Free *R*-*n*-modules

Lăcrimioara lancu

Abstract

We define the canonical presentation of an R-n-module, in terms of its largest n-submodule with zero and of an idempotent commutative n-group. We give a construction for the free R-n-module with zero, as well as a canonical presentation for the free R-n-module. We give the number of zero-idempotents of a finitely generated free R-n-module. The last theorem states that, for $n \ge 3$, free R-n-modules are isomorphic if and only if their free generating sets have the same cardinality.

1. Notations and preliminary results

In [1], N. Celakoski has defined *n*-modules as a natural generalization of the usual binary notion; however, for his further results he imposed a strong restriction, namely that the commutative *n*-group involved has a *unique* neutral element. In [4] we restart the study of *n*-modules by dropping this restriction.

In this section we shall briefly recall some of the definitions and results in [4] and we shall make some additional comments. We use the following conventional notation: the sequence a_i, \ldots, a_j of j-i+1terms of an *n*-ary sum is denoted by a_i^j and if $a_i = a_{i+1} = \ldots = a_j = a$ then the sequence is denoted by $a_i^{(j-i+1)}$; if i > j, then a_i^j denotes an empty sequence. Denote by $a^{\langle k \rangle}$ the *k*-th power of *a*, which is defined

¹⁹⁹¹ Mathematics Subject Classification: 20N15, 16D10, 16D40 Keywords: free *n*-module, canonical presentation

by:

$$a^{\langle 0 \rangle} = a$$
 and $a^{\langle k \rangle} = [a^{\langle k-1 \rangle}, \stackrel{(n-1)}{a}]_+, \quad k \in \mathbb{Z}$

In particular, $a^{\langle -1 \rangle} = \overline{a}$, where \overline{a} denotes the querelement of a.

Throughout this paper R denotes an associative ring with unity $1 \neq 0$.

Definition 1.1. We call *left* R-n-module a commutative n-group $(M, []_+)$ together with an external operation $\mu \colon R \times M \to M$ which satisfies the axioms:

A1) $\mu(r, [x_1^n]_+) = [\mu(r, x_1), \dots, \mu(r, x_n)]_+$ A2) $\mu((r_1 + \dots + r_n), x) = [\mu(r_1, x), \dots, \mu(r_n, x)]_+$ A3) $\mu(r \cdot r', x) = \mu(r, \mu(r', x))$

$$(A4) \quad \mu(1 \ r) = r$$

A4)
$$\mu(1, x) = x$$

for all $x, x_1, \ldots, x_n \in M$ and all $r, r', r_1, \ldots, r_n \in R$.

We describe a right R-n-module by replacing in the above definition axiom A3) by A3') $\mu(r \cdot r', x) = \mu(r', \mu(r, x))$. As in the binary case, the theory of right n-modules can be deduced from the theory of left *n*-modules and conversely. For this reason, we shall deal in the sequel with left *n*-modules, and by *R*-n-modules we shall always understand left *R*-n-modules.

Since we are dealing with left *n*-modules, denote the element $\mu(r, x)$ by rx. As immediate consequences of the axioms, note:

$$(r_1+r_2)x = [r_1x, r_2x, \overset{(n-2)}{0}x]_+, \qquad (-r)x = [0x, 0x, \overset{(n-3)}{rx}, r\overline{x}]_+, \overline{rx} = r\overline{x}, \qquad \overline{x} = (-n+2)x = ((-1)+\dots+(-1))x.$$

The empty *n*-group may be regarded as an *R*-*n*-module for any ring *R*. If *M* is a non-empty *R*-*n*-module, then it necessarily has at least one neutral element; indeed, for every $x \in M$, the element 0x is a neuter in $(M, []_+)$ (or an idempotent, since the two notions coincide in commutative *n*-groups). Note that $0x^{\langle k \rangle} = 0x, \forall x \in M, \forall k \in \mathbb{Z}$ (in particular $0x = 0\overline{x}$).

n-Submodules, congruences and homomorphisms are defined in the obvious way. If S is a non-empty n-submodule of an R-n-module M,

then the relation ρ_S defined by $x\rho_S y \Leftrightarrow \exists s_2^n \in S : y = [x, s_2^n]_+$ is a congruence on M. This correspondence is not a bijection, still it allows us to define the factor module $M/S = M/\rho_S$.

The set of all neuters of the *n*-group $(M, []_+)$ is denoted by \mathcal{N}_M (or simply by \mathcal{N}) and the set of all neuters of the form 0x, for some $x \in M$, is denoted by \mathcal{N}_{0M} (or sometimes just \mathcal{N}_0). \mathcal{N}_0 is an *n*-submodule of \mathcal{N} and they are both *n*-submodules of M. The elements of \mathcal{N}_0 are characterized by the following: $e \in \mathcal{N}_0 \Leftrightarrow re = e, \forall r \in R$. The elements of \mathcal{N}_0 will be called *zero-idempotents*; in particular, if \mathcal{N}_0 consists of exactly one element, then this element is called a *zero* of the *n*-module and it is denoted by 0.

If $f: M_1 \to M_2$ is a homomorphism of *R*-*n*-modules, then:

1) $f(\mathcal{N}_1) \subseteq \mathcal{N}_2$ and $f(\mathcal{N}_{01}) \subseteq \mathcal{N}_{02}$;

2)
$$f(\overline{x}) = \overline{f(x)}, \forall x \in M_1;$$

3) the set Ker $f = \{x \in M_1 \mid f(x) \in \mathcal{N}_{02}\}$ is an *n*-submodule of M_1 and $\mathcal{N}_{01} \subseteq \text{Ker } f$.

2. The canonical presentation

2.1. We have introduced in [4] a class of *n*-submodules of an *R*-*n*-module which will play an important role in the study of *n*-modules. Let M be an *R*-*n*-module. For each $e \in \mathcal{N}_0$, the set

$$M_e = \{ x \in M \mid 0x = e \}$$

is an *n*-submodule with zero (the element *e*) of *M*. The *n*-submodules M_e are all isomorphic and they form a partition of *M*. Note that $M/\mathcal{N}_0 \simeq M_e$. In fact, the whole structure of an *R*-*n*-module is determined by: the structure of an *R*-*n*-module with zero (M_e) and the structure of an idempotent commutative *n*-group (\mathcal{N}_0).

Indeed, if we start from an *R*-*n*-module $(B, [], \mu)$ with zero 0 and an idempotent commutative *n*-group $(A, []_{\circ})$, we can build an *R*-*n*module *M* (unique up to isomorphism) such that $M_e \simeq B, \forall e \in \mathcal{N}_{0M}$ and $\mathcal{N}_{0M} \simeq A$, as follows:

- the set M is defined as the disjoint union, indexed by A, of copies of the set B: $M = \bigcup_{e \in A}^{\circ} B_e$; denote by (x, e) the elements of B_e ;
- the external operation $\nu: R \times M \to M$ is defined by

$$\nu(r,(x,e)) = (\mu(r,x),e);$$

• *n*-ary addition is defined by

$$[(x_1, e_1), \dots, (x_n, e_n)]_+ = ([x_1^n], [e_1^n]_\circ).$$

A straightforward computation shows that $(M, []_+, \nu)$ is an *R*-*n*-module such that

$$\mathcal{N}_{0M} = \{(0, e) \mid e \in A\} \simeq A \text{ and } M_{(0, e)} = \{(x, e) \mid x \in B\} \simeq B,$$

for each $(0, e) \in \mathcal{N}_{0M}$. Moreover, given an *R*-*n*-module *T* and performing the above construction by using some T_e instead of *B* and \mathcal{N}_{0T} instead of *A* one obtains an *R*-*n*-module *M* which is isomorphic to *T*. A very natural isomorphism to consider is

$$\varphi \colon T \to M, \quad \varphi(x) = \left([x, \overset{(n-2)}{0x}, e]_+, 0x \right).$$

This shows that an R-n-module M is completely described by its largest n-submodule(s) with zero M_e and by \mathcal{N}_{0M} . This way of describing an R-n-module will be called *canonical presentation*. We have used disjoint union in order to construct an R-n-module with a given canonical presentation, because this was the natural way to make the connections with the M_e 's and with \mathcal{N}_0 . Yet, for practical reasons, it is simpler to consider the R-n-module being described as the Cartesian product $B \times A$, together with the operations defined above. Note that the map $p_1: B \times A \to B$, $p_1((x, e)) = x$ is a homomorphism of R-n-modules, and the map $p_2: B \times A \to A$, $p_2((x, e)) = e$ is a homomorphism of n-groups.

2.2. The canonical presentation of an *R*-*n*-module will prove its usefulness in the study of *n*-submodules and in the study of homomorphisms. Indeed, let *M* be an *R*-*n*-module with the canonical presentation $(B, [], \mu)$ and $(A, []_{\circ})$, as above. Then any *n*-submodule of *M* has a canonical presentation of the form $(B', [], \mu)$ and $(A', []_{\circ})$, where *B'* is an *n*-submodule of *B* and *A'* is an *n*-subgroup of *A*. Now let $f: M_1 \to M_2$ be a homomorphism of R-n-modules and take an arbitrary zero-idempotent $e \in \mathcal{N}_{01}$. Then $\varphi: \mathcal{N}_{01} \to \mathcal{N}_{02}$, $\varphi(x) = f(x)$ and $\psi: M_{1e} \to M_{2f(e)}, \ \psi(x) = f(x)$ are both homomorphisms. Moreover, the converse also holds, namely: if $\varphi: A_1 \to A_2$ is a homomorphism of n-groups and $\psi: B_1 \to B_2$ is a homomorphism of R-n-modules, then the map $f: M_1 \to M_2$ defined by

$$f((x,e)) = (\psi(x),\varphi(e))$$

is a homomorphism of R-n-modules (where M_1 and M_2 have the canonical presentations B_1, A_1 and B_2, A_2 respectively).

Injective and surjective homomorphisms can be also characterized in terms of the data of the canonical presentation.

Proposition 2.3. Let $f: M_1 \to M_2$ be a homomorphism of *R*-n-modules. Then

- 1) f is injective iff Ker $f = \mathcal{N}_{01}$ and the restriction $f|_{\mathcal{N}_{01}}$ is injective;
- 2) f is surjective iff for each $e' \in \mathcal{N}_{02}$ there exists $e \in \mathcal{N}_{01}$ such that $M_{2e'} = f(M_{1e})$.

Proof. 1) Suppose f is injective and $x \in \text{Ker } f$, i.e. $f(x) \in \mathcal{N}_{02}$. Then f(x) = 0f(x) = f(0x), which implies x = 0x and hence $x \in \mathcal{N}_{01}$.

Conversely, if Ker $f = \mathcal{N}_{01}$ and the restriction $f|_{\mathcal{N}_{01}}$ is injective, let $f(x_1) = f(x_2)$. Then, for an arbitrary $e \in \mathcal{N}_{01}$, we have

$$f([x_1, \overset{(n-3)}{x_2}, \overline{x_2}, e]_+) = f(e) \in \mathcal{N}_{02},$$

i.e. $[x_1, \frac{(n-3)}{x_2}, \overline{x_2}, e]_+ \in \text{Ker } f = \mathcal{N}_{01}$. Since $f|_{\mathcal{N}_{01}}$ is injective, it follows that $[x_1, \frac{(n-3)}{x_2}, \overline{x_2}, e]_+ = e$, hence $x_1 = x_2$.

2) Suppose f is surjective and $e' \in \mathcal{N}_{02}$. Then there exists $x \in M_1$ such that e' = f(x); but $e' = 0e' = 0f(x) = f(0x) \in f(\mathcal{N}_{01})$. Denote 0x by $e \in \mathcal{N}_{01}$ and let $y \in M_{2e'}$ (this means 0y = e'). Now there exists $u \in \mathcal{N}_{01}$ and $z \in M_{1u}$ such that y = f(z). The element $[z, \stackrel{(n-2)}{u}, e]_+$ belongs to M_{1e} and $f([z, \stackrel{(n-2)}{u}, e]_+) = f(z) = y$. Thus, we have proved that for each $e' \in \mathcal{N}_{02}$ there exists $e \in \mathcal{N}_{01}$ such that $M_{2e'} \subseteq f(M_{1e})$; the other inclusion is obvious. The converse follows immediately from the fact that the *n*-submodules $M_{2e'}$ form a partition of M_2 .

3. Free *n*-modules with zero

R-n-modules with zero can be regarded as universal algebras having as domain of operations: an n-ary operation, a nullary operation and a family of unary operations, indexed by R, all of which satisfy the axioms A1)-A4). The class of R-n-modules with zero is a variety — it is closed under taking homomorphic images, subalgebras and direct products. This ensures the existence of free R-n-modules with zero. In this section we will provide a construction, very similar to the binary case, of the free R-n-module with zero having an arbitrary free generating set X.

Let A be an R-n-module with zero. The elements $a_1, \ldots, a_k \in A$, where $k \equiv t \pmod{n-1}$, are called *linearly independent* if

$$[r_1a_1, \dots, r_ka_k, {0 \atop 0}^{(n-t)}]_+ = 0$$
 implies $r_1 = \dots = r_k = 0$

and *linearly dependent* otherwise. A subset X of A is *linearly independent* if any finite subset of X is linearly independent. X is a *basis* of A if X is not empty, if X generates A, and if X is linearly independent. It is easy to prove that if X is a basis of A, then in particular $A \neq \{0\}$ if $R \neq \{0\}$ and every element of A has a unique expression as a linear combination of elements of X.

Proposition 3.1. An R-n-module A with zero, which has a basis X, is free on X in the variety of R-n-modules with zero.

Proof. Let T be an R-n-module with zero and a mapping $\alpha \colon X \to T$. Every element $a \in A$ has a unique expression of the form:

$$a = [r_1 x_1, \dots, r_k x_k, \begin{matrix} (n-t) \\ 0_A \end{bmatrix}_+$$

where $k \equiv t \pmod{n-1}$ and $r_1, \ldots, r_k \in R, x_1, \ldots, x_k \in X$.

Define $\tilde{\alpha}: A \to T$ by $\tilde{\alpha}(a) = [r_1 \alpha(x_1), \ldots, r_k \alpha(x_k), [0_T]_+;$ a simple computation shows that $\tilde{\alpha}$ is a homomorphism of *R*-*n*-modules and $\tilde{\alpha} \circ i = \alpha$. Moreover, $\tilde{\alpha}$ is the unique homomorphism with this property.

Corollary 3.2. Two *R*-*n*-modules with zero, having bases whose cardinalities are equal, are isomorphic.

For this reason, we denote the R-n-module with zero free on X by

 $F_0(X).$

Let $X \neq \emptyset$ be an arbitrary set and a mapping $f \colon X \to R$. As usual, define

$$\operatorname{supp} f = \{ x \in X \mid f(x) \neq 0 \}$$

and

$$R^{(X)} = \{ f \in R^X \mid |\operatorname{supp} f| < \infty \}.$$

We define a natural structure of R-n-module with zero on $R^{(X)}$ as follows:

$$[f_1, \dots, f_n]_+(x) = f_1(x) + \dots + f_n(x), \ (rf)(x) = r \cdot f(x).$$

The zero element is the function $o: X \to R$, $o(x) = 0, \forall x \in X$.

Proposition 3.3. If $R \neq \{0\}$ is a ring and $X \neq \emptyset$ is an arbitrary set, then $R^{(X)}$ has a basis of the same cardinality as X.

Proof. A basis of $R^{(X)}$ is the set $B = \{f_x \mid x \in X\}$, where $f_x \colon X \to R$ is defined by $f_x(y) = \begin{cases} 1, & y = x \\ 0, & y \neq x \end{cases}$.

One can easily check that B is linearly independent; furthermore, if $f \in R^{(X)}$ with supp $f = \{x_1, \ldots, x_k\}$, where $k \equiv t \pmod{n-1}$, then $f = [f(x_1) \cdot f_{x_1}, \ldots, f(x_k) \cdot f_{x_k}, \overset{(n-t)}{o}]_+$.

Like in the binary case (see [5]), one can easily prove that if $F_0(X) \simeq F_0(Y)$ and X is infinite, then Y is infinite too and |X| = |Y|.

4. Free *n*-modules

The class of all R-n-modules is again a variety, so free R-n-modules exist. We will give in this final section a canonical presentation for the free R-n-module on an arbitrary set as well as a theorem concerning the number of zero-idempotents of a free R-n-module with a finite free generating set.

Note that, similar to the case of R-n-modules with zero, two free R-n-modules having free generating sets whose cardinalities are equal, are isomorphic.

L. Iancu

Theorem 4.1. Let $X \neq \emptyset$ be an arbitrary set and F be the R-n-module having the following canonical presentation:

- (a) $F_0(X)$ as largest n-submodule with zero;
- (b) the abelian n-group G with the presentation

$$\langle X \mid \begin{bmatrix} n \\ x \end{bmatrix}_{+} = x, \, \forall x \in X \rangle$$

as idempotent commutative n-group.

Then the R-n-module F is free and X is its free generating set.

Proof. First, let us make some necessary remarks.

1) The *n*-group G described in (b) is the free idempotent abelian *n*-group with the free generating set X (it is easy to see that the class of idempotent abelian *n*-groups is a variety; as for the construction of free abelian *n*-groups, see the paper of F. M. Sioson [6]).

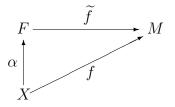
2) By 2.1, the elements of F have the form (y,g), where $y \in F_0(X)$ and $g \in G$. We shall identify each $x \in X$ with the pair $(x,x) \in F$; in other words, we define an "inclusion" $\alpha \colon X \to F$, by $\alpha(x) = (x,x)$.

Let M be an arbitrary R-n-module having the canonical presentation B, A, where B is an R-n-module with zero and A is an idempotent abelian n-group, as in 2.1. This means that we will describe the elements of M as pairs $(b, a) \in B \times A$. Let now $f: X \to M$ be an arbitrary map. We will use f for defining two other maps u and v as:

$$u: X \to B, \quad u(x) = p_1(f(x))$$
 (1)

$$v \colon X \to A, \quad v(x) = p_2(f(x)) \tag{2}$$

Since $F_0(X)$ is the free *R*-*n*-module with zero on *X* and *B* is an *R*-*n*-module with zero, it follows that there exists a unique homomorphism $\tilde{u}: F_0(X) \to B$ such that $\tilde{u}(x) = u(x), \forall x \in X$. By using a similar argument, it follows that there exists a unique homomorphism of *n*-groups $\tilde{v}: G \to A$ such that $\tilde{v}(x) = v(x), \forall x \in X$. We are now able to define the homomorphism \tilde{f} which makes the following diagram commutative:



namely, for all $(y,g) \in F$, put $\tilde{f}((y,g)) = (\tilde{u}(y), \tilde{v}(g))$. We have seen in 2.2 that a map defined in the above way is a homomorphism of *R*-*n*-modules. Further, for all $x \in X$ we have

$$(\widetilde{f} \circ \alpha)(x) = \widetilde{f}((x,x)) = (p_1(f(x)), p_2(f(x))) = f(x)$$

which shows that $\tilde{f} \circ \alpha = f$. The uniqueness of \tilde{f} follows from the uniqueness of \tilde{u} and \tilde{v} and from 2.2.

Corollary 4.2. Let X, Y be two non-empty sets. If $F(X) \simeq F(Y)$ and X is infinite, then Y is infinite too and |X| = |Y|.

Proof. It follows immediately from the preceding theorem and from the similar result for free R-n-modules with zero.

Lemma 4.3. Let n be an integer, $n \ge 3$, X a set with |X| = k, $k \ge 1$ and F(X) the R-n-module free on X. Then $\mathcal{N}_{0F(X)}$ has $(n-1)^{k-1}$ elements.

Proof. Indeed, \mathcal{N}_0 is equal to

$$\{ \begin{bmatrix} (t_1) & (t_2) \\ (0x_1, 0x_2, \dots, 0x_k]_+ \mid 0 \leqslant t_i \leqslant n-2, \ t_1 + \dots + t_k \equiv 1 \pmod{n-1} \}$$

or, equivalently, $\mathcal{N}_0 \simeq G$, where G is the idempotent abelian *n*-group described in Theorem 4.1. Every element of \mathcal{N}_0 can be described by a uniquely determined function $f: \{1, \ldots, k-1\} \rightarrow \{0, 1, \ldots, n-2\}$ as follows:

$$e = \begin{bmatrix} (f(1)) & (f(k-1)) & (n-r) \\ 0x_1 & \dots & 0x_{k-1} & 0x_k \end{bmatrix}_{-1}^{-1}$$

where $f(1) + \cdots + f(k-1) = t(n-1) + r$, $2 \leq r \leq n$. This correspondence between elements of \mathcal{N}_0 and such functions is obviously a bijection and so $|\mathcal{N}_0| = (n-1)^{k-1}$.

Corollary 4.4. Let n be an integer, $n \ge 3$ and X, Y two nonempty sets. If $F(X) \simeq F(Y)$ and X is finite, then Y is finite too and |X| = |Y|.

Proof. It follows from 2.2, Theorem 4.1 and the preceding lemma. \Box

The following theorem is a direct consequence of the preceding results in this section.

Theorem 4.5. Let n be an integer, $n \ge 3$, and let X, Y be two nonempty sets. Then $F(X) \simeq F(Y)$ iff |X| = |Y|. Acknowledgements. This paper was written while the author was a visitor at Université Paris VII, in 1999. Thanks go to the members of the "Equipe des Groupes Finis" for their hospitality and support. The stay was supported by a scholarship from the Noesis Foundation, which is gratefully acknowledged.

References

- N. Celakoski, On n-modules, Godisen Zb. Elektro-Mas. Fak. Univ. Skopje 3 (1969), 15 - 26.
- [2] P. M. Cohn, Universal algebra, Second edition, Mathematics and its Applications 6, D. Reidel Publishing Co., Dordrecht – Boston, Mass., 1981.
- [3] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. **29** (1928), 1 19.
- [4] L. Iancu, Redefining n-modules, Bul. St. Univ. Baia Mare, Ser. B, Mat.-Inf. 14 (1998)
- [5] I. Purdea, Tratat de algebră modernă, Vol.II, (Romanian) (Treatise on modern algebra. Vol.II) Ed. Academiei RSR, Bucharest, 1982.
- [6] F. M. Sioson, Free Abelian m-Groups, I, II, III, Proc. Japan Acad. 43 (1967), 876 - 888.

Received January 27, 1999

North University of Baia Mare Victoriei 7 RO-4800 Baia Mare Romania e-mail: liancu@ubm.ro current address: Institut Girard Desargues Bat. 101, Université Lyon 1 43 Bd du 11 Novembre 1918 F-69622 Villeurbanne Cedex France e-mail: iancu@desargues.univ-lyon1.fr