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Some linear conditions and their
application to describing group isotopes

Fedir M. Sokhatsky

Abstract

The uniqueness of a canonical decomposition of a group isotope is proved in [1].
Now we characterize components of a canonical decomposition of a group isotope
from the main classes of quasigroups.

1. Some known results and notions
A groupoid (A, ◦) is called an isotope of a groupoid (B, ·), if there are
bijections α, β, γ from A to B such that the equality

γ(x ◦ y) = α(x) · β(y)

holds for all x, y ∈ A. The triple (α, β, γ) is called an isotopy between
(A, ◦) and (B, ·). Bijections α, β, γ are called left, right and middle
components of this isotopy. A groupoid isotopic to a group (G, +) is
called a group isotope. (G, +) is called a decomposition group. It is
easy to see that a group isotope is a quasigroup.

A transformation α of a group (Q, +) is called: unitary if α(0) = 0;
linear (alinear) if there exist a, b ∈ Q and an automorphism (antiau-
tomorphism) θ of the group (Q, +) such that α(x) = a + θ(x) + b for
all x ∈ Q; left and right monoregular if it satis�es the identity

α(x + x) = α(x) + x and α(x + x) = x + α(x),
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respectively. A linear unitary transformation is an automorphism.
If the left (right) and middle components of an isotopy are linear

transformations of a decomposition group, then the isotopy is called
left (right) linear. If the left (right) component is alinear but the
middle component is linear then the corresponding isotope is called
left (rigdt) alinear. A left and right linear (alinear) group isotope is
called linear (alinear). A quasigroup linearly isotopic to a group is
called a linear quasigroup. If, in addition, the group is abelian then
the quasigroup is said to be abelian.

The right side of

x · y = αx + a + βy , (1)

is called a (middle) canonical decomposition determined by an element
0 ∈ Q of a group isotope (Q, ·), if (Q, +) is a group (with 0 as its
neutral element) and α, β are unitary permutations of (Q, +). α and
β are called coe�cients of the canonical decomposition, a � the free
member, (Q; +) � the canonical decomposition group.

Left and right canonical decompositions are determined by:

x · y = a + αx + βy, x · y = αx + βy + a,

respectively. These three canonical decompositions are uniquely de-
termined by an arbitrary element 0 from the set Q (cf. [1]).

In [1] the following two lemmas are proved.

Lemma 1. If for permutations α, β, γ, δ, µ of a group (Q, +) the
identity α(β(x) + γ(y)) = δ(x) + µ(y) holds, then α is a linear
transformation of (Q, +). If in addition α0 = 0, then α is an auto-
morphism of (Q, +).

Lemma 2. If (1) is a canonical decomposition of a group isotope (Q, ·)
and α is an automorphism of its decomposition group (Q, +), then in
(Q, ·) we have

x/y = α−1x− α−1βy − α−1a = α−1x + α−1I−1
a Ia + α−1I−1

a Iβy, (2)

x® y = α−1y − α−1βx− α−1a = α−1I⊕a Iβx⊕ α−1I⊕a Ia⊕ α−1y. (3)
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In the sequel will be used the following result from [2].

Theorem 3. Let (Q, ·, Ω) be a quasigroup algebra, where (Q, ·) is
a group isotope. If in the words υ1, υ2, υ3, υ4, υ of the signature
{·} ∪ Ω a variable x (a variable y) appears only in the words υ1, υ3

(respectively, υ2, υ4 ) and, in addition, exactly one time in at least one
of them, then the group isotope is:

1) left linear, if the identity (υ1(x) ·υ2(y)) ·υ = υ3(x) ·υ4(y) holds
in (Q, ·, Ω),

2) right linear, if the identity υ · (υ1(x) · υ2(y)) = υ3(x) · υ4(y)
holds in (Q, ·, Ω),

3) left alinear, if the identity (υ1(x) · υ2(y)) · υ = υ4(y) · υ3(x)
holds in (Q, ·, Ω),

4) right alinear, if the identity υ · (υ1(x) · υ2(y)) = υ4(y) · υ3(x)
holds in (Q, ·, Ω).

It is easy to see that the following lemma is true.

Lemma 4. If a group isotope (Q, ·) has the canonical decomposition
(1), then

ex = x\x = β−1(−a− αx + x), (4)

1x = x/x = α−1(x− βx− a), (5)

R−1
ex

(u) = α−1(u− x + αx), (6)

L−1
1x

(u) = β−1(βx− x + u),

where ex and 1x are de�ned by the identities xex = 1xx = x.

Also the following two results are proved in [2].

Theorem 5. Let {x0, . . . , xn} be the set of all variables in the words
w, v of the signature (·, /, \) and let 0 be a �xed element of Q. If
a quasigroup (Q, ·) is abelian or linear and in the words w, v every
appearance of every variable is not contained between two appearances
of another variable, then the following conditions are equivalent:

1) the identity w = v holds in (Q, ·, /, \),
2) w(0, ..., 0, xi, 0, ..., 0) = v(0, ..., 0, xi, 0, ..., 0) holds in (Q, ·, /, \)

for every i = 0, 1, . . . , n,
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3) w(0, . . . , 0) = v(0, . . . , 0) and for the middle 0-canonical de�
composition sums of all coe�cients of every variable in w and
v are identical.

Theorem 6. Let (Q, ·, Ω) be a quasigroup algebra, where (Q, ·) is a
group isotope. If the identity w1(x) · w2(y) = w3(y) · w4(x) holds and
two pairs of its subwords (w1, w4) and (w2, w3) contain all appearances
of variables x and y (respectively) and there exists only one appearance
of x in w1 or w4 (respectively, y in w2 or w3), then (Q, ·) is isotopic
to a commutative group.

2. Some linear conditions
The aim of this section is description of positions of variables in some
identities implying relations between the coe�cients of the group iso-
tope in the canonical decomposition.
Lemma 7. Let ω be a word in a quasigroup algebra (Q, ·, Ω), where
(Q, ·) is a group isotope. Then the left bracketting

ω = (. . . ((ωn ◦
n

υn−1) ◦
n−1

υn−2) ◦
n−2

. . . ) ◦
1
υ0,

where ◦
i
∈ {·, /} and υi is a subword of the word ω, can be represented

in the additive form

αknωn + αkn−1ρn−1a + αkn−1ρn−1βυn−1 + ... + αk0ρ0a + αk0ρ0βυ0,
where (1) denotes the canonical decomposition of (Q, ·), ki denotes
the di�erence between the numbers of operations (·) and (/) in the
sequence (◦

1
, ◦

2
, ..., ◦

i
) and

ρi :=

{
ε, if ( ◦

i+1
) = (·),

α−1I−1
a I, if ( ◦

i+1
) = (/),

for i = 0, 1, . . . , n− 1.
Proof. We use the induction by n. For n = 1 we have

ω = αω1 + a + βυ0, if (◦
1
) = (·),

ω
(3)
= αω1 + α−1I−1

a Ia + α−1I−1
a Iβυ, if (◦

1
) = (/).
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These decompositions coincide with the additive form, since k0 = 0,
k1 = 1 − 0 = 1, ρ0 = ε when (◦

1
) = (·), and k1 = 0 − 1 = −1, k0 = 0,

ρ0 = α−1I−1
a I when (◦

1
) = (/).

Assume, now that the lemma is true for n− 1. If in the left brack-
etting of ω we denote ωn ◦

n
υn−1 by ωn−1, then, by the assumption on

n− 1, we obtain

ω = (. . . (ωn−1 ◦
n−1

υn−2) ◦
n−3

. . . ) ◦
1
υ0

= αkn−1(ωn ◦
n

υn−1) + αkn−2ρn−2a + αkn−2ρn−2βυn−2 + ...

... + αk0ρ0a + αk0ρ0βυ0,

which in the case (◦
n
) = (·) gives ωn−1 = αωn + a + βυn−1. But

kn = kn−1 + 1 and ρn−1 = ε, therefore
ω = αkn−1(αωn + a + βυn−1) + αkn−1ρn−1a + αkn−2ρn−2βυn−2 + . . .

. . . + αk0ρ0a + αk0ρ0ω0

= αkn−1+1ωn +αkn−1a+αkn−1βυn−1+αkn−1ρn−1a+αkn−2ρn−2βυn−2+

. . . + αk0ρ0a + αk0ρ0ω0,
which coincides with the additive form of ω.

In the case (◦
n
) = (/) we have kn = kn−1− 1, ρn−1 = Iα−1I−1

a and

ωn−1
(2)
= α−1ωn + ρn−1a + ρn−1βυn−1.

Therefore

ω = αkn−1(α−1ωn + ρn−1a + ρn−1βυn−1) + αkn−2ρn−2a

+αkn−2ρn−2βυn−2 + . . . + αk0ρ0a + αk0ρ0ω0,
which also gives the additive form of ω.

Corollary 8. A left bracketting ω = (. . . ((υn · υn−1) · υn−2) · . . .) · υ0)
of the word ω in a left linear group isotope (Q, ·) can be written in the
form
ω = αnυn + αn−1a + αn−1βυn−1 + αn−2a + αn−2βυn−2 + . . . + a + βυ0.
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Proof. Putting (◦
1
) = ... = (◦

n
) = (·) in Lemma 7 we obtain the above

corollary, since in this case ρi = ε for all i = 0, . . . , n.

Theorem 9. Assume that the identity ω = υ holds in a quasigroup
algebra (Q, ·, /, \, Ω), where (Q, ·) is a left linear group isotope, and
the �rst variables in ω and υ are identical and appear in these words
only once. If all nodal operations of the overwords of the �rst variable
belong to the set {·, /}, then the left coe�cient α of the canonical
decomposition of (Q, ·) satis�es the condition αk1−k2−k3+k4 = ε, where
k1, k3 are the numbers of all nodal operations of the �rst variable
overwords of ω and υ respectively, coinciding with (·), and k2, k4 are
those coinciding with (/).

Proof. Let (1) be the canonical decomposition of (Q, ·) and let x
be the �rst variable in ω and υ. Applying Lemma 7 to the full left
bracketting we see that these words begin with the variable x and that
the left and right side of the identity ω = υ may be written in the form
given in Corollary 8. This means that the subword υ0 contains only
one variable x. Since this variable does not appear in other subwords,
then replacing of all other variables by elements of Q we obtain

αk1−k2(x) + b = αk3−k4(x) + c,

where b, c are some �xed elements from Q. Since for x = 0 we have
b = c, therefore αk1−k2 = αk3−k4 , which completes the proof.

Lemma 10. Let ω be a word in a quasigroup algebra (Q, ·, Ω), where
(Q, ·) is a group isotope. Then the right bracketting

ω = υ0 ◦
1
(υ1 ◦

2
. . . ◦

n−1
(υn−1 ◦

n
ωn) . . . ),

where ◦
i
∈ {·, \} and υi are subwords of the word ω, can be represented

in the additive form
ω = βk0ν0υ0 + βk0ν0a + βk1ν1αυ1 + βk1ν1a + ...

... + βkn−1νn−1αυn−1 + βkn−1ν0βυn−1a + βknωn,
where (1) denotes the canonical decomposition of (Q, ·), ki denotes
the di�erence between the numbers of operations (·) and (\) in the
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sequence (◦
1
, ◦

2
, ..., ◦

i
) and

νi :=

{
ε, if ( ◦

i+1
) = (·),

β−1IaI, if ( ◦
i+1

) = (\),
for i = 0, 1, . . . , n− 1.
Proof. The proof is analogous to the proof of Lemma 7.
Corollary 11. A right bracketting ω = υ0 · (υ1 · . . . · (υn−1 · υn) . . . )
of the word ω of a right linear group isotope (Q, ·) can be written in
the form

ω = αυ0 + a + βαυ1 + βa + β2αυ2 + β2a + · · ·+ βn−1a + βnυn.

Proof. The proof is analogous to the proof of Corollary 8.
Theorem 12. Assume that the identity ω = υ hold in a quasigroup
algebra (Q, ·, /, \, Ω), where (Q, ·) is a right linear group isotope, and
the last variables in ω and υ are identical and appear in these words
only once. If all nodal operations of the overwords of the last variable
belong to the set {·, \}, then the right coe�cient β of the canonical
decomposition of (Q, ·) satis�es the condition βk1−k2−k3+k4 = ε, where
k1, k3 are the numbers of all nodal operations of the last variable
overwords of ω and υ respectively, coinciding with (·), and k2, k4 are
those coinciding with (\).
Proof. The proof is analogous to the proof of Theorem 9.

3. Axiomatics of some classes of isotopes
In this section we �nd criteria for a group isotope to belong to the
main classes of quasigroups.

3.1. Moufang, Bol and IP-quasigroups
As it is well-known, a quasigroup (Q, ·) is called

left IP -quasigroup, if there exists a transformation λ such that

λx · (x · y) = y,
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right IP -quasigroup, if there exists a transformation ρ such that

(x · y) · ρ(y) = x,

Moufang quasigroup, if:
(xy · z)y = x · y(eyz · y),
y(x · yz) = (y · x1y)y · z,

left Bol quasigroup, if:

z(x · zy) = R−1
ez

(z · xz) · y,

right Bol quasigroup, if:

(yz · x)z = y · L−1
1z

(zx · z).

Theorem 13. For a group isotope (Q, ·) the following statements are
equivalent:

1) (Q, ·) is a left IP -quasigroup,
2) (Q, ·) is a left Bol quasigroup,
3) the right coe�cient of the canonical decomposition of (Q, ·) is

involutive automorphism of the decomposition group.

Proof. 1) =⇒ 3). Assume that the group isotope (Q; ·) is a left IP-
quasigroup. Then, by the canonical decomposition (1) of (Q, ·), the
equation de�ning a left IP-quasigroup may be written in the form

αλ(x) + a + β(α(x) + a + β(y)) = y,

where λ is as in the de�nition of a left IP-quasigroup.
This means that

β(Raα(x) + β(y)) = IRaαλ(x) + y,

where I(x) = −x, holds for all x, y ∈ Q. Thus, according to Theo-
rem 1, β is a linear transformation of the group (Q, +). Moreover, β
(as a component of the canonical decomposition) is a unitary permu-
tation of (Q, +). Hence, β is an automorphism of (Q, +).
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Applying this fact and Theorem 12 to the equality de�ning a left
IP-quasigroup we obtain the relation β2−0+0−0 = ε, which shows that
β is an involutive automorphism of (Q, +).

3) =⇒ 1). Let (Q, ·) be an isotope of a group (Q, +), (1) its
canonical decomposition and β an involutive automorphism of (Q, +).
Putting

λ = α−1R−1
a IβRaα (7)

we obtain a transformation λ of Q such that

λ(x) · (x · y) = Raαλ(x) + β(Raα(x) + β(y))

= Raαα−1R−1
a IβRaα(x) + βRaα(x) + β2(y)

= −βRaα(x) + βRaα(x) + y = y.

Hence (Q, ·) is a left IP-quasigroup.
2) =⇒ 3). Let a group isotope (Q, ·) be a left Bol quasigroup.

Fixing z in the identity de�ning a left Bol loop and applying Theorem 3
we obtain the right linearity of (Q, ·). Because this identity is balanced
with respect to y, then Theorem 12 implies β3−0+0−1 = ε, where β is
a right coe�cient of the canonical decomposition of (Q, ·). Thus β is
an involutive automorphism.

3) =⇒ 2). If β in the canonical decomposition (1) of (Q, ·) is an
involutive automorphism of (Q, +), then

R−1
ez

(z · xz) · y (1)
= αR−1

ez
(z · xz) + a + βy

(6)
= (z · xz)− z + αz + a + βy

(1)
= αz + a + β(αx + a + βz)− z + αz + a + βy

= αz + a + βαx + βa + z − z + αz + a + βy

= αz + a + βαx + βa + αz + a + βy.

Similarly

z(x · zy)
(1)
= αz + a + β(αx + a + β(αz + a + βy))

= αz + a + βαx + βa + αz + a + βy,

which proves that (Q, ·) is a left Bol quasigroup.
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Theorem 14. For a group isotope (Q, ·) the following statements are
equivalent:

1) (Q, ·) is a right IP -quasigroup,
2) (Q, ·) is a right Bol quasigroup,
3) the left coe�cient of the canonical decomposition of (Q, ·) is

an involutive automorphism of the decomposition group.

Proof. The proof is analogous to the proof of Theorem 13.

Theorem 15. For a group isotope (Q, ·) the following statements are
equivalent:

1) (Q, ·) is an IP -quasigroup,
2) (Q, ·) is a Moufang quasigroup,
3) (Q, ·) is a Bol quasigroup,
4) all coe�cients of the canonical decomposition of (Q, ·) are in-

volutive automorphisms of the decomposition group.

Proof. The equivalence of 1), 3) and 4) follows from Theorems 13 and
14.

2) ⇐⇒ 4). Let (Q, ·) be a Moufang quasigroup. Putting

υ1 = xy, υ2 = z, υ = y, υ3 = x, υ4 = y(eyz · y)

in the �rst identity de�ning this quasigroup and applying Theorem
3 we obtain the right linearity of (Q, ·). In the analogous way, the
second identity from the de�nition of a Moufang quasigroup gives the
left linearity of (Q, ·). Thus (Q, ·) is a linear group isotope. But for
linear group isotopes this equivalence is proved in [4].

A left (right) symmetri c quasigroup is de�ned as a quasigroup
satisfying the identity x · (x · y) = y (respectively, (x · y) · y = x). A
quasigroup which is left and right symmetric is called symmetric or a
TS-quasigroup.

Corollary 16. A group isotope (Q, ·) is a left (right) symmetric quasi-
group i� the decomposition group (Q, +) is commutative and the right
(left) coe�cient β of its canonical decomposition is an automorphism
of (Q, +) such that β(x) = −x for all x ∈ Q.
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Proof. Every left symmetric quasigroup is a left IP -quasigroup, where
λ = ε. From the proof of Theorem 13 follows β = I, i.e. β(x) = −x for
all x ∈ Q. But such de�ned β is an automorphism only in commutative
groups. The converse is obvious.

In the case of a right symmetric quasigroup the proof is analogous.

3.2. F-quasigroups
Note that a left (right) F-quasigroup is de�ned as a quasigroup (Q, ·)
satisfying the identity

x · yz = xy · exz, (8)

(respectively, xy · z = x1z · yz).

Theorem 17. A group isotope (Q, ·) with a canonical decomposition
(1) is a left F-quasigroup i� β is an automorphism of the group (Q, +),
β commutes with α and α satis�es the identity

α(x + y) = x + αy − x + αx. (9)

Proof. Let (Q, ·) be a group isotope satisfying (8). If (1) is a canonical
decomposition of (Q, ·), then (8) together with Theorem 3 imply that
β is an automorphism of (Q, +).

Moreover, (8) for z = β−1(−a) and x = α−1(t− a) gives

t + βαy = α(t + βy) + γt, (10)

where γ is a some permutation of Q.
This identity y = 0 implies γt = −αt + t. Hence (10) may be

written in the form

t + βαy = α(t + βy)− αt + t,

which for t = 0 gives αβ = βα. This fact together with the transpo-
sition of βy and y in (10) implies

t + αy = α(t + y)− αt + t,
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which proves (9).
Conversely, let (Q, ·) be a group isotope with the canonical decom-

position described in Theorem.
Putting y = −x in (9) we obtain 0 = x + α(−x)− x + α(x), i.e.

x + α(−x) = −αx + x. (11)
Hence
xy · exz

(1)
= α(αx + a + βy) + a + β(αex + a + βz)

= α((αx + a) + βy) + a + β(αex) + βa + β2z
(9)
= αx+ a+αβy− (αx+ a)+α(αx+ a)+ a+αβex +βa+β2z
(4)
= αx + a + αβy − (αx + a) + α(αx + a) + a+

+α(−(αx + a) + x) + βa + β2z
(9)
= αx + a + αβy − (αx + a) + α(αx + a) + a− (αx + a)+

+αx + αx + a + α(−(αx + a)) + βa + β2z

= αx + a + αβy − (αx + a) + α(αx + a) + (αx + a+

+α(−(αx + a))) + βa + β2z

(11)
= αx + a + αβy − (αx + a) + α(αx + a)− α(αx + a)+

+(αx + a) + βa + β2z

= αx + a + αβy + βa + β2z

= αx + a + βαy + βa + β2z = αx + a + β(αy + a + βz)

= x · (y · z),
which proves that (Q, ·) is a left F-quasigroup.

Corollary 18. If a group isotope is a left F-quasigroup, then it is right
linear. It is linear i� the left coe�cient of its canonical decomposition
commutes with every inner automorphism of the decomposition group.

Proof. The �rst part follows from Theorem 17. If a linear group iso-
tope is a left F-quasigroup, then, as it is proved in [4], the left co-
e�cient of its canonical decomposition commutes with every inner
automorphism of the decomposition group.
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Conversely, if α commutes with every inner automorphism of the
group (Q, +), then (9) may be rewritten in the form:

α(x + y) = α(x + y − x) + αx,
which for u = x + y − x implies α(u + x) = αu + αx. Hence α is an
automorphism of the group (Q; +).

Corollary 19. If a group isotope is a left F-quasigroup, then it is left
alinear i� its decomposition group is commutative.

Proof. Theorem 17 implies (9), which may be rewritten in the form
αy + αx = x + αy − x + αx, because α is an antiautomorphism of
(Q, +). This implies the commutativity of the group (Q, +).

The converse is obvious.

Theorem 20. A group isotope (Q, ·) with a canonical decomposition
(1) is a right F-quasigroup i� α is an automorphism of the group
(Q, +), α commutes with β and β satis�es the identity

β(y + z) = βz − z + βy + z.

Proof. The proof is analogous to the proof of Theorem 17.

3.3. Alternative quasigroups
A quasigroup (Q, ·) is called left (right) alternative if it satis�es the
identity x · (x · z) = (x · x) · z (respectively, (x · y) · y = x · (y · y) ).

Theorem 21. A group isotope (Q, ·) with the canonical decomposition
(1) is left alternative i� β = ε and α = R−1

a θ−1, where θ is a right
monoregular permutation of the group (Q, +).

Proof. If a group isotope (Q, ·) with the canonical decomposition (1)
is left alternative, then the identity x · (x · z) = (x · x) · z may be
rewritten in the form

αx + a + β(αx + a + βz) = α(αx + a + βx) + a + βz.

Replacing in this identity a + βz by z and αx by x we obtain

x + a + β(x + z) = α(x + a + βα−1x) + z,
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which for z = 0 gives

x + a + βx = α(x + a + βα−1x). (12)

Therefore the previous identity may be written in the form

x + a + β(x + z) = x + a + βx + z.

Hence β(x + z) = βx + z, and in the consequence β = ε. Thus (12)
implies

α−1(x + a + x) = x + a + α−1x.

Replacing x by x− a we see that θ = R−1
a α−1 is a right monoregular

permutation.
Conversely, let the relations β = ε and θ be a right monoregular

permutation of the group (Q; +), then

x · (x · z)
(1)
= αx + a + β(αx + a + βz) = αx + a + αx + a + z

= (αx + a + αx) + a + z = α(αx + a + x) + a + z

(1)
= (x · x) · z

completes the proof.

Corollary 22. A left alternative group isotope is a left loop.

Proof. Indeed, β = ε implies

(α−1(−a)) · y (1)
= α(α−1(−a)) + a + y = −a + a + y = y

for every y ∈ Q. Thus α−1(−a) is a left unit of (Q, ·).
In the similar way as Theorem 21 we can prove

Theorem 23. A group isotope (Q, ·) with the canonical decomposition
(1) is a right alternative quasigroup i� α = ε, and β = R−1

a θ−1, where
θ is a left monoregular permutation of the group (Q, +).

Corollary 24. A right alternative group isotope is a right loop.
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3.4. Semimedial quasigroups
A quasigroup (Q, ·) is called left semimedial if it satis�es the identity

xx · yz = xy · xz,

and right semimedial if it satis�es the identity xy · zz = xz · yz. A
quasigroup which is left and right semimedial is called semimedial.
It is a special case of so-called medial quasigroups, i.e. quasigroups
satisfying the identity xy · uv = xu · yv.

Theorem 25. A group isotope (Q, ·) is left semimedial i� there exists
a group (Q, +), an element a ∈ Q, a permutation α of Q and an
automorphism β of (Q, +) such that

Lαaβα = αRaβ, (13)
x · y = αx + βy + a, (14)

α(x + y) = αx + βx + αy − βx (15)

for all x, y ∈ Q.

Proof. By Theorem 3, a left semimedial group isotope (Q, ·) is right
linear and has the decomposition (14), where β is an automorphism
of the group (Q, +).

Thus from (14) and 00 · yz = 0y · 0z, where βz = −a, we obtain
αa + βαy = α(βy + a), which gives (13) and

βαy = −αa + α(βy + a).

This together with (14) and xx·yz = xy·xz for βz+a = 0, βy+a = u
and αx = v implies

α(v + βx + a)− αa + αu = α(v + u) + βv,

which for u = 0 gives α(v + βx + a)− αa = αv + βv.
Applying this identity to the previous we obtain (15).
Conversely, if a group isotope (Q, ·) has the canonical decomposi-

tion (14) such that (13) and (15) are satis�ed, then
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xx · yz
(14)
= α(xx) + β(yz) + a

(14)
= α(αx + βx + a) + β(αy + βz + a) + a

(15)
= α2x + βαx + α(βx + a)− βαx + βαy + β2z + βa + a

(13)
= α2x + βαx + αa + βαx− βαx + βαy + β2z + βa + a

= α2x + βαx + αa + βαy + β2z + βa + a.

and
xy · xz

(14)
= α(xy) + β(xz) + a

(14)
= α(αx + βy + a) + β(αx + βz + a) + a

(15)
= α2x + βαx + α(βy + a)− βαx + βαx + β2z + βa + a

(13)
= α2x + βαx + αa + βαy + β2z + βa + a.

This proves that (Q, ·) is left semimedial.

Corollary 26. A left semimedial group isotope is right linear. It is
left linear i� it is medial.

Proof. The �rst part of the statement follows from Theorem 25. By
Toyoda-Bruck's Theorem a medial group isotope is linear, and by [4]
a semimedial linear group isotope is medial.

Theorem 27. A group isotope (Q, ·) is right semimedial i� there exists
a group (Q, +), an element a ∈ Q, an automorphism α of (Q, ·) and
a permutation β of Q such that β(x + y) = −αy + αx + αy + βy,
βLaα = Rβaαβ and x · y = a + αx + βy for all x, y ∈ Q.

Proof. The proof is analogous to the proof of Theorem 25.

Corollary 28. A group isotope is medial i� it is semimedial.

Corollary 29. A group isotope (Q, ·) is commutative i� its decompo-
sition group is commutative and α = β.

Corollary 30. A group isotope (Q, ·0 is unipotent i� it has the de-
composition x · y = αx− αy + a or x · y = a + βx− βy.

Corollary 31. The canonical decomposition group of a commutative
unipotent group isotope is a Boolean group.
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