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Transversals in groups. 2.
Loop transversals in a group by the same

subgroup

Eugene A. Kuznetsov

Abstract

Connections between di�erent loop transversals in an arbitrary group G of the
same subgroup H are demonstrated. It is shown that any loop transversal in an
arbitrary group G of its subgroup H can be represented through one �xed loop
transversal of H in G by the determined way. The case of a group transversal of
H in G is described.

1. Introduction
This article is a continuation of [6]. The connections between di�erent
loop transversals in an arbitrary group G of the same subgroup H are
described. These transversals play very a important role in solving
some well-known problems. For example, the problem of existence of
a �nite projective plane of order n is reduced to the existence of a loop
transversal of Stab(Sn) in Sn (see [7]).

We give some necessary de�nitions and notations:
E is a set of indexes (E contains the distinguished element 1, left

(right) cosets in a group G by its subgroup H is indexed by the
elements from E);

e is the unit of a group G;
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CoreG(H) is the maximal proper subgroup of G contained in H,
which is normal in G;

Sta(K) is the stabilizer of an element a in a permutation group K.

De�nition 1. Let G be a group and H its proper subgroup. A com-
plete system T = {ti}i∈E of representatives of the left (right) cosets of
H (e = t1 ∈ T ) is called a left (right) transversal of H in G (or "to"
H in G � see [4]). (A system of representatives of left cosets of H is
complete if t, u ∈ T , u−1t ∈ H implies that t = u.)

Let T be a left transversal of H in G. We can correctly introduce
the following operation on the set E:

x
(T )· y = z

def⇐⇒ txty = tzh, h ∈ H.

Lemma 1. System < E,
(T )· , 1 > is a right quasigroup with two-sided

unit 1.

Proof. See Lemma 1 in [6].

De�nition 2. Let T be a left (right) transversal of H in G. If the
system < E,

(T )· , 1 > is a loop (group), then T is called a loop (group)
transversal of H in G.

Remark 1. As we can see in [6], Lemma 10, a loop transversal T of
H in G is a two-sided transversal of H in G, i.e. it is both left and
right transversal of H in G. So we can simply say "loop transversal".

According to Cayley theorem any group K can be represented as
a permutation group of degree m = card K and this representation is
regular. So any group K can be represented as a group transversal of
St1(Sm) in Sm..

Lemma 2. The following conditions are equivalent for any left trans-
versal of H in G:

1) T is a loop transversal of H in G;
2) T is a left transversal in G of πHπ−1 for any π ∈ G;
3) πTπ−1 is a left transversal of H in G for any π ∈ G.

Proof. See [1] and [4].
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In the sequel the case CoreG(H) = {e} will be considered. Accord-
ing to [5], Theorem 12.2.1, in this case we have Ĝ ∼= G, where Ĝ is a
permutation representation of the group G. If H is a subgroup of G,
then

ĝ(x) = y
def⇐⇒ gtxH = tyH.

Lemma 3. If T is a left transversal of H in G, then
1) ĥ(1) = 1 ∀h ∈ H,
2) For any x, y ∈ E t̂x(y) = x

(T )· y, t̂1(x) = t̂x(1) = x,

t̂−1
x (y) = x

(T )

\ y, t̂−1
x (1) = x

(T )

\ 1, t̂−1
x (x) = 1,

where
(T )

\ is a left division in the system < E,
(T )· , 1 >.

3) The following conditions are equivalent:
a) T is a loop transversal of H in G,
b) T̂ = {t̂x}x∈E is a sharply transitive set of permutations on E.

Proof. See Lemma 4 in [6].

2. Connection between loop transversals
Let T be an arbitrary �xed left transversal of a subgroup H in a group
G. It is evident (see [6], equation (8)), that any other left transversal
of H in G can be represented in the following form

sx = txh
(T→S)
x , h(T→S)

x ∈ H, x ∈ E.

Lemma 4. The system < E,
(S)· , 1 > can be obtained from the system

< E,
(T )· , 1 > in the following way

x
(S)· y = x

(T )· ĥ(T→S)
x (y). (1)

Proof. See Lemma 13 in [6].

Lemma 5. The system < E,
(S)· , 1 > is a loop i� the operations (T )·

and B(x, y) = (ĥ
(T→S)
x )−1(y) are orthogonal.
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Proof. (see also Theorem 2 from [3]) According to Lemma 1 the sys-
tem < E,

(S)· , 1 > is a right quasigroup with the two-sided unit 1. So
it is su�cient to prove the existence and uniqueness of solution of the
equation

x
(S)· a = b

for any �xed a, b ∈ E. We have

x
(S)· a = b ⇐⇒ x

(T )· ĥ
(T→S)
x (a) = b ⇐⇒

{
ĥ

(T→S)
x (a) = z

x
(T )· z = b

⇐⇒
{

(ĥ
(T→S)
x )−1(z) = a

x
(T )· z = b

⇐⇒
{

B(x, z) = a

x
(T )· z = b

So the existence and uniqueness of solution of the equation x
(S)· a = b

is equivalent to the existence and uniqueness of solution of the last
system, which gives the orthogonality of (T )· and B(x, z).

This means that if T is a �xed left transversal of H in G, then
any loop transversal S of H in G may be represented through T by
formula (1) according to the orthogonality condition from Lemma 5.

V.D. Belousov proved in [2] (Lemma 3) the following criterion

Lemma 6. An operation A(x, y) de�ned on the set E is orthogonal
to the operation C(x, y) i� C(x, y) can be represented in the form:

C(x, y) = K(B(x, y), A(x, y)), (2)

where B(x, y) is an operation orthogonal to A(x, y), and K(x, y) is a
left invertible operation on the set E (i.e. K(x, a) = b has a unique
solution in E for any �xed a, b ∈ E ).

For a given left transversal T of H in G the problem of the choice of
a set {hx}x∈E such that the operations (T )· and B(x, y) = ĥ−1

x (y) are
orthogonal is not solved. But if the transversal T of H in G is a loop
transversal, then according to Lemma 2, πTπ−1 is a loop transversal
for any π ∈ G. Fixing some h0 ∈ H \ {e} and choosing

T h0 = {rx′ = h0txh
−1
0 | tx ∈ T},
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we obtain a new loop transversal T h0 of H in G which does not
coincide with T , because CoreG(H) = {e}.

Lemma 7. The permutation ĥ0 : E → E is an isomorphism of the
systems < E,

(T )· , 1 > and < E,
(T h0 )· , 1 >.

Proof. According to the de�nition of T h0 , we obtain:

x
(T )· y = z ⇐⇒ txty = tzh, h ∈ H

⇐⇒ (h0txh
−1
0 )(h0tyh

−1
0 ) = (h0tzh

−1
0 )(h0hh−1

0 ), h ∈ H

⇐⇒ rx′ry′ = rz′h
′, h′ = (h0hh−1

0 ) ∈ H

⇐⇒ x′
(T h0)· y′ = z′.

Since
x′ = r̂x′(1) = ĥ0t̂xĥ

−1
0 (1) = ĥ0t̂x(1) = ĥ0(x), (3)

then we obtain

ĥ0(x)
(T h0 )· ĥ0(y) = ĥ0(z) = ĥ0(x

(T )· y), (4)

i.e. permutation ĥ0 is an isomorphism of the systems < E,
(T )· , 1 >

and < E,
(T h0 )· , 1 >.

According to Lemma 4 there exists the set {h(T→T h0 )
x }x∈E such

that the operation (T h0)· may be obtained from the operation (T )· by

x
(T h0)· y = x

(T )· ĥ(T→T h0 )
x (y). (5)

Lemma 8. The operation B1(x, y) = (ĥ
(T→T h0)
x )−1(y) has the form

B1(x, y) = x
(T h0 )

\ (x
(T )· y). (6)

Proof. Let ĥ
(T→T h0 )
x (y) = z. Then y = (ĥ

(T→T h0)
x )−1(z). So (5) can

be rewritten in the form

x
(T h0 )· (ĥ

(T→T h0 )
x )−1(z) = x

(T )· z.
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As the system < E,
(T h0 )· , 1 > is a loop, we obtain from the last equality

(ĥ
(T→T h0 )
x )−1(z) = x

(T h0 )

\ (x
(T )· z).

Then we have

B1(x, y) ® (ĥ(T→T h0 )
x )−1(y) = x

(T h0 )

\ (x
(T )· y) , (7)

which completes the proof of the Lemma.

According to Lemma 5, B1(x, y) = (ĥ
(T→T h0 )
x )−1(y) and (T )· are

orthogonal operations. So, according to Lemma 6, any operation
C(x, y), being orthogonal to (T )· may be written in the form:

C(x, y) = K(B1(x, y), x
(T )· y), (8)

where B1(x, y) is the operation from (7) and K(x, y) is a left invert-
ible operation on the set E.

Let P = {px}x∈E be an arbitrary left transversal of H in G. The
operation (P )· is connected with (T )· by the the formula (1) and <

E,
(P )· , 1 > is a loop i� the corresponding set {h(T→P )

x }x∈E satis�es

(ĥ(T→P )
x )−1(y) = C(x, y) = K(B1(x, y), x

(T )· y), (9)

where B1(x, y) is the operation from (7) and K(x, y) is a some left
invertible operation on the set E.

Because K(x, y) is left invertible on the set E, we can write it as
K(x, y) = ϕy(x),

where ϕy is a permutation on E (for any y ∈ E). Using (7), we can
rewrite (9) in the form

(ĥ(T→P )
x )−1(y) = ϕ

x
(T )· y

(x
(T h0 )

\ (x
(T )· y)) . (10)

But by (1)

x
(P )· y = x

(T )· ĥ(T→P )
x (y),
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where set {h(T→P )
x }x∈E satis�es (10).

Let ĥ
(T→P )
x (y) = z. Then y = (h

(T→P )
x )−1(z) and

x
(P )· (h

(T→P )
x )−1(z) = x

(T )· z,

(h
(T→P )
x )−1(z) = x

(P )

\ (x
(T )· z).

According to (10), we have

x
(P )

\ (x
(T )· z) = ϕ

x
(T )· z

(x
(T h0)

\ (x
(T )· z)),

which for u = x
(T )· z gives

x
(P )

\ u = ϕu(x
(T h0 )

\ u). (11)

So for the loop transversal P = {px}x∈E and any x ∈ E we have

p̂−1
x (y) = ϕy(x

(T h0)

\ y) . (12)

Lemma 9. The the following conditions hold for all x ∈ E:
1) ϕx(1) = 1,

2) ϕx(x) = x,

3) αx(y) = ϕy(x
(T h0 )

\ y) is a permutation from the group Ĝ.

Proof. 1) Because p̂−1
x (x) = 1 for any x ∈ E, we obtain from (12)

1 = p̂−1
x (x) = ϕx(x

(T h0 )

\ x) = ϕx(1).

2) As p̂−1
1 (x) = x for any x ∈ E, then

x = p̂−1
1 (x) = ϕx(1

(T h0 )

\ x) = ϕx(x).

3) Since for any x ∈ E the re�ection p̂x is a permutation from the

group Ĝ, then according to (12), the re�ection αx(y) = ϕy(x
(T h0 )

\ y) is
a permutation from the group Ĝ.
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Now we can prove

Theorem 1. Let T = {tx}x∈E be a loop transversal of H in G. If a
left transversal P = {px}x∈E of H in G is connected with T by (1),
then the following statements are equivalent:

1) P is a loop transversal,
2) P is connected with T by (12), where ϕx is as in Lemma 9

and
(T h0 )

\ is as in Lemma 7. Operations (P )· and (T h0 )· are
connected by (11).

Proof. 1) =⇒ 2) If P is a loop transversal of H in G, then (by Lemma
5) operations (T )· and B(x, y) = (ĥ

(T→P )
x )−1(y) are orthogonal and

(according to Lemma 6)

(ĥ(T→P )
x )−1(y) = K(B1(x, y), x

(T )· y),

where B1(x, y) is the operation from (7) and K(x, y) is left invertible
on the set E.

Because K(x, y) is left invertible on E, we can write it in the form
K(x, y) = ϕy(x),

where ϕy is a permutation on E (for any y ∈ E). The rest follows
Lemma 9.

2) =⇒ 1) If the conditions of the statement 2 hold, then there
exists a set {h(T→P )

x }x∈E such that

px = txh
(T→P )
x , h

(T→P )
x ∈ H,

x
(P )· y = x

(T )· ĥ
(T→P )
x (y).

So we have
p−1

x = (h
(T→P )
x )−1t−1

x ,
which by Lemma 3 implies

ϕy(x
(T h0)

\ y) = p̂−1
x (y) = (ĥ(T→P )

x )−1t̂−1
x (y) = (ĥ(T→P )

x )−1(x
(T )

\ y) .
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This for y = x
(T )· z gives

ϕ
x
(T )· z

(x
(T h0)

\ (x
(T )· z)) = (ĥ(T→P )

x )−1(z) .

Since operations (T )· and B1(x, z) = x
(T h0 )

\ (x
(T )· z) = (ĥ

(T→T h0 )
x )−1(z)

are orthogonal (see Lemma 8), the last equality may be written as

(ĥ(T→P )
x )−1(z) = K(B1(x, z), x

(T )· z),

where K(x, y) = ϕy(x) is a left invertible operation E.
But by Lemma 6 operations (T )· and B2(x, z) = (ĥ

(T→P )
x )−1(z) are

orthogonal. Thus by Lemma 5 the system < E,
(P )· , 1 > is a loop, i.e.

P is a loop transversal of H in G.

3. A group transversal
As a simple consequence of our Theorem 1 we obtain

Theorem 2. Let T = {tx}x∈E be a group transversal of H in G. If a
left transversal P = {px}x∈E of H in G is connected with T by (1),
then the following statements are equivalent:

1) P is a loop transversal,
2) P is connected with T by the formula

p̂−1
x (y) = ϕy(x

−1 (T h0 )· y) , (13)

where ϕx is as in Lemma 9 and x−1 is the inverse of x in the
group < E,

(T h0 )· , 1 >, which is isomorphic to < E,
(T )· , 1 >.

Corresponding operations (P )· and (T h0 )· are connected by

x
(P )

\ y = ϕy(x
−1 (T h0)· y) . (14)

From this Theorem we obtain the criterion of the existence of a
loop transversal of H in G.
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Theorem 3. If CoreG(H) = {e}, d = (G : H) = card E, then the
following statements are equivalent:

1) There exists a loop transversal of H in G.
2) There exists a set {ϕx}x∈E of permutations on E such that

a) ϕx ∈ St1,x(Sd) ∀x ∈ E,

b) For any x ∈ E the re�ection αx(y) = ϕy(y
(T h0 )

− x) (where

the operation
(T h0 )

− is the inverse operation in the �xed group
< Zd,

(T h0 )

+ , 1 >, which is isomorphic to the group < Zd, +, 0 >)

is a permutation from the group Ĝ.

Proof. 1) =⇒ 2) Let P = {px}x∈E be a loop transversal of H in
G. Using a permutation representation Ĝ of the group G we see that
P̂ = {p̂x}x∈E is a loop transversal of Ĥ in Ĝ. According to Lemma 3,
the set P̂ is a sharply transitive set of permutations on the set E; so
P̂ = {p̂x}x∈E is a loop transversal of H∗ = St1(Sd) in the symmetric
group Sd (see [6]).

By the help of the regular representation of left translations the
abelian group < Zd, +, 0 > may be represented as a group transversal
T of H∗ = St1(Sd ) in Sd (see Remark 1). According to Theorem 2,
the loop transversal P̂ = {p̂x}x∈E may be represented as the group
transversal T h0 by the formula

p̂−1
x (y) = ϕy(−x

(T h0 )

+ y) = ϕy(y
(T h0 )

− x) , (15)

where permutations {ϕx}x∈E are as in Lemma 9.

By Lemma 7 operations
(T )

+ and
(T h0 )

+ are isomorphic. Moreover
p−1

x ∈ G implies p̂−1
x ∈ Ĝ. Thus putting αx(y) = p̂−1

x (y), we see that
the conditions a and b from statement 2 hold.

2 =⇒ 1) Let P = {px}x∈E be a set of permutations de�ned by the
formula:

p̂−1
x (y)

def
= ϕy(−x

(T h0 )

+ y).

Then we have for any x ∈ E

p̂−1
x (x) = ϕx(−x

(T h0 )

+ x) = ϕx(1) = 1 =⇒ px(1) = x,
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p̂−1
1 (x) = ϕx(−1

(T h0 )

+ x) = ϕx(x) = x =⇒ p1(x) = x.
This means that P = {px}x∈E is a left transversal of H in G.

Using the analogous method as in the proof of su�ciency of Theo-
rem 1 we can prove the existence of a loop transversal of H in G.
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