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Some linear conditions and their
application to describing group isotopes

Fedir M. Sokhatsky

Abstract

The uniqueness of a canonical decomposition of a group isotope is proved in [1].
Now we characterize components of a canonical decomposition of a group isotope

from the main classes of quasigroups.

1. Some known results and notions

A groupoid (A4, o) is called an isotope of a groupoid (B, -), if there are
bijections «, (3, v from A to B such that the equality

Y(zoy) = alz)- B(y)

holds for all z,y € A. The triple («, 3,7) is called an isotopy between
(A,0) and (B, ). Bijections «, [3, v are called left, right and middle
components of this isotopy. A groupoid isotopic to a group (G,+) is
called a group isotope. (G,+) is called a decomposition group. Tt is
easy to see that a group isotope is a quasigroup.

A transformation « of a group (Q, +) is called: unitary if a(0) = 0;
linear (alinear) if there exist a,b € () and an automorphism (antiau-
tomorphism) 6 of the group (@, +) such that a(z) = a + 6(z) + b for
all z € Q; left and right monoreqular if it satisfies the identity

alz+z)=a(z)+z and alr+z) =12+ a(x),
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respectively. A linear unitary transformation is an automorphism.

If the left (right) and middle components of an isotopy are linear
transformations of a decomposition group, then the isotopy is called
left (right) linear. If the left (right) component is alinear but the
middle component is linear then the corresponding isotope is called
left (rigdt) alinear. A left and right linear (alinear) group isotope is
called linear (alinear). A quasigroup linearly isotopic to a group is
called a linear quasigroup. If, in addition, the group is abelian then
the quasigroup is said to be abelian.

The right side of

rx-y=ar+a+ Py, (1)

is called a (middle) canonical decomposition determined by an element
0 € @ of a group isotope (Q,-), if (Q,+) is a group (with 0 as its
neutral element) and «, § are unitary permutations of (Q,4+). « and
0 are called coefficients of the canonical decomposition, a — the free
member, (Q; +) — the canonical decomposition group.

Left and right canonical decompositions are determined by:

x-y=a+ar+ By, x-y=ar+ Py +a,

respectively. These three canonical decompositions are uniquely de-
termined by an arbitrary element 0 from the set @ (cf. [1]).

In [1] the following two lemmas are proved.

Lemma 1. If for permutations «, 3, v, 9§, p of a group (Q,+) the
identity  o(B(x) + v(y)) = 0(x) + puly) holds, then o is a linear
transformation of (Q,+). If in addition a0 = 0, then « is an auto-
morphism of (Q,+).

Lemma 2. If (1) is a canonical decomposition of a group isotope (Q, -)
and « is an automorphism of its decomposition group (Q,+), then in
(Q,-) we have

zfy=a v —afy—ata=a e +a [ a+ o By, (2)

roy=aly—afr—ata=a  PIBr®a PTad aly. (3)
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In the sequel will be used the following result from [2].

Theorem 3. Let (Q,-,Q) be a quasigroup algebra, where (Q,-) is
a group isotope. If in the words vy, vy, V3, V4, v of the signature
{-} UQ a variable x (a variable y) appears only in the words vy, vs
(respectively, va, vy ) and, in addition, exactly one time in at least one
of them, then the group isotope is:

1) left linear, if the identity (vi(z)-v2(y))-v = v3(x)-v4(y) holds
i (Qv K Q);

2) right linear, if the identity v - (vi(x) - va(y)) = v3(x) - V4(y)
holds in (Q,-,2),

3) left alinear, if the identity (vi(x) - ve(y)) - v = v4(y) - v3(x)
holds in (@, -, ),

4) right alinear, if the identity v - (vi(z) - v2(y)) = valy) - v3(T)
holds in (Q, -, ).

It is easy to see that the following lemma is true.

Lemma 4. If a group isotope (Q,-) has the canonical decomposition
(1), then

e, =2\ =7 (—a—ar+ ), (4)
l,=x/z=a 'z — Bz —a), (5)
R Y(u) =a(u—z+ azx), (6)

Li}(u) = 6716z — x +u),
where e, and 1, are defined by the identities we, = 1,20 = .

Also the following two results are proved in [2].

Theorem 5. Let {xg,...,x,} be the set of all variables in the words
w, v of the signature (-, /,\) and let 0 be a fized element of Q. If
a quasigroup (Q,-) is abelian or linear and in the words w,v every
appearance of every variable is not contained between two appearances
of another variable, then the following conditions are equivalent:

1) the identity w = v holds in (Q,-, /,\),
2) w(0,...,0,2;0,...,0) =v(0,...,0,z;,0,...,0) holds in (Q,-,/,\)

for every 1 =0,1,...,n,
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3) w(0,...,0) =v(0,...,0) and for the middle 0-canonical de—
composition sums of all coefficients of every variable in w and
v are identical.

Theorem 6. Let (Q,-,Q)) be a quasigroup algebra, where (Q,-) is a
group isotope. If the identity wi(x) - wo(y) = ws(y) - wa(x) holds and
two pairs of its subwords (w1, wy) and (wq, w3) contain all appearances
of variables x and y (respectively) and there exists only one appearance
of  in wy or wy (respectively, y in wy or ws), then (Q,-) is isotopic
to a commutative group.

2. Some linear conditions

The aim of this section is description of positions of variables in some
identities implying relations between the coefficients of the group iso-
tope in the canonical decomposition.

Lemma 7. Let w be a word in a quasigroup algebra (Q,-,2), where
(Q,-) is a group isotope. Then the left bracketting

w=(...(whovp_1) © Uu_2) O ...)0uWy,
n n—1 n—2 1

where o € {-, /} and v; is a subword of the word w, can be represented

in the additive form

aFrw, + af=1p,_1a+ oaFr=1p,_1Bu,_1 + ... + k0 pga + k0 poBuy,

where (1) denotes the canonical decomposition of (Q,-), k; denotes
the difference between the numbers of operations (-) and (/) in the
sequence (c1>, S o) and

3 i (0)=0)
e { oML i (0) = (),
for 1=0,1,...,n—1.
Proof. We use the induction by n. For n = 1 we have
w = awi + a + By, if (?) = (),

W aw; +a U a+ o S B, if <?) =)
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These decompositions coincide with the additive form, since ky = 0,
kt=1—-0=1, pg = ¢ when (?):(-),and/ﬁ:()—l:—l, ko = 0,

po=a 'I7'T when (<1>) = (/).

Assume, now that the lemma is true for n — 1. If in the left brack-
etting of w we denote w, ov,_1 by w,_1, then, by the assumption on
n

n — 1, we obtain

w={(...(wp—1 © Up_2) o ...)0Uy
n— n—3 1

= a*n1(w, ovp_1) + aFn2p, a4+ akr2p, oBu, o+ ...
n

oo+ a™poa 4+ ok po Buy,
which in the case (2) = (-) gives w,_1 = aw, + a + fv,_1. But
k,=k,_1+1 and p,_1 = ¢, therefore
w = af1(aw, +a+ Bu,_1) +aFtp,_1a+ oFr2p, oBu, o+ ...

.4 pya + ok pow

= a1ty +afr-ta+aFn=1 Bu, g +ak1p, a4 a2, o Bu, ot
oot OékopoCL + Oékopowo,
which coincides with the additive form of w.

In the case (o) = (/) we have k, =k, 1 — 1, p,_1 = [a I and

a

2
Wn—1 (:) a_lwn + Pn—10 + pn—lﬁvn—l-

Therefore

w = "1 (o w, + pp1a + pp-1B0n-1) + a"2p, _sa
+akn=2p, B0, o+ ...+ a*poa + a* pow,

which also gives the additive form of w. O]

Corollary 8. A left bracketting w = (... ((Up - Up—1) - Up—2)-...) - p)
of the word w in a left linear group isotope (Q,-) can be written in the
form

w=a"v,+a" ta+ a1 Bu,_1 +a" 2a+a" 2PBu,_o+ ... +a+ Bu.
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Proof. Putting (c1>) =...=(0) =(-) in Lemma 7 we obtain the above

corollary, since in this case p; = ¢ forall 1 =0,..., n. O

Theorem 9. Assume that the identity w = v holds in a quasigroup
algebra (Q, -, /,\,$), where (Q,-) is a left linear group isotope, and
the first variables in w and v are identical and appear in these words
only once. If all nodal operations of the overwords of the first variable
belong to the set {-,/}, then the left coefficient o of the canonical
decomposition of (Q,-) satisfies the condition o* ~F2~Fstks — ¢ yhere
ki, ks are the numbers of all nodal operations of the first variable
overwords of w and v respectively, coinciding with (-), and ks, ks are
those coinciding with (/).

Proof. Let (1) be the canonical decomposition of (Q,-) and let =
be the first variable in w and v. Applying Lemma 7 to the full left
bracketting we see that these words begin with the variable = and that
the left and right side of the identity w = v may be written in the form
given in Corollary 8. This means that the subword vy contains only
one variable x. Since this variable does not appear in other subwords,
then replacing of all other variables by elements of () we obtain

MR (g) + b= aFs TR (2) + ¢,

where b, ¢ are some fixed elements from ). Since for x = 0 we have
b = ¢, therefore a'=* = a#~k4 which completes the proof. Il

Lemma 10. Let w be a word in a quasigroup algebra (Q,-, <)), where
(Q,-) is a group isotope. Then the right bracketting

w:UOclv(Ulg...ngl(vn_lgwn)...),

where o € {-,\} and v; are subwords of the word w, can be represented
(]

in the additive form
w = Brvyug + Bovga + fFrvian, + e +
e T ﬁknilynflavnfl + ﬁknilVOanfla + ﬁknwn;

where (1) denotes the canonical decomposition of (Q,-), k; denotes
the difference between the numbers of operations (-) and (\) in the
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sequence (<1>, 05 o) and
(2

N o (z$1) =0,
v = 6L, if (o)=1(\),

for 1 =0,1,...,n—1.
Proof. The proof is analogous to the proof of Lemma 7. O

Corollary 11. A right bracketting w = vo - (V1 - ...+ (Up—1 - Up)...)
of the word w of a right linear group isotope (Q,-) can be written in
the form

w = avy + a+ Bav, + Ba + FPavy + FPa+ -+ a4 By,
Proof. The proof is analogous to the proof of Corollary 8. O]

Theorem 12. Assume that the identity w = v hold in a quasigroup
algebra (Q, -, /,\, ), where (Q,-) is a right linear group isotope, and
the last variables in w and v are identical and appear in these words
only once. If all nodal operations of the overwords of the last variable
belong to the set {-,\}, then the right coefficient 3 of the canonical
decomposition of (Q,-) satisfies the condition [*¥1—F2=Fstks — ¢ yhere
ki, k3 are the numbers of all nodal operations of the last variable
overwords of w and v respectively, coinciding with (-), and ks, ks are
those coinciding with (\).

Proof. The proof is analogous to the proof of Theorem 9. L

3. Axiomatics of some classes of isotopes

In this section we find criteria for a group isotope to belong to the
main classes of quasigroups.

3.1. Moufang, Bol and IP-quasigroups

As it is well-known, a quasigroup (@, -) is called

left I P-quasigroup, if there exists a transformation A\ such that

At (z-y) =y,
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right I P-quasigroup, if there exists a transformation p such that

(@-y)- ply) ==,
Moufang quasigroup, if:
(y - 2)y =z - yleyz - y),
y(z-yz) = (y-zly)y - 2,

left Bol quasigroup, if:

z2(x - 2y) = Re_zl(z cx2) -y,
right Bol quasigroup, if:

(yz-z)z=y- L' (22 2).

Theorem 13. For a group isotope (Q,-) the following statements are
equivalent:
1) (@,") is a left I P-quasigroup,
2) (Q,-) is a left Bol quasigroup,
3) the right coefficient of the canonical decomposition of (Q,-) is
involutive automorphism of the decomposition group.

Proof. 1) = 3). Assume that the group isotope (Q;-) is a left TP-
quasigroup. Then, by the canonical decomposition (1) of (Q,-), the
equation defining a left IP-quasigroup may be written in the form

aX(z) +a+ fla(r) +a+5(y)) = v,

where A is as in the definition of a left IP-quasigroup.
This means that

B(R.a(x) + B(y)) = IR, aX(z) + v,

where I(z) = —x, holds for all z,y € Q. Thus, according to Theo-
rem 1, 3 is a linear transformation of the group (@, +). Moreover, (3
(as a component of the canonical decomposition) is a unitary permu-
tation of (@, +). Hence, 3 is an automorphism of (Q, +).
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Applying this fact and Theorem 12 to the equality defining a left
[P-quasigroup we obtain the relation 327999 = ¢ which shows that
B is an involutive automorphism of (@, +).

3) = 1). Let (Q,-) be an isotope of a group (Q,+), (1) its
canonical decomposition and 3 an involutive automorphism of (Q, +).
Putting

A=a 'R'IBR.a (7)

we obtain a transformation A of () such that

Ax) - (2 -y) = RaaA(z) + B(Raa(x) + 5(y))
= Reao™ R BRy0(x) + SRaa(x) + 32(y)
= —6Ra0é(l') + ﬂRaOé(-T) +y=y.
Hence (Q,-) is a left IP-quasigroup.

2) = 3). Let a group isotope (@Q,-) be a left Bol quasigroup.
Fixing 2 in the identity defining a left Bol loop and applying Theorem 3
we obtain the right linearity of (@, -). Because this identity is balanced
with respect to v, then Theorem 12 implies 337*%~1 = ¢, where 3 is
a right coefficient of the canonical decomposition of (@, -). Thus [ is
an involutive automorphism.

3) = 2). If [ in the canonical decomposition (1) of (@Q,-) is an
involutive automorphism of (@, +), then
RNz x2)-y @ aR Nz z2)+a+ Py
@(z-xz)—z—l—oaz—l—a—i—ﬂy

Qaz—i—a—l—ﬁ(am—i—a—i—ﬁz)—z—i—az—i—a—l—ﬁy
=az+a+Par+pfa+z—z+az+a+ Py
= az+a+ Pax + Ba+ az+ a+ By.

Similarly

z(a:.zy)(é)az—i—a—l—ﬁ(ax—l—a—i-ﬁ(aZﬂL&-i-ﬁy))

= az+a+ Pax + Ba+ az+ a+ By,

which proves that (Q,-) is a left Bol quasigroup. O
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Theorem 14. For a group isotope (Q,-) the following statements are
equivalent:
1) (Q,) is a right I P-quasigroup,
2) (Q,) is a right Bol quasigroup,
3) the left coefficient of the canonical decomposition of (Q,-) is
an involutive automorphism of the decomposition group.

Proof. The proof is analogous to the proof of Theorem 13. [

Theorem 15. For a group isotope (Q,-) the following statements are
equivalent:

1) (Q,) is an I P-quasigroup,

2) (Q,") is a Moufang quasigroup,

3) (Q,-) is a Bol quasigroup,

4) all coefficients of the canonical decomposition of (Q,-) are in-
volutive automorphisms of the decomposition group.

Proof. The equivalence of 1), 3) and 4) follows from Theorems 13 and
14.
2) <= 4). Let (Q, ) be a Moufang quasigroup. Putting

vi=aY, V=2, v=Y, V3=, Uy=7y(e,z y)

in the first identity defining this quasigroup and applying Theorem
3 we obtain the right linearity of (Q,-). In the analogous way, the
second identity from the definition of a Moufang quasigroup gives the
left linearity of (Q,-). Thus (Q,-) is a linear group isotope. But for
linear group isotopes this equivalence is proved in [4]. O]

A left (right) symmetri ¢ quasigroup is defined as a quasigroup
satisfying the identity z - (z - y) = y (respectively, (z-y) -y =1z). A
quasigroup which is left and right symmetric is called symmetric or a
TS-quasigroup.

Corollary 16. A group isotope (Q, ) is a left (right) symmetric quasi-
group iff the decomposition group (Q,+) is commutative and the right
(left) coefficient B of its canonical decomposition is an automorphism

of (Q,+) such that B(x) = —z for all x € Q.
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Proof. Every left symmetric quasigroup is a left I P-quasigroup, where

A = &. From the proof of Theorem 13 follows § = I, i.e. f(z) = —x for

all x € (). But such defined § is an automorphism only in commutative
groups. The converse is obvious.

In the case of a right symmetric quasigroup the proof is analogous.

O

3.2. F-quasigroups

Note that a left (right) F-quasigroup is defined as a quasigroup (@, )
satisfying the identity

T Yz =1y ez, (8)
(respectively, xy - z = z1, - yz).

Theorem 17. A group isotope (Q,-) with a canonical decomposition
(1) is a left F-quasigroup iff 5 is an automorphism of the group (Q, +),
B commutes with o and « satisfies the identity

alr+y)=c+ay—z+ az. (9)

Proof. Let (Q,-) be a group isotope satisfying (8). If (1) is a canonical
decomposition of (@, -), then (8) together with Theorem 3 imply that
3 is an automorphism of (@, +).

Moreover, (8) for z = 7'(—a) and z =a '(t — a) gives

t+ Bay = alt + By) +t, (10)

where v is a some permutation of ().
This identity y = 0 implies vt = —at + t. Hence (10) may be
written in the form

t+ Bay = a(t + By) — at +1,

which for ¢t = 0 gives a3 = fa. This fact together with the transpo-
sition of By and y in (10) implies

t+ay=a(t+y) —at+t,



o4 F.M. Sokhatsky

which proves (9).

Conversely, let (@, -) be a group isotope with the canonical decom-
position described in Theorem.

Putting y = —z in (9) we obtain 0 =z + a(—z) — z + a(x), i.e.

r+a(—r) = —ax + . (11)
Hence
1

:cy-emz(:)a(ax—l—a—l—ﬁy)—l-avLﬁ(ozex—l—a—kﬁz)

= a((az + a) + By) + a + Blae,) + fa + 2z

9
© ar+a+afy — (ax+a) + a(ar +a) + a+ afe, + Ba+ 322

@om:+a+ozﬁy—(aa:—i—a)—l—a(ax—l—a)—ira—i—
+a(—(ax + a) + z) + Ba + (*z
©)
=ar+a+afy— (ax+a)+alar+a)+a— (ax+a)+
+axr + az + a + a(—(ax +a)) + Ba + 32z
=ar+a+afy — (ax +a) + alax + a) + (az + a+
ta(=(az +a))) + Ba+ 2

= ar +a+ afy — (ax + a) + a(ar + a) — a(ax + a)+

+(ax +a) + fa+ %z
=ax +a+ abBy + PBa+ (%=

=ax+a+ Bay+ Ba+ (%2 = ar+a+ Blay + a+ B2)
=T (y . Z),
which proves that (Q,-) is a left F-quasigroup. ]

Corollary 18. If a group isotope is a left F-quasigroup, then it is right
linear. It 1s linear iff the left coefficient of its canonical decomposition
commutes with every inner automorphism of the decomposition group.

Proof. The first part follows from Theorem 17. If a linear group iso-
tope is a left F-quasigroup, then, as it is proved in [4], the left co-
efficient of its canonical decomposition commutes with every inner
automorphism of the decomposition group.
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Conversely, if & commutes with every inner automorphism of the
group (@, +), then (9) may be rewritten in the form:

alz+y)=alr+y—z)+axz,

which for u = x +y — x implies a(u + =) = au + ax. Hence « is an
automorphism of the group (Q;+). Il

Corollary 19. If a group isotope is a left F-quasigroup, then it is left
alinear iff its decomposition group is commutative.

Proof. Theorem 17 implies (9), which may be rewritten in the form
ay +ar = x + ay — r + ax, because « is an antiautomorphism of
(Q,+). This implies the commutativity of the group (Q,+).

The converse is obvious. O]

Theorem 20. A group isotope (Q,-) with a canonical decomposition
(1) is a right F-quasigroup iff « is an automorphism of the group
(Q,+), a commutes with B and (B satisfies the identity

Bly+2z)=pz—2z+B8y+ 2

Proof. The proof is analogous to the proof of Theorem 17. O

3.3. Alternative quasigroups

A quasigroup (Q, -) is called left (right) alternative if it satisfies the
identity x - (x-2) = (z-x) -2z (respectively, (x-y)-y=x-(y-y) ).

Theorem 21. A group isotope (Q, ) with the canonical decomposition
(1) is left alternative iff B = ¢ and o = R;'07, where 0 is a right
monoregular permutation of the group (Q,+).

Proof. Tf a group isotope (Q,+) with the canonical decomposition (1)
is left alternative, then the identity x - (x-z) = (z - 2) -z may be
rewritten in the form

axr +a+ flaxr +a+ Bz) = alax + a+ fz) + a + Bz.
Replacing in this identity a + 5z by z and ax by = we obtain

t+a+Bx+2) =alx+a+ fatz) + 2,
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which for z = 0 gives
z+a+Br=al®+a+ o ). (12)
Therefore the previous identity may be written in the form
r+a+Bx+z)=c+a+ P+ 2.

Hence ((x + z) = fx + z, and in the consequence = ¢. Thus (12)
implies
alz+at+z)=z+a+ta 'z

Replacing = by = — a we see that § = R, 'a™!

permutation.
Conversely, let the relations 3 = ¢ and 6 be a right monoregular
permutation of the group (Q;+), then

is a right monoregular

x-(x-z)(é)aa:+a+ﬁ(aa:~l—a+ﬁz):ax+a—|—ozx—|—a~|—z

=(ar+a+axr)+a+z=alax+a+z)+a+z
completes the proof. O

Corollary 22. A left alternative group isotope is a left loop.

Proof. Indeed, § = e implies

(a7 (=a)) -y ala” (~a) +a+y=—at+a+y=y
for every y € Q. Thus a~!(—a) is a left unit of (Q, ). O
In the similar way as Theorem 21 we can prove

Theorem 23. A group isotope (Q,-) with the canonical decomposition
(1) is a right alternative quasigroup iff o = ¢, and 3 = R;'07', where
0 is a left monoreqular permutation of the group (Q,+).

Corollary 24. A right alternative group isotope is a right loop.
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3.4. Semimedial quasigroups

A quasigroup (Q, -) is called left semimedial if it satisfies the identity
T Yz = xY - TZ,

and right semimedial if it satisfies the identity xy - 2z = zz - yz. A
quasigroup which is left and right semimedial is called semimedial.
It is a special case of so-called medial quasigroups, i.e. quasigroups
satisfying the identity zy - uwv = xu - yv.

Theorem 25. A group isotope (Q,-) is left semimedial iff there exists
a group (Q,+), an element a € Q, a permutation o of Q and an
automorphism 3 of (Q,+) such that

Loofa = aR,p, (13)
r-y=oar+Py+a, (14)
az+y) =ar+ fr+ ay — Bz (15)

for all x,y € Q.

Proof. By Theorem 3, a left semimedial group isotope (@, -) is right
linear and has the decomposition (14), where [ is an automorphism
of the group (@, +).

Thus from (14) and 00 - yz = Oy - 0z, where 3z = —a, we obtain
aa + fay = a(PBy + a), which gives (13) and

Bay = —aa + a(fy + a).

This together with (14) and zz-yz = xy-xz for fz+a =0, fy+a = u
and ax = v implies

a(v+ fr+a) —aa+ou=alv+u)+ fv,

which for u =0 gives a(v+ fz + a) — aa = av + f.

Applying this identity to the previous we obtain (15).

Conversely, if a group isotope (@, -) has the canonical decomposi-
tion (14) such that (13) and (15) are satisfied, then
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T yz = a(zx) + B(yz) +a

(E)a(aerﬁera)+ﬂ(0zy+ﬁz+@)+a

12 o’x + Bax + a(Bz + a) — Bax + Bay + (%2 + Ba+a

(£)a2x+ﬁa:p+aa+ﬁa$—Ba:ﬂ+ﬁay+522+ﬁa+a

= o’z + Bax + aa + Bay + Bz + Ba + a.

and
(14)

xy-xz = alzy) + B(rz) + a

(1:4)04(04:104—ﬁy+a)+B(ax+ﬁz+a)—|—a

= o’z + fBax + By + a) — faz + fazx + (%2 + fa+a

= o’r + fax + aa + Bay + 32z + fa + a.

This proves that (Q,-) is left semimedial. O

Corollary 26. A left semimedial group isotope is right linear. It is
left linear iff it 1s medial.

Proof. The first part of the statement follows from Theorem 25. By
Toyoda-Bruck’s Theorem a medial group isotope is linear, and by [4]
a semimedial linear group isotope is medial. Il

Theorem 27. A group isotope (Q, -) is right semimedial iff there exists
a group (Q,+), an element a € Q, an automorphism « of (Q,-) and
a permutation 5 of Q such that B(z +vy) = —ay + ax + ay + Py,
BL,a = Rg,a8 and x -y =a+ax+ By for all z,y € Q.

Proof. The proof is analogous to the proof of Theorem 25. L
Corollary 28. A group isotope is medial iff it is semimedial.

Corollary 29. A group isotope (Q,-) is commutative iff its decompo-
sition group is commutative and o = 3.

Corollary 30. A group isotope (Q,-0 is unipotent iff it has the de-
composition -y =ar —ay+a or r-y=a+ Pr— Py.

Corollary 31. The canonical decomposition group of a commutative
unipotent group isotope is a Boolean group.
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