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Free R-n-modules

L crimioara Iancu

Abstract

We de�ne the canonical presentation of an R-n-module, in terms of its largest
n-submodule with zero and of an idempotent commutative n-group. We give a
construction for the free R-n-module with zero, as well as a canonical presentation
for the free R-n-module. We give the number of zero-idempotents of a �nitely
generated free R-n-module. The last theorem states that, for n > 3, free R-n-
modules are isomorphic if and only if their free generating sets have the same
cardinality.

1. Notations and preliminary results
In [1], N. Celakoski has de�ned n-modules as a natural generalization
of the usual binary notion; however, for his further results he imposed
a strong restriction, namely that the commutative n-group involved
has a unique neutral element. In [4] we restart the study of n-modules
by dropping this restriction.

In this section we shall brie�y recall some of the de�nitions and
results in [4] and we shall make some additional comments. We use
the following conventional notation: the sequence ai, . . . , aj of j−i+1
terms of an n-ary sum is denoted by aj

i and if ai = ai+1 = . . . = aj = a

then the sequence is denoted by
(j−i+1)

a ; if i > j, then aj
i denotes an

empty sequence. Denote by a〈k〉 the k-th power of a, which is de�ned
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by:
a〈0〉 = a and a〈k〉 = [a〈k−1〉,

(n−1)
a ]+, k ∈ Z

In particular, a〈−1〉 = a, where a denotes the querelement of a.
Throughout this paper R denotes an associative ring with unity

1 6= 0.
De�nition 1.1. We call left R-n-module a commutative n-group
(M, [ ]+) together with an external operation µ : R ×M → M which
satis�es the axioms:
A1) µ(r, [xn

1 ]+) =
[
µ(r, x1), . . . , µ(r, xn)

]
+

A2) µ
(
(r1 + · · ·+ rn), x

)
=

[
µ(r1, x), . . . , µ(rn, x)

]
+

A3) µ(r · r′, x) = µ
(
r, µ(r′, x)

)

A4) µ(1, x) = x

for all x, x1, . . . , xn ∈ M and all r, r′, r1, . . . , rn ∈ R.
We describe a right R-n-module by replacing in the above de�nition
axiom A3) by A3') µ(r · r′, x) = µ

(
r′, µ(r, x)

)
. As in the binary case,

the theory of right n-modules can be deduced from the theory of left
n-modules and conversely. For this reason, we shall deal in the sequel
with left n-modules, and by R-n-modules we shall always understand
left R-n-modules.

Since we are dealing with left n-modules, denote the element µ(r, x)
by rx. As immediate consequences of the axioms, note:

(r1+r2)x = [r1x, r2x,
(n−2)

0x ]+, (−r)x = [0x, 0x,
(n−3)
rx , rx]+,

rx = rx, x = (−n+2)x =
(
(−1)+ · · ·+(−1)

)
x.

The empty n-group may be regarded as an R-n-module for any ring
R. If M is a non-empty R-n-module, then it necessarily has at least
one neutral element; indeed, for every x ∈ M , the element 0x is a
neuter in (M, [ ]+) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0x〈k〉 = 0x, ∀x ∈ M, ∀k ∈ Z (in
particular 0x = 0x).

n-Submodules, congruences and homomorphisms are de�ned in the
obvious way. If S is a non-empty n-submodule of an R-n-module M ,
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then the relation ρS de�ned by xρSy ⇔ ∃sn
2 ∈ S : y = [x, sn

2 ]+ is
a congruence on M . This correspondence is not a bijection, still it
allows us to de�ne the factor module M/S = M/ρS.

The set of all neuters of the n-group (M, [ ]+) is denoted by NM

(or simply by N ) and the set of all neuters of the form 0x, for some
x ∈ M , is denoted by N0M (or sometimes just N0). N0 is an n-
submodule of N and they are both n-submodules of M . The elements
of N0 are characterized by the following: e ∈ N0 ⇔ re = e, ∀r ∈ R.
The elements of N0 will be called zero-idempotents; in particular, if
N0 consists of exactly one element, then this element is called a zero
of the n-module and it is denoted by 0.

If f : M1 → M2 is a homomorphism of R-n-modules, then:

1) f(N1) ⊆ N2 and f(N01) ⊆ N02;

2) f(x) = f(x), ∀x ∈ M1;

3) the set Ker f = {x ∈ M1 | f(x) ∈ N02} is an n-submodule of M1

and N01 ⊆ Ker f .

2. The canonical presentation
2.1. We have introduced in [4] a class of n-submodules of an R-n-
module which will play an important role in the study of n-modules.
Let M be an R-n-module. For each e ∈ N0, the set

Me = {x ∈ M | 0x = e}
is an n-submodule with zero (the element e) of M . The n-submodules
Me are all isomorphic and they form a partition of M . Note that
M/N0 ' Me. In fact, the whole structure of an R-n-module is de-
termined by: the structure of an R-n-module with zero (Me) and the
structure of an idempotent commutative n-group (N0).

Indeed, if we start from an R-n-module (B, [ ], µ) with zero 0 and
an idempotent commutative n-group (A, [ ]◦), we can build an R-n-
module M (unique up to isomorphism) such that Me ' B, ∀e ∈ N0M

and N0M ' A, as follows:
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• the set M is de�ned as the disjoint union, indexed by A, of copies

of the set B: M =
◦⋃

e∈A

Be; denote by (x, e) the elements of Be;

• the external operation ν : R×M → M is de�ned by
ν
(
r, (x, e)

)
=

(
µ(r, x), e

)
;

• n-ary addition is de�ned by
[
(x1, e1), . . . , (xn, en)

]
+

=
(
[xn

1 ], [en
1 ]◦

)
.

A straightforward computation shows that (M, [ ]+, ν) is an R-n-
module such that
N0M = {(0, e) | e ∈ A} ' A and M(0,e) = {(x, e) | x ∈ B} ' B,

for each (0, e) ∈ N0M . Moreover, given an R-n-module T and per-
forming the above construction by using some Te instead of B and
N0T instead of A one obtains an R-n-module M which is isomorphic
to T . A very natural isomorphism to consider is

ϕ : T → M, ϕ(x) =
(
[x,

(n−2)

0x , e]+, 0x
)
.

This shows that an R-n-module M is completely described by its
largest n-submodule(s) with zero Me and by N0M . This way of de-
scribing an R-n-module will be called canonical presentation. We have
used disjoint union in order to construct an R-n-module with a given
canonical presentation, because this was the natural way to make the
connections with the Me's and with N0. Yet, for practical reasons, it
is simpler to consider the R-n-module being described as the Carte-
sian product B×A, together with the operations de�ned above. Note
that the map p1 : B × A → B, p1

(
(x, e)

)
= x is a homomorphism

of R-n-modules, and the map p2 : B × A → A, p2

(
(x, e)

)
= e is a

homomorphism of n-groups.
2.2. The canonical presentation of an R-n-module will prove its use-
fulness in the study of n-submodules and in the study of homomor-
phisms. Indeed, let M be an R-n-module with the canonical presen-
tation (B, [ ], µ) and (A, [ ]◦), as above. Then any n-submodule of M
has a canonical presentation of the form (B′, [ ], µ) and (A′, [ ]◦), where
B′ is an n-submodule of B and A′ is an n-subgroup of A.
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Now let f : M1 → M2 be a homomorphism of R-n-modules and
take an arbitrary zero-idempotent e ∈ N01. Then ϕ : N01 → N02,
ϕ(x) = f(x) and ψ : M1e → M2f(e), ψ(x) = f(x) are both homomor-
phisms. Moreover, the converse also holds, namely: if ϕ : A1 → A2 is
a homomorphism of n-groups and ψ : B1 → B2 is a homomorphism of
R-n-modules, then the map f : M1 → M2 de�ned by

f ((x, e)) = (ψ(x), ϕ(e))

is a homomorphism of R-n-modules (where M1 and M2 have the
canonical presentations B1, A1 and B2, A2 respectively).

Injective and surjective homomorphisms can be also characterized
in terms of the data of the canonical presentation.
Proposition 2.3. Let f : M1 → M2 be a homomorphism of R-n-
modules. Then

1) f is injective i� Ker f = N01 and the restriction f |N01 is
injective;

2) f is surjective i� for each e′ ∈ N02 there exists e ∈ N01 such
that M2e′ = f(M1e).

Proof. 1) Suppose f is injective and x ∈ Ker f , i.e. f(x) ∈ N02. Then
f(x) = 0f(x) = f(0x), which implies x = 0x and hence x ∈ N01.

Conversely, if Ker f = N01 and the restriction f |N01 is injective,
let f(x1) = f(x2). Then, for an arbitrary e ∈ N01, we have

f
(
[x1,

(n−3)
x2 , x2, e]+

)
= f(e) ∈ N02,

i.e. [x1,
(n−3)
x2 , x2, e]+ ∈ Ker f = N01. Since f |N01 is injective, it follows

that [x1,
(n−3)
x2 , x2, e]+ = e, hence x1 = x2.

2) Suppose f is surjective and e′ ∈ N02. Then there exists x ∈ M1

such that e′ = f(x); but e′ = 0e′ = 0f(x) = f(0x) ∈ f(N01). Denote
0x by e ∈ N01 and let y ∈ M2e′ (this means 0y = e′). Now there exists
u ∈ N01 and z ∈ M1u such that y = f(z). The element [z,

(n−2)
u , e]+

belongs to M1e and f
(
[z,

(n−2)
u , e]+

)
= f(z) = y. Thus, we have proved

that for each e′ ∈ N02 there exists e ∈ N01 such that M2e′ ⊆ f(M1e);
the other inclusion is obvious. The converse follows immediately from
the fact that the n-submodules M2e′ form a partition of M2.
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3. Free n-modules with zero
R-n-modules with zero can be regarded as universal algebras having
as domain of operations: an n-ary operation, a nullary operation and
a family of unary operations, indexed by R, all of which satisfy the
axioms A1)�A4). The class of R-n-modules with zero is a variety
� it is closed under taking homomorphic images, subalgebras and
direct products. This ensures the existence of free R-n-modules with
zero. In this section we will provide a construction, very similar to
the binary case, of the free R-n-module with zero having an arbitrary
free generating set X.

Let A be an R-n-module with zero. The elements a1, . . . , ak ∈ A,
where k ≡ t(modn−1), are called linearly independent if

[r1a1, . . . , rkak,
(n−t)

0 ]+ = 0 implies r1 = . . . = rk = 0

and linearly dependent otherwise. A subset X of A is linearly indepen-
dent if any �nite subset of X is linearly independent. X is a basis of A
if X is not empty, if X generates A, and if X is linearly independent.
It is easy to prove that if X is a basis of A, then in particular A 6= {0}
if R 6= {0} and every element of A has a unique expression as a linear
combination of elements of X.
Proposition 3.1. An R-n-module A with zero, which has a basis X,
is free on X in the variety of R-n-modules with zero.
Proof. Let T be an R-n-module with zero and a mapping α : X → T .
Every element a ∈ A has a unique expression of the form:

a = [r1x1, . . . , rkxk,
(n−t)

0A ]+

where k ≡ t(mod n−1) and r1, . . . , rk ∈ R, x1, . . . , xk ∈ X.

De�ne α̃ : A → T by α̃(a) = [r1α(x1), . . . , rkα(xk),
(n−t)

0T ]+; a simple
computation shows that α̃ is a homomorphism of R-n-modules and
α̃ ◦ i = α. Moreover, α̃ is the unique homomorphism with this prop-
erty.
Corollary 3.2. Two R-n-modules with zero, having bases whose car-
dinalities are equal, are isomorphic.
For this reason, we denote the R-n-module with zero free on X by



Free R-n-modules 19

F0(X).
Let X 6= ∅ be an arbitrary set and a mapping f : X → R. As

usual, de�ne
supp f = {x ∈ X | f(x) 6= 0}

and
R(X) = {f ∈ RX | | supp f | < ∞}.

We de�ne a natural structure of R-n-module with zero on R(X) as
follows:

[f1, . . . , fn]+(x) = f1(x) + · · ·+ fn(x), (rf)(x) = r · f(x).
The zero element is the function o : X → R, o(x) = 0, ∀x ∈ X.

Proposition 3.3. If R 6= {0} is a ring and X 6= ∅ is an arbitrary set,
then R(X) has a basis of the same cardinality as X.

Proof. A basis of R(X) is the set B = {fx | x ∈ X}, where fx : X → R

is de�ned by fx(y) =
{ 1, y = x

0, y 6= x
.

One can easily check that B is linearly independent; furthermore,
if f ∈ R(X) with supp f = {x1, . . . , xk}, where k ≡ t(modn−1), then
f = [f(x1) · fx1 , . . . , f(xk) · fxk

,
(n−t)
o ]+.

Like in the binary case (see [5]), one can easily prove that if
F0(X) ' F0(Y ) and X is in�nite, then Y is in�nite too and |X| = |Y |.

4. Free n-modules
The class of all R-n-modules is again a variety, so free R-n-modules
exist. We will give in this �nal section a canonical presentation for the
free R-n-module on an arbitrary set as well as a theorem concerning
the number of zero-idempotents of a free R-n-module with a �nite free
generating set.

Note that, similar to the case of R-n-modules with zero, two free
R-n-modules having free generating sets whose cardinalities are equal,
are isomorphic.
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Theorem 4.1. Let X 6= ∅ be an arbitrary set and F be the R-n-mo-
dule having the following canonical presentation:

(a) F0(X) as largest n-submodule with zero;
(b) the abelian n-group G with the presentation

〈
X | [(n)

x ]+ = x, ∀x ∈ X
〉

as idempotent commutative n-group.
Then the R-n-module F is free and X is its free generating set.
Proof. First, let us make some necessary remarks.
1) The n-group G described in (b) is the free idempotent abelian n-
group with the free generating set X (it is easy to see that the class
of idempotent abelian n-groups is a variety; as for the construction of
free abelian n-groups, see the paper of F. M. Sioson [6]).
2) By 2.1, the elements of F have the form (y, g), where y ∈ F0(X)
and g ∈ G. We shall identify each x ∈ X with the pair (x, x) ∈ F ; in
other words, we de�ne an "inclusion" α : X → F , by α(x) = (x, x).

Let M be an arbitrary R-n-module having the canonical presenta-
tion B, A, where B is an R-n-module with zero and A is an idempotent
abelian n-group, as in 2.1. This means that we will describe the el-
ements of M as pairs (b, a) ∈ B × A. Let now f : X → M be an
arbitrary map. We will use f for de�ning two other maps u and v as:

u : X → B, u(x) = p1 (f(x)) (1)
v : X → A, v(x) = p2 (f(x)) (2)

Since F0(X) is the free R-n-module with zero on X and B is an R-n-
module with zero, it follows that there exists a unique homomorphism
ũ : F0(X) → B such that ũ(x) = u(x), ∀x ∈ X. By using a similar
argument, it follows that there exists a unique homomorphism of n-
groups ṽ : G → A such that ṽ(x) = v(x), ∀x ∈ X. We are now able
to de�ne the homomorphism f̃ which makes the following diagram
commutative:

F -
f̃

M

6
α

©©©©©©©©©*

f

X
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namely, for all (y, g) ∈ F , put f̃ ((y, g)) = (ũ(y), ṽ(g)). We have seen
in 2.2 that a map de�ned in the above way is a homomorphism of
R-n-modules. Further, for all x ∈ X we have

(f̃ ◦ α)(x) = f̃
(
(x, x)

)
=

(
p1

(
f(x)

)
, p2

(
f(x)

))
= f(x)

which shows that f̃ ◦ α = f . The uniqueness of f̃ follows from the
uniqueness of ũ and ṽ and from 2.2.
Corollary 4.2. Let X, Y be two non-empty sets. If F (X) ' F (Y )
and X is in�nite, then Y is in�nite too and |X| = |Y |.
Proof. It follows immediately from the preceding theorem and from
the similar result for free R-n-modules with zero.
Lemma 4.3. Let n be an integer, n > 3, X a set with |X| = k, k > 1
and F (X) the R-n-module free on X. Then N0F (X) has (n−1)k−1

elements.
Proof. Indeed, N0 is equal to

{[
(t1)

0x1,
(t2)

0x2, . . . ,
(tk)

0xk]+ | 0 6 ti 6 n−2, t1 + · · ·+ tk ≡ 1(modn−1)}
or, equivalently, N0 ' G, where G is the idempotent abelian n-group
described in Theorem 4.1. Every element of N0 can be described by
a uniquely determined function f : {1, . . . , k−1} → {0, 1, . . . , n−2} as
follows:

e = [
(f(1))

0x1 , . . . ,
(f(k−1))

0xk−1 ,
(n−r)

0xk ]+

where f(1) + · · · + f(k−1) = t(n−1) + r, 2 6 r 6 n. This corre-
spondence between elements of N0 and such functions is obviously a
bijection and so |N0| = (n−1)k−1.
Corollary 4.4. Let n be an integer, n > 3 and X, Y two non-
empty sets. If F (X) ' F (Y ) and X is �nite, then Y is �nite too
and |X| = |Y |.
Proof. It follows from 2.2, Theorem 4.1 and the preceding lemma.
The following theorem is a direct consequence of the preceding results
in this section.
Theorem 4.5. Let n be an integer, n > 3, and let X, Y be two non-
empty sets. Then F (X) ' F (Y ) i� |X| = |Y |.
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