{-1} is a left inverse of a, when the shift $\lambda_{1,a}$ is a substitution of the set Q.

Corollary 2. An element a of a binary semigroup is invertible iff it is 0-invertible and 1-invertible simultaneously.

An element a of an associate (Q, f) of the type (s, n) is said to be: *right* (*left*) *invertible*, if the shift $\lambda_{0,a}$ (respectively $\lambda_{1,a}$) is a substitution of the set Q.

An element a of an (n+1)-ary groupoid (Q, f) will be called *inner invertible*, if the shift $\lambda_{i,a}$ is a substitution of the set Q for some $i = 1, \ldots, n-1$.

Corollary 3. An element a is invertible in an associate (Q, f) of the type (s, n) iff it is right and left invertible simultaneously.

The *Proof* follows from the point 2) of Theorem 3 when i = 0.

Corollary 4. In any (n + 1)-ary semigroup (Q, f) for any element a and for any numbers i = 1, ..., n - 1; $k = 1, ..., \frac{n}{s} - 1$ the following assertions are equivalent:

1) a is invertible,

- 2) a is inner invertible,
- 3) a is right and left invertible,
- 4) there exist elements \hat{a} and \breve{a} in Q such that for arbitrary $x \in Q$ the following equalities hold:

$$f(\overset{i}{a}, \overset{n-i-1}{a}, x) = x, \qquad f(x, \overset{n-i-1}{a}, \breve{a}, \overset{i}{a}) = x.$$
(15)

2. Axiomatics of polyagroups

Definition 1. A groupoid (Q, f) is called a *polyagroup of a type* (s, n) iff it is a quasigroup and an associate of the type (s, n).

It is easy to see that for s = 1 a polyagroup of a type (s, n) is an (n + 1)-ary group.

Directly from Theorem 3 and the definition of a polyagroup we obtain:

Theorem 4. In an associate (Q, f) of the type (s, n) for any i = 0, 1, ..., n - 1 the following conditions are equivalent:

- 1) the associate is a polyagroup,
- 2) every element of the associate is invertible,
- 3) every element of the associate is i- and (n-i)-invertible,
- 4) for every element y there exist elements \hat{y} and \breve{y} in Q such that for arbitrary $x \in Q$ the following two equalities hold

$$f(\overset{i}{y}, \hat{y}, \overset{n-i-1}{y}, x) = x, \qquad f(x, \overset{n-i-1}{y}, \breve{y}, \overset{i}{y}) = x,$$

5) every element is ks-invertible, for some $k = 1, ..., \frac{n}{s} - 1$.

Since for s = 1 a polyagroup of a type (s, n) is an (n + 1)-group (an associate of the type (1, n) is an (n + 1)-semigroup), then as a simple consequence of the above Theorem, we obtain the following characterizations of (n + 1)-ary groups, which are proved in [3 - 5].

Corollary 5. In an (n+1)-semigroup (Q, f) for any i = 0, 1, ..., n-1 the following assertions are equivalent:

- 1) a semigroup is an (n+1)-group,
- 2) every element of the semigroup is invertible,
- 3) every element is a right and left invertible,
- 4) every element is inner invertible,
- 5) for every element y there exist elements \hat{y} and \breve{y} in Q such that for arbitrary $x \in Q$ the following two equalities hold

$$f(\overset{i}{y}, \overset{i}{y}, \overset{n-i-1}{y}, x) = x, \qquad f(x, \overset{n-i-1}{y}, \breve{y}, \overset{i}{y}) = x.$$

References

- [1] **V. D. Belousov**: *n*-Ary Quasigroups, (Russian), Ştiinţa, Chişinău 1972.
- [2] W. A. Dudek: *Remarks on n-groups*, Demonstratio Math. 13 (1980), 165 - 181.
- [3] W. A. Dudek: Varieties of polyadic groups, Filomat 9 (1995), 657-674.
- [4] W. A. Dudek, K. Głazek and B. Gleichgewicht: A note on the axioms of n-groups, Colloquia Math. Soc. J. Bolyai 29 "Universal Algebra", Esztergom (Hungary) 1977, 195 – 202.
- [5] A. M. Gal'mak: A new definition of n-ary groups, (Russian), Voprosy Algebry i Prikl. Mat., Gomel 1995, 31 - 30.
- [6] L. M. Gluskin: Positional operatives, (Russian), Mat. Sbornik
 68 (1965), 444 472.
- [7] L. M. Gluskin: Polyadic semigroups, (Russian), in "Theory of Semigroups and its Applications", Saratov, 1983, 10 – 19.
- [8] F. M. Sokhatsky: About associativity of multiplace operations, (Russian), Diskretnaya matematyka 4 (1992), 66 - 84.
- [9] F. M. Sokhatsky: About classes of polyagroups, In "Algebraicheskie issledovania", Inst. Mat. NAN Ukrainy, Kyiv 1996, 114–131.
- [10] F. M. Sokhatsky: On the associativity of multiplace operations, Quasigroups and Related Systems 4 (1997), 51 - 66.
- [11] F. N. Sokhatsky: On polyadic groups, (Russian), Sovriemiennaya algebra 2(22) (1997), 79 - 94.
- [12] F. M. Sokhatsky: Invertible elements in associates and semigroups. 1, Quasigroups and Related Systems 5 (1998), 53 - 68.

Received May 24, 1998 and in revised form October 11, 1998

Vinnytsia State Pedagogical University, Vinnytsia, 287100, Ukraine