Transversals in groups. 2. Loop transversals in a group by the same subgroup

Eugene A. Kuznetsov

Abstract

Connections between different loop transversals in an arbitrary group G of the same subgroup H are demonstrated. It is shown that any loop transversal in an arbitrary group G of its subgroup H can be represented through one fixed loop transversal of H in G by the determined way. The case of a group transversal of H in G is described.

1. Introduction

This article is a continuation of [6]. The connections between different loop transversals in an arbitrary group G of the same subgroup H are described. These transversals play very a important role in solving some well-known problems. For example, the problem of existence of a finite projective plane of order n is reduced to the existence of a loop transversal of $St_{ab}(S_n)$ in S_n (see [7]).

We give some necessary definitions and notations:

E is a set of indexes (E contains the distinguished element 1, left (right) cosets in a group G by its subgroup H is indexed by the elements from E);

e is the unit of a group G;

¹⁹⁹¹ Mathematics Subject Classification: 20N15 Keywords: group, loop, transversal, permutation

 $Core_G(H)$ is the maximal proper subgroup of G contained in H, which is normal in G;

 $St_a(K)$ is the stabilizer of an element a in a permutation group K.

Definition 1. Let G be a group and H its proper subgroup. A complete system $T = \{t_i\}_{i \in E}$ of representatives of the left (right) cosets of H ($e = t_1 \in T$) is called a *left (right) transversal* of H in G (or "to" H in G – see [4]). (A system of representatives of left cosets of H is complete if $t, u \in T, u^{-1}t \in H$ implies that t = u.)

Let T be a left transversal of H in G. We can correctly introduce the following operation on the set E:

$$x \stackrel{(T)}{\cdot} y = z \quad \stackrel{def}{\Longleftrightarrow} \quad t_x t_y = t_z h, \quad h \in H.$$

Lemma 1. System $\langle E, \stackrel{(T)}{\cdot}, 1 \rangle$ is a right quasigroup with two-sided unit 1.

Proof. See Lemma 1 in [6].

Definition 2. Let T be a left (right) transversal of H in G. If the system $\langle E, \stackrel{(T)}{\cdot}, 1 \rangle$ is a loop (group), then T is called a *loop (group)* transversal of H in G.

Remark 1. As we can see in [6], Lemma 10, a loop transversal T of H in G is a two-sided transversal of H in G, i.e. it is both left and right transversal of H in G. So we can simply say "loop transversal".

According to Cayley theorem any group K can be represented as a permutation group of degree m = card K and this representation is regular. So any group K can be represented as a group transversal of $St_1(S_m)$ in S_m .

Lemma 2. The following conditions are equivalent for any left transversal of H in G:

- 1) T is a loop transversal of H in G;
- 2) T is a left transversal in G of $\pi H \pi^{-1}$ for any $\pi \in G$;
- 3) $\pi T \pi^{-1}$ is a left transversal of H in G for any $\pi \in G$.

Proof. See [1] and [4].

In the sequel the case $Core_G(H) = \{e\}$ will be considered. According to [5], Theorem 12.2.1, in this case we have $\hat{G} \cong G$, where \hat{G} is a permutation representation of the group G. If H is a subgroup of G, then

$$\hat{g}(x) = y \quad \stackrel{def}{\iff} \quad gt_x H = t_y H.$$

Lemma 3. If T is a left transversal of H in G, then

- 1) $\hat{h}(1) = 1 \quad \forall h \in H,$ 2) For any $x, y \in E \quad \hat{t}_x(y) = x \stackrel{(T)}{\cdot} y, \quad \hat{t}_1(x) = \hat{t}_x(1) = x,$ $\hat{t}_x^{-1}(y) = x \bigvee y, \quad \hat{t}_x^{-1}(1) = x \bigvee 1, \quad \hat{t}_x^{-1}(x) = 1,$ where $\bigvee^{(T)}$ is a left division in the system $\langle E, \stackrel{(T)}{\cdot}, 1 \rangle.$
- 3) The following conditions are equivalent:
- a) T is a loop transversal of H in G,
- b) $\hat{T} = {\{\hat{t}_x\}_{x \in E} \text{ is a sharply transitive set of permutations on } E.$

Proof. See Lemma 4 in [6].

2. Connection between loop transversals

Let T be an arbitrary fixed left transversal of a subgroup H in a group G. It is evident (see [6], equation (8)), that any other left transversal of H in G can be represented in the following form

$$s_x = t_x h_x^{(T \to S)}, \quad h_x^{(T \to S)} \in H, \quad x \in E.$$

Lemma 4. The system $\langle E, \stackrel{(S)}{\cdot}, 1 \rangle$ can be obtained from the system $\langle E, \stackrel{(T)}{\cdot}, 1 \rangle$ in the following way

$$x \stackrel{(S)}{\cdot} y = x \stackrel{(T)}{\cdot} \hat{h}_x^{(T \to S)}(y).$$
(1)

Proof. See Lemma 13 in [6].

Lemma 5. The system $\langle E, \overset{(S)}{\cdot}, 1 \rangle$ is a loop iff the operations $\overset{(T)}{\cdot}$ and $B(x,y) = (\hat{h}_x^{(T \to S)})^{-1}(y)$ are orthogonal.

Proof. (see also Theorem 2 from [3]) According to Lemma 1 the system $\langle E, \overset{(S)}{\cdot}, 1 \rangle$ is a right quasigroup with the two-sided unit 1. So it is sufficient to prove the existence and uniqueness of solution of the equation

$$x \stackrel{(S)}{\cdot} a = b$$

for any fixed $a, b \in E$. We have

$$x \stackrel{(S)}{\cdot} a = b \iff x \stackrel{(T)}{\cdot} \hat{h}_x^{(T \to S)}(a) = b \iff \begin{cases} \hat{h}_x^{(T \to S)}(a) = z \\ x \stackrel{(T)}{\cdot} z = b \end{cases}$$
$$\iff \begin{cases} (\hat{h}_x^{(T \to S)})^{-1}(z) = a \\ x \stackrel{(T)}{\cdot} z = b \end{cases} \iff \begin{cases} B(x, z) = a \\ x \stackrel{(T)}{\cdot} z = b \end{cases}$$

So the existence and uniqueness of solution of the equation $x \stackrel{(S)}{\cdot} a = b$ is equivalent to the existence and uniqueness of solution of the last system, which gives the orthogonality of $\stackrel{(T)}{\cdot}$ and B(x, z).

This means that if T is a fixed left transversal of H in G, then any loop transversal S of H in G may be represented through T by formula (1) according to the orthogonality condition from Lemma 5.

V.D. Belousov proved in [2] (Lemma 3) the following criterion

Lemma 6. An operation A(x, y) defined on the set E is orthogonal to the operation C(x, y) iff C(x, y) can be represented in the form:

$$C(x, y) = K(B(x, y), A(x, y)),$$
 (2)

where B(x, y) is an operation orthogonal to A(x, y), and K(x, y) is a left invertible operation on the set E (i.e. K(x, a) = b has a unique solution in E for any fixed $a, b \in E$).

For a given left transversal T of H in G the problem of the choice of a set $\{h_x\}_{x\in E}$ such that the operations $\stackrel{(T)}{\cdot}$ and $B(x,y) = \hat{h}_x^{-1}(y)$ are orthogonal is not solved. But if the transversal T of H in G is a loop transversal, then according to Lemma 2, $\pi T \pi^{-1}$ is a loop transversal for any $\pi \in G$. Fixing some $h_0 \in H \setminus \{e\}$ and choosing

$$T^{h_0} = \{ r_{x'} = h_0 t_x h_0^{-1} \mid t_x \in T \},\$$

we obtain a new loop transversal T^{h_0} of H in G which does not coincide with T, because $Core_G(H) = \{e\}$.

Lemma 7. The permutation $\hat{h}_0 : E \to E$ is an isomorphism of the systems $\langle E, \overset{(T)}{\cdot}, 1 \rangle$ and $\langle E, \overset{(T^{h_0})}{\cdot}, 1 \rangle$.

Proof. According to the definition of T^{h_0} , we obtain:

$$x \stackrel{(T)}{\cdot} y = z \iff t_x t_y = t_z h, \quad h \in H$$
$$\iff (h_0 t_x h_0^{-1})(h_0 t_y h_0^{-1}) = (h_0 t_z h_0^{-1})(h_0 h h_0^{-1}), \quad h \in H$$
$$\iff r_{x'} r_{y'} = r_{z'} h', \quad h' = (h_0 h h_0^{-1}) \in H$$
$$\iff x' \stackrel{(T^{h_0})}{\cdot} y' = z'.$$

Since

$$x' = \hat{r}_{x'}(1) = \hat{h}_0 \hat{t}_x \hat{h}_0^{-1}(1) = \hat{h}_0 \hat{t}_x(1) = \hat{h}_0(x), \tag{3}$$

then we obtain

$$\hat{h}_0(x) \stackrel{(T^{h_0})}{\cdot} \hat{h}_0(y) = \hat{h}_0(z) = \hat{h}_0(x \stackrel{(T)}{\cdot} y), \tag{4}$$

i.e. permutation \hat{h}_0 is an isomorphism of the systems $\langle E, \stackrel{(T)}{\cdot}, 1 \rangle$ and $\langle E, \stackrel{(T^{h_0})}{\cdot}, 1 \rangle$.

According to Lemma 4 there exists the set $\{h_x^{(T\to T^{h_0})}\}_{x\in E}$ such that the operation $\stackrel{(T^{h_0})}{\cdot}$ may be obtained from the operation $\stackrel{(T)}{\cdot}$ by

$$x \stackrel{(T^{h_0})}{\cdot} y = x \stackrel{(T)}{\cdot} \hat{h}_x^{(T \to T^{h_0})}(y).$$
 (5)

Lemma 8. The operation $B_1(x,y) = (\hat{h}_x^{(T \to T^{h_0})})^{-1}(y)$ has the form

$$B_1(x,y) = x ^{(T^{n_0})} (x \overset{(T)}{\cdot} y).$$
 (6)

Proof. Let $\hat{h}_x^{(T \to T^{h_0})}(y) = z$. Then $y = (\hat{h}_x^{(T \to T^{h_0})})^{-1}(z)$. So (5) can be rewritten in the form

$$x \stackrel{(T^{h_0})}{\cdot} (\hat{h}_x^{(T \to T^{h_0})})^{-1}(z) = x \stackrel{(T)}{\cdot} z.$$

As the system < E, $\stackrel{(T^{h_0})}{\cdot}$, 1 > is a loop, we obtain from the last equality

$$(\hat{h}_x^{(T \to T^{h_0})})^{-1}(z) = x \bigwedge^{(T^{h_0})} (x \stackrel{(T)}{\cdot} z).$$

Then we have

$$B_1(x,y) \coloneqq (\hat{h}_x^{(T \to T^{h_0})})^{-1}(y) = x \bigwedge^{(T^{h_0})} (x \stackrel{(T)}{\cdot} y), \qquad (7)$$

which completes the proof of the Lemma.

According to Lemma 5, $B_1(x,y) = (\hat{h}_x^{(T \to T^{h_0})})^{-1}(y)$ and $\stackrel{(T)}{\cdot}$ are orthogonal operations. So, according to Lemma 6, any operation C(x,y), being orthogonal to $\stackrel{(T)}{\cdot}$ may be written in the form:

$$C(x,y) = K(B_1(x,y), x \stackrel{(T)}{\cdot} y),$$
(8)

where $B_1(x, y)$ is the operation from (7) and K(x, y) is a left invertible operation on the set E.

Let $P = \{p_x\}_{x \in E}$ be an arbitrary left transversal of H in G. The operation $\stackrel{(P)}{\cdot}$ is connected with $\stackrel{(T)}{\cdot}$ by the the formula (1) and $\langle E, \stackrel{(P)}{\cdot}, 1 \rangle$ is a loop iff the corresponding set $\{h_x^{(T \to P)}\}_{x \in E}$ satisfies

$$(\hat{h}_x^{(T \to P)})^{-1}(y) = C(x, y) = K(B_1(x, y), x \stackrel{(T)}{\cdot} y), \tag{9}$$

where $B_1(x, y)$ is the operation from (7) and K(x, y) is a some left invertible operation on the set E.

Because K(x, y) is left invertible on the set E, we can write it as

$$K(x,y) = \varphi_y(x)$$

where φ_y is a permutation on E (for any $y \in E$). Using (7), we can rewrite (9) in the form

$$(\hat{h}_{x}^{(T \to P)})^{-1}(y) = \varphi_{x \stackrel{(T)}{\cdot} y}(x \stackrel{(T^{h_{0}})}{\setminus} (x \stackrel{(T)}{\cdot} y)).$$
(10)

But by (1)

$$x \stackrel{(P)}{\cdot} y = x \stackrel{(T)}{\cdot} \hat{h}_x^{(T \to P)}(y),$$

where set $\{h_x^{(T \to P)}\}_{x \in E}$ satisfies (10).

Let
$$\hat{h}_x^{(T \to P)}(y) = z$$
. Then $y = (h_x^{(T \to P)})^{-1}(z)$ and
 $x \stackrel{(P)}{\cdot} (h_x^{(T \to P)})^{-1}(z) = x \stackrel{(T)}{\cdot} z,$
 $(h_x^{(T \to P)})^{-1}(z) = x \stackrel{(P)}{\setminus} (x \stackrel{(T)}{\cdot} z).$

According to (10), we have

$$x \stackrel{(P)}{\searrow} (x \stackrel{(T)}{\cdot} z) = \varphi_{x \stackrel{(T)}{\cdot} z} (x \stackrel{(T^{h_0})}{\searrow} (x \stackrel{(T)}{\cdot} z)),$$

which for $u = x \stackrel{(T)}{\cdot} z$ gives

$$x \stackrel{(P)}{\setminus} u = \varphi_u(x \stackrel{(T^{h_0})}{\setminus} u). \tag{11}$$

So for the loop transversal $P = \{p_x\}_{x \in E}$ and any $x \in E$ we have

$$\hat{p}_x^{-1}(y) = \varphi_y(x \bigwedge^{(T^{h_0})} y).$$
(12)

Lemma 9. The the following conditions hold for all $x \in E$:

1) $\varphi_x(1) = 1$, 2) $\varphi_x(x) = x$, 3) $\alpha_x(y) = \varphi_y(x \bigvee^{(T^{h_0})} y)$ is a permutation from the group \hat{G} .

Proof. 1) Because $\hat{p}_x^{-1}(x) = 1$ for any $x \in E$, we obtain from (12)

$$1 = \hat{p}_x^{-1}(x) = \varphi_x(x \bigwedge^{(T^{h_0})} x) = \varphi_x(1).$$

2) As $\hat{p}_1^{-1}(x) = x$ for any $x \in E$, then

$$x = \hat{p}_1^{-1}(x) = \varphi_x(1 \land x) = \varphi_x(x).$$

3) Since for any $x \in E$ the reflection \hat{p}_x is a permutation from the group \hat{G} , then according to (12), the reflection $\alpha_x(y) = \varphi_y(x \setminus y)$ is a permutation from the group \hat{G} .

Now we can prove

Theorem 1. Let $T = \{t_x\}_{x \in E}$ be a loop transversal of H in G. If a left transversal $P = \{p_x\}_{x \in E}$ of H in G is connected with T by (1), then the following statements are equivalent:

- 1) P is a loop transversal,
- 2) *P* is connected with *T* by (12), where φ_x is as in Lemma 9 and $\stackrel{(T^{h_0})}{\setminus}$ is as in Lemma 7. Operations $\stackrel{(P)}{\cdot}$ and $\stackrel{(T^{h_0})}{\cdot}$ are connected by (11).

Proof. 1) \Longrightarrow 2) If P is a loop transversal of H in G, then (by Lemma 5) operations $\stackrel{(T)}{\cdot}$ and $B(x,y) = (\hat{h}_x^{(T \to P)})^{-1}(y)$ are orthogonal and (according to Lemma 6)

$$(\hat{h}_x^{(T \to P)})^{-1}(y) = K(B_1(x, y), x \stackrel{(T)}{\cdot} y),$$

where $B_1(x, y)$ is the operation from (7) and K(x, y) is left invertible on the set E.

Because K(x, y) is left invertible on E, we can write it in the form

$$K(x,y) = \varphi_y(x)$$

where φ_y is a permutation on E (for any $y \in E$). The rest follows Lemma 9.

2) \implies 1) If the conditions of the statement 2 hold, then there exists a set $\{h_x^{(T \to P)}\}_{x \in E}$ such that

$$p_x = t_x h_x^{(T \to P)}, \qquad h_x^{(T \to P)} \in H,$$
$$x \stackrel{(P)}{\cdot} y = x \stackrel{(T)}{\cdot} \hat{h}_x^{(T \to P)}(y).$$

So we have

$$p_x^{-1} = (h_x^{(T \to P)})^{-1} t_x^{-1},$$

which by Lemma 3 implies

$$\varphi_y(x \stackrel{(T^{h_0})}{\setminus} y) = \hat{p}_x^{-1}(y) = (\hat{h}_x^{(T \to P)})^{-1} \hat{t}_x^{-1}(y) = (\hat{h}_x^{(T \to P)})^{-1} (x \stackrel{(T)}{\setminus} y).$$

This for $y = x \stackrel{(T)}{\cdot} z$ gives

$$\varphi_{x^{(T)}_{\cdot \cdot z}}(x^{(T^{n_0})}(x^{(T)}_{\cdot \cdot z}z)) = (\hat{h}_x^{(T \to P)})^{-1}(z).$$

Since operations $\stackrel{(T)}{\cdot}$ and $B_1(x,z) = x \bigwedge^{(T^{h_0})} (x \stackrel{(T)}{\cdot} z) = (\hat{h}_x^{(T \to T^{h_0})})^{-1}(z)$ are orthogonal (see Lemma 8), the last equality may be written as

$$(\hat{h}_x^{(T \to P)})^{-1}(z) = K(B_1(x, z), x \stackrel{(T)}{\cdot} z),$$

where $K(x,y) = \varphi_y(x)$ is a left invertible operation E.

But by Lemma 6 operations $\stackrel{(T)}{\cdot}$ and $B_2(x,z) = (\hat{h}_x^{(T \to P)})^{-1}(z)$ are orthogonal. Thus by Lemma 5 the system $\langle E, \stackrel{(P)}{\cdot}, 1 \rangle$ is a loop, i.e. P is a loop transversal of H in G.

3. A group transversal

As a simple consequence of our Theorem 1 we obtain

Theorem 2. Let $T = \{t_x\}_{x \in E}$ be a group transversal of H in G. If a left transversal $P = \{p_x\}_{x \in E}$ of H in G is connected with T by (1), then the following statements are equivalent:

- 1) P is a loop transversal,
- 2) P is connected with T by the formula

$$\hat{p}_x^{-1}(y) = \varphi_y(x^{-1} \stackrel{(T^{h_0})}{\cdot} y),$$
 (13)

where φ_x is as in Lemma 9 and x^{-1} is the inverse of x in the group $\langle E, \overset{(T^{h_0})}{\cdot}, 1 \rangle$, which is isomorphic to $\langle E, \overset{(T)}{\cdot}, 1 \rangle$. Corresponding operations $\overset{(P)}{\cdot}$ and $\overset{(T^{h_0})}{\cdot}$ are connected by

$$x \stackrel{(P)}{\setminus} y = \varphi_y(x^{-1} \stackrel{(T^{h_0})}{\cdot} y).$$
(14)

From this Theorem we obtain the criterion of the existence of a loop transversal of H in G.

Theorem 3. If $Core_G(H) = \{e\}$, d = (G : H) = card E, then the following statements are equivalent:

- 1) There exists a loop transversal of H in G.
- 2) There exists a set $\{\varphi_x\}_{x\in E}$ of permutations on E such that

a)
$$\varphi_x \in St_{1,x}(S_d) \quad \forall x \in E,$$

b) For any $x \in E$ the reflection $\alpha_x(y) = \varphi_y(y \stackrel{(T^{h_0})}{-} x)$ (where the operation $\stackrel{(T^{h_0})}{-}$ is the inverse operation in the fixed group $\langle Z_d, \stackrel{(T^{h_0})}{+}, 1 \rangle$, which is isomorphic to the group $\langle Z_d, +, 0 \rangle$) is a permutation from the group \hat{G} .

Proof. 1) \implies 2) Let $P = \{p_x\}_{x \in E}$ be a loop transversal of H in G. Using a permutation representation \hat{G} of the group G we see that $\hat{P} = \{\hat{p}_x\}_{x \in E}$ is a loop transversal of \hat{H} in \hat{G} . According to Lemma 3, the set \hat{P} is a sharply transitive set of permutations on the set E; so $\hat{P} = \{\hat{p}_x\}_{x \in E}$ is a loop transversal of $H^* = St_1(S_d)$ in the symmetric group S_d (see [6]).

By the help of the regular representation of left translations the abelian group $\langle Z_d, +, 0 \rangle$ may be represented as a group transversal T of $H^* = St_1(S_d)$ in S_d (see Remark 1). According to Theorem 2, the loop transversal $\hat{P} = {\hat{p}_x}_{x \in E}$ may be represented as the group transversal T^{h_0} by the formula

$$\hat{p}_x^{-1}(y) = \varphi_y(-x \stackrel{(T^{h_0})}{+} y) = \varphi_y(y \stackrel{(T^{h_0})}{-} x), \qquad (15)$$

where permutations $\{\varphi_x\}_{x\in E}$ are as in Lemma 9.

By Lemma 7 operations $\stackrel{(T)}{+}$ and $\stackrel{(T^{h_0})}{+}$ are isomorphic. Moreover $p_x^{-1} \in G$ implies $\hat{p}_x^{-1} \in \hat{G}$. Thus putting $\alpha_x(y) = \hat{p}_x^{-1}(y)$, we see that the conditions a and b from statement 2 hold.

 $2 \Longrightarrow 1$) Let $P = \{p_x\}_{x \in E}$ be a set of permutations defined by the formula:

$$\hat{p}_x^{-1}(y) \stackrel{def}{=} \varphi_y(-x \stackrel{(T^{h_0})}{+} y).$$

Then we have for any $x \in E$

$$\hat{p}_x^{-1}(x) = \varphi_x(-x \stackrel{(T^{h_0})}{+} x) = \varphi_x(1) = 1 \implies p_x(1) = x,$$

$$\hat{p}_1^{-1}(x) = \varphi_x(-1 \overset{(T^{h_0})}{+} x) = \varphi_x(x) = x \implies p_1(x) = x.$$

This means that $P = \{p_x\}_{x \in E}$ is a left transversal of H in G.

Using the analogous method as in the proof of sufficiency of Theorem 1 we can prove the existence of a loop transversal of H in G. \Box

References

- R. Baer: Nets and groups. 1, Trans. Amer. Math. Soc. 46 (1939), 110-141.
- [2] V. D. Belousov: On properties of binary operations (Russian), Uch. zapiski Beltskogo Gospedinstituta 5 (1960), 9 - 28.
- [3] V. D. Belousov: Crossed isotopies of quasigroups (Russian), Mat. issled. 113 (1990), 14 - 20.
- [4] K. W. Johnson: S-rings over loops, right mapping groups and transversals in permutation groups, Math. Proc. Camb. Phil. Soc. 89 (1981), 433 - 443.
- [5] M. I. Kargapolov and Yu. I. Merzlyakov: Foundations of the group theory (Russian), Moscow, 1982.
- [6] E. A. Kuznetsov: Transversals in groups. 1. Elementary properties, Quasigroups and Related Systems 1 (1994), 22-42.
- [7] E. A. Kuznetsov: Sharply k-transitive sets of permutations and loop transversals in S_n , Quasigroups and Related Systems 1 (1994), 43 - 50.

Department of Quasigroups Theory Institute of Mathematics and Informatics Academy of Sciences of Moldova Academiei str., 5 MD-2028 Chishinau Moldova e-mail: ecuz@math.md Received September 10, 1999