Symmetric n-loops with the inverse property

Leonid A. Ursu

Abstract

It is proved that the matrix $\left\|I_{i j}\right\|$, where the substitutions $I_{i j}$ are defined by the equalities $\left(\begin{array}{c}i-1 \\ e\end{array}, x, \stackrel{j-i-1}{e}, I_{i j} x,{ }_{e}^{n-j} e^{-j}\right)=e$ is one of the inversion matrices of the symmetric n-IP-loop with an unique unit e. From this result it follows that the matrix $\left\|I_{i j}\right\|$ is a unique inversion matrix of such loops of an odd arity.

A quasigroup $Q(A)$ of arity n is said to be an $I P$-quasigroup [1] if there exist substitutions $\nu_{i j}, i, j=\overline{1, n}$, on Q with $\nu_{i i}=\varepsilon(\varepsilon$ is the identical substitition) such that the equalities (the identities with parameters)

$$
\begin{equation*}
A\left(\left\{\nu_{i j} x_{j}\right\}_{j=1}^{i-1}, A\left(x_{1}^{n}\right),\left\{\nu_{i j} x_{j}\right\}_{j=i+1}^{n}\right)=x_{i} \tag{1}
\end{equation*}
$$

hold for any $x_{i} \in Q, i \in \overline{1, n}$.
The substitutions $\nu_{i j}$ are called inversion substitutions and the matrix $\left\|\nu_{i j}\right\|$ is called an inversion matrix, $i \in \overline{1, n}, j \in \overline{1, n+1}$, where $\nu_{i, n+1}=\varepsilon$ for all i. The rows of this matrix are called inversion systems (rows) of an n - $I P$-quasigroup.

A quasigroup $Q(A)$ of an arity n is said to be an $I P$-quasigroup if the following equalities

$$
\begin{equation*}
A^{\pi_{i}}=A^{T_{i}} \tag{2}
\end{equation*}
$$

hold for all $i \in \overline{1, n}$, where π_{i} is the transposition $(i, n+1), A^{\pi_{i}}$ is the i-th inverse operation for A and

$$
T_{i}=\left(\left\{\nu_{i j}\right\}_{j=1}^{i-1}, \varepsilon,\left\{\nu_{i j}\right\}_{j=i+1}^{n}, \varepsilon\right) .
$$

1991 Mathematics Subject Classification: 20N15
Keywords: n-ary quasigroup, IP-loop, autotopy

If an n - $I P$-quasigroup $Q(A)$ has a unit e, then it is called an $n-I P$ loop.

In [1] the substitutions $I_{i j}$ are defined by the equalities

$$
\begin{equation*}
A\left(\stackrel{i-1}{e}, x, \stackrel{j-i-1}{e}, I_{i j} x, \stackrel{n-j}{e}\right)=e \tag{3}
\end{equation*}
$$

in an n-loop $Q(A)$ with a unit e for any $x \in Q, i, j \in \overline{1, n}$, with $I_{i i}=I_{i, n+1}=\varepsilon$. From (3) it follows that $I_{i j}^{-1}=I_{j i}$ and $I_{i j} e=e$.

The following equality (cf. [1])

$$
\begin{equation*}
I_{i j} x=L_{i}\left(\bar{e}_{j}\right) \nu_{j i} x \tag{4}
\end{equation*}
$$

shows a relation between $I_{i j}$ and $\nu_{i j}$, where

$$
\begin{gathered}
\bar{e}_{j}=\left\{\nu_{j k} e\right\}_{k=1}^{n}, \nu_{j j} e=e, \\
L_{i}\left(\bar{e}_{j}\right) x=A\left(\nu_{j 1} e, \nu_{j 2} e, \ldots, \nu_{j, i-1} e, x, \nu_{j, i+1} e, \ldots, \nu_{j n} e\right) .
\end{gathered}
$$

It is evident that $L_{i}\left(\bar{e}_{j}\right)$ is a substitution on Q. From (4) we get the following equality for the corresponding matrices

$$
\begin{equation*}
\left\|I_{i j}\right\|=\left\|L_{i}\left(\bar{e}_{j}\right)\right\| \cdot\left\|\nu_{j i}\right\| \tag{5}
\end{equation*}
$$

An ($n+1$)-tuple $T=\left(\alpha_{1}^{n+1}\right)$ of substitutions on Q is called an autotopy for an n-quasigroup $Q(A)$ if $A^{T}=A$.

A quasigroup $Q(A)$ of arity n is said to be symmetric (cf. [2]) if

$$
A\left(x_{\alpha 1}^{\alpha n}\right)=A\left(x_{1}^{n}\right)
$$

for all $x_{1}^{n} \in Q^{n}$ and any $\alpha \in S_{n}$ where S_{n} is the symmetric qroup of degree n.

It is known that an n - $I P$-quasigroup $(n>2)$ can have more than one inversion matrix [1]. In [2] some examples of nonsymmetric $n-I P$ loops with the inversion matrix $\left\|I_{i j}\right\|$ are constructed.

Related to this V.D. Belousov has asced the following questions.
Is the matrix $\left\|I_{i j}\right\|$ always one of the inversion matrices of an n -IP-loop?

Does an n-IP-loop exist such that the matrix $\left\|I_{i j}\right\|$ is a unique inversion matrix ?

In this article some properties of the symmetric n - $I P$-loops are established and answers are given to the V.D. Belousov's questions for such loops.

Let $Q(A)$ be a symmetric n - $I P$-quasigroup with an inversion matrix $\left\|\nu_{i j}\right\|$. Then the following properties are true.

1. A symmetric n-IP-quasigroup is defined by a unique identity. Indeed, let the i-th inverse identity

$$
A\left(\left\{\nu_{i k} x_{k}\right\}_{k=1}^{i-1}, A\left(x_{1}^{n}\right),\left\{\nu_{i k} x_{k}\right\}_{k=i+1}^{n}\right)=x_{i}
$$

holds in an n - $I P$-quasigroup $Q(A)$. Then

$$
\begin{gathered}
A\left(\left\{\nu_{i k} x_{k}\right\}_{k=1}^{i-1}, A\left(x_{1}^{n}\right),\left\{\nu_{i k} x_{k}\right\}_{k=i+1}^{n}\right)= \\
A\left(\left\{\nu_{i k} x_{k}\right\}_{k=1}^{j-1}, A\left(x_{1}^{j-1}, x_{i}, x_{j+1}^{n}\right),\left\{\nu_{i k} x_{k}\right\}_{k=j+1}^{n}\right)=x_{i} .
\end{gathered}
$$

Thus, the j-th inverse identity holds in $Q(A)$ for all $j=1,2, \ldots, i-1$, $i+1, \ldots n$. It means that if $\left(\left\{\nu_{i k}\right\}_{k=1}^{i-1}, \varepsilon,\left\{\nu_{i k}\right\}_{k=i+1}^{n}, \varepsilon\right)$ is the i-th row of the inversion matrix $\left\|\nu_{i j}\right\|$, then $\left(\left\{\nu_{i k}\right\}_{k=1}^{j-1}, \varepsilon,\left\{\nu_{i k}\right\}_{k=j+1}^{n}, \varepsilon\right)$ is the j-th row of this matrix, $i, j \in \overline{1, n}, i \neq j$.

Hence if one inversion row is known, then the inversion matrix is known.
2. If $\left(\nu_{i 1}, \nu_{i 2}, \ldots, \nu_{i, i-1}, \varepsilon, \nu_{i, i+1}, \ldots, \nu_{i n}, \varepsilon\right)$ is the i-th inversion row, $i \in \overline{1, n}$, of a symmetric n-IP-quasigroup, then any permutation of the substitutions $\nu_{i k}, k=1,2, \ldots, i-1, i+1, \ldots, n$, of this row is the i-th inverse row of the quasigroup.

In fact, from

$$
A\left(\left\{\nu_{i k} x_{k}\right\}_{k=1}^{i-1}, A\left(x_{1}^{n}\right),\left\{\nu_{i k} x_{k}\right\}_{k=i+1}^{n}\right)=x_{i}
$$

it follows that

$$
\begin{gathered}
A\left(\left\{\nu_{i k} x_{k}\right\}_{k=1}^{i-1}, \nu_{i t} x_{j},\left\{\nu_{i k} x_{k}\right\}_{k=j+1}^{i-1}, A\left(x_{1}^{n}\right),\left\{\nu_{i k} x_{k}\right\}_{k=i+1}^{t-1}, \nu_{i j} x_{t},\left\{\nu_{i k} x_{k}\right\}_{t+1}^{n}\right) \\
=A\left(\left\{\nu_{i k} x_{k}\right\}_{k=1}^{j-1}, \nu_{i j} x_{t},\left\{\nu_{i k} x_{k}\right\}_{k=j+1}^{i-1}, A\left(x_{1}^{j-1}, x_{t}, x_{j+1}^{i-1}, x_{i}, x_{i+1}^{t-1}, x_{j}, x_{t+1}^{n}\right),\right. \\
\left.\left\{\nu_{i k} x_{k}\right\}_{k=i+1}^{t-1}, \nu_{i t} x_{j},\left\{\nu_{i k} x_{k}\right\}_{k=t+1}^{n}\right)=x_{i}
\end{gathered}
$$

for any $i, j, t \in \overline{1, n}, j<i<t$.

Next, for the sake of simplicity we shall take the first inversion identity, i.e. the first inversion row, as definition of an $n-I P$-quasigroup. The corresponding inversion matrix we shall denote by $\left\|\nu_{1}\right\|$.
3. If $T=\left(\alpha_{1}^{n}, \beta\right)$ is an autotopy of a symmetric n-IP-quasigroup $Q(A)$, then $\tilde{T}=\left(\alpha_{\sigma 1}^{\sigma n}, \beta\right)$ is an autotopy of $Q(A)$ also for any $\sigma \in S_{n}$.

In other words, any permutation of the first n components of an autotopy of a symmetric n - $I P$-quasigroup is an autotopy of this quasigroup as well.

Indeed, the equality

$$
A\left(\left\{\alpha_{k} x_{k}\right\}_{k=1}^{i-1}, \alpha_{i} x_{i},\left\{\alpha_{k} x_{k}\right\}_{k=i+1}^{j-1}, \alpha_{j} x_{j},\left\{\alpha_{k} x_{k}\right\}_{k=j+1}^{n}\right)=\beta A\left(x_{1}^{n}\right)
$$

implies that

$$
\begin{gathered}
A\left(\left\{\alpha_{k} x_{k}\right\}_{k=1}^{i-1}, \alpha_{j} x_{j},\left\{\alpha_{k} x_{k}\right\}_{k=i+1}^{j-1}, \alpha_{i} x_{i},\left\{\alpha_{k} x_{k}\right\}_{k=j+1}^{n}\right) \\
=\beta A\left(x_{1}^{i-1}, x_{j}, x_{i+1}^{j-1}, x_{i}, x_{j+1}^{n}\right)
\end{gathered}
$$

i.e. $\quad T_{i, j}=\left(\alpha_{1}^{i-1}, \alpha_{j}, \alpha_{i+1}^{j-1}, \alpha_{i}, \alpha_{j+1}^{n}, \beta\right)$ is an autotopy of $Q(A)$ for any $i, j \in \overline{1, n}, \quad i \neq j$.
4. If $T=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \ldots, \alpha_{n}, \beta\right)$ is an autotopy of a symmetric n-IP-quasigroup $Q(A)$ with an inversion system $\left(\varepsilon, \nu_{12}, \ldots, \nu_{1 n}, \varepsilon\right)$ (i.e. with an inverse matrix $\left\|\nu_{1}\right\|$), then

$$
\begin{gathered}
\left(\beta, \nu_{12} \alpha_{2} \nu_{12}, \nu_{13} \alpha_{3} \nu_{13}, \ldots, \nu_{1, i-1} \alpha_{i-1} \nu_{1, i-1}\right. \\
\left.\nu_{1 i} \alpha_{1} \nu_{1 i}, \nu_{1, i+1} \alpha_{i+1} \nu_{1, i+1}, \ldots, \nu_{1 n} \alpha_{n} \nu_{1 n}, \alpha_{i}\right)
\end{gathered}
$$

is an autotopy of this quasigroup for any $i \in \overline{1, n}$.
In fact, if $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \ldots, \alpha_{n}, \beta\right) \in \mathfrak{A}_{A}$, where \mathfrak{A}_{A} is the autotopy group of $Q(A)$, then by property 3

$$
\left(\alpha_{i}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{i-1}, \alpha_{1}, \alpha_{i+1}, \ldots, \alpha_{n}, \beta\right) \in \mathfrak{A}_{A} .
$$

and by the property of autotopies of $n-I P$-quasigroups, proved in [1],

$$
\begin{gathered}
\left(\beta, \nu_{12} \alpha_{2} \nu_{12}, \nu_{13} \alpha_{3} \nu_{13}, \ldots, \nu_{1, i-1} \alpha_{i-1} \nu_{1, i-1}, \nu_{1 i} \alpha_{1} \nu_{1 i},\right. \\
\left.\nu_{1, i+1} \alpha_{i+1} \nu_{1, i+1}, \ldots, \nu_{1 n} \alpha_{n} \nu_{1 n}, \alpha_{i}\right) \in \mathfrak{A}_{A} .
\end{gathered}
$$

As a corollary from this result, we get that if

$$
T_{1}=\left(\varepsilon, \nu_{12}, \nu_{13}, \ldots, \nu_{1 n}, \varepsilon\right)
$$

is an inversion system of a symmetric $n-I P$-quasigroup, then

$$
T_{1}^{2}=\left(\varepsilon, \nu_{12}^{2}, \nu_{13}^{2}, \ldots, \nu_{1 n}^{2}, \varepsilon\right)
$$

is its autotopy, since $T=\binom{n+1}{\varepsilon} \in \mathfrak{A}_{A}$.
5. Let $Q(A)$ be a symmetric n-IP-loop with a unit e and with an inversion matrix $\left\|\nu_{1}\right\|$. Then $\nu_{1 j}^{2}=\varepsilon$ for any $j \in \overline{2, n}$.

Indeed, from the equality

$$
A\left(A\left(x_{1}^{k}\right),\left\{\nu_{1 i} x_{i}\right\}_{i=2}^{n}\right)=x_{1}
$$

by $x_{1}=x_{2}=\cdots=x_{j-1}=x_{j+1}=\cdots=x_{n}=e$ we get

$$
A\left(x_{j},\left\{\nu_{1 i} e\right\}_{i=2}^{j-1}, \nu_{1 j} x_{j},\left\{\nu_{1 i} e\right\}_{i=j+1}^{n}\right)=e
$$

Changing in this equality x_{j} for $\nu_{1 j} e$ we get

$$
A\left(\nu_{1 j} e,\left\{\nu_{1 i} e\right\}_{i=2}^{j-1}, \nu_{1 j}^{2} e,\left\{\nu_{1 i} e\right\}_{i=j+1}^{n}\right)=e
$$

or $A\left(\nu_{1 j}^{2} e,\left\{\nu_{1 i} e\right\}_{i=2}^{n}\right)=e$. Thus, $A^{\pi_{1}}\left(e,\left\{\nu_{1 i} e\right\}_{i=2}^{n}\right)=\nu_{1 j}^{2} e$ from which according to (2) and symmetry we have

$$
A\left(e,\left\{\nu_{1 i}^{2} e\right\}_{i=2}^{n}\right)=\nu_{1 j}^{2} e
$$

But $T_{1}^{2} \in \mathfrak{A}_{A}$ so $A\left(e,\left\{\nu_{1 i}^{2} e\right\}_{i=2}^{n}\right)=A\binom{n}{e}=e$ and $\nu_{1 j}^{2} e=e$ for all $j \in \overline{2, n}$.

Now from

$$
A\left(x_{1},\left\{\nu_{1 i}^{2} x_{i}\right\}_{i=2}^{n}\right)=A\left(x_{1}^{n}\right)
$$

by $x_{1}=x_{2}=\cdots=x_{j-1}=x_{j+1}=\cdots=x_{n}=e, x_{j}=x, j>1$, one has $\nu_{1 j}^{2} x=x$ for any $j \in \overline{2, n}$.
6. If $\left(\varepsilon, \nu_{12}, \nu_{13}, \ldots, \nu_{1 n}, \varepsilon\right)$ is an inversion system of a symmetric n-IP-loop with a unique unit, then

$$
\left(\stackrel{i-1}{\varepsilon}, \nu_{1 i} \nu_{1 j}, \stackrel{j-i-1}{\varepsilon}, \nu_{1 j} \nu_{1 i}, \stackrel{n-j+1}{\varepsilon}\right)
$$

is an autotopy of this loop for any $i, j \in \overline{2, n}$.

This statement follows from properties 2 and 5 since the product (in the sense of component-wise multiplication) of two i-th inversion systems of an n - $I P$-quasigroup is an autotopy of this quasigroup [1].

In fact, let $\left(\varepsilon, \nu_{12}, \ldots, \nu_{1 i}, \ldots, \nu_{1 n}, \varepsilon\right)$ be an inversion system of a symmetric n-IP-loop. Then by property 2

$$
\left(\varepsilon, \nu_{12}, \ldots, \nu_{1, i-1}, \nu_{1 j}, \nu_{1, i+1}, \ldots, \nu_{1, j-1}, \nu_{1 i}, \nu_{1, j+1}, \ldots, \nu_{1 n}, \varepsilon\right)
$$

is an inversion system of this loop too, and their product (since $\nu_{1 i}^{2}=\varepsilon$)

$$
\left(\stackrel{i-1}{\varepsilon}, \nu_{1 i} \nu_{1 j}, \stackrel{j-i-1}{e}, \nu_{1 j} \nu_{1 i}, \stackrel{n-j-1}{\varepsilon}\right)
$$

is an autotopy of the loop for all $i, j \in \overline{2, n}$.
7. In a symmetric n-IP-loop $Q()$ with an inversion matrix $\left\|\nu_{1}\right\|$ the following equalities are true
$\nu_{1 i}\left(x_{1}^{n}\right)=\left(\nu_{1 i} x_{i}, \nu_{12} x_{2}, \nu_{13} x_{3}, \ldots, \nu_{1, i-1} x_{i-1}, \nu_{1 i} x_{i}, \nu_{1, i+1} x_{i+1}, \ldots, \nu_{1 n} x_{n}\right)$ for any $i \in \overline{2, n}$.

Indeed, from

$$
\left(\left(x_{1}^{n}\right), \nu_{12} x_{2}, \ldots, \nu_{1, i-1} x_{i-1}, \nu_{1 i} x_{i}, \nu_{1, i+1} x_{i+1}, \ldots, \nu_{1 n} x_{n}\right)=x_{1}
$$

it follows that

$$
\left(\nu_{1 i} x_{i}, \nu_{12} x_{2}, \ldots, \nu_{1, i-1} x_{i-1},\left(x_{1}^{n}\right), \nu_{1, i+1} x_{i+1}, \ldots, \nu_{1 n} x_{n}\right)=x_{1} .
$$

Using (2) and taking into account that $\nu_{1 i}^{2}=\varepsilon$ for all $i \in \overline{2, n}$ we get

$$
\left(x_{1}^{i-1}, \nu_{1 i}\left(x_{1}^{n}\right), x_{i+1}^{n}\right)=\nu_{1 i} x_{i}
$$

or

$$
\left(\nu_{1 i}\left(x_{1}^{n}\right), x_{2}^{i-1}, x_{1}, x_{i+1}^{n}\right)=\nu_{1 i} x_{i} .
$$

Using (2) again one has
$\nu_{1 i}\left(x_{1}^{n}\right)=\left(\nu_{1 i} x_{i}, \nu_{12} x_{2}, \nu_{13} x_{3}, \ldots, \nu_{1, i-1} x_{i-1}, \nu_{1 i} x_{1}, \nu_{1, i+1} x_{i+1}, \ldots, \nu_{1 n} x_{n}\right)$
for any $i \in \overline{2, n}$.
8. In a symmetric n-IP-loop
a) all substitutions $I_{i j}$ are equal, i.e. $I_{i j} x=I x$ for any $i, j \in \overline{1, n}$, $i \neq j$ and any $x \in Q$,
b) $I^{2}=\varepsilon$.

We prove these statements.
a) Let e be a unit of a symmetric n - $I P$-loop. Then from the equalities

$$
\left(\stackrel{i-1}{e}, x, \stackrel{j-i-1}{e}, I_{i j} x,{ }^{n-j}\right)=\left(\stackrel{k-1}{e}, x, \stackrel{t-k-1}{e}, I_{k t} x, \stackrel{n-t}{e}\right)=e
$$

it follows that

$$
\left(\stackrel{i-1}{e}, x, \stackrel{j-i-1}{e}, I_{i j} x, \stackrel{n-j}{e}\right)=\left(\stackrel{i-1}{e}, x, \stackrel{j-i-1}{e}, I_{k t} x, \stackrel{n-j}{e}\right),
$$

i.e. $I_{i j} x=I_{k t} x=I_{x}$ for all $i, j, k, t \in \overline{1, n}, i \neq j, k \neq t$ and any $x \in Q$.
b) Changing in $\left(\stackrel{i-1}{e}, x, \stackrel{j-i-1}{e}, I x,{ }^{n-1} e^{\prime}\right)=e$ the element x for $I x$ we get

$$
\left(\xrightarrow{i-1} e, I x, \xrightarrow{j-i-1} e, I^{2} x, \xrightarrow{n-j} e\right)=e=\left(\stackrel{i-1}{e}_{e}, I x, \stackrel{j-i-1}{e}, x,{ }^{n-j} e^{\prime}\right)
$$

from which it follows that

$$
I^{2} x=x \quad \text { for any } \quad x \in Q
$$

It is known (cf. [1]) that
i) the product of two autotopies of an n-quasigroup is an autotopy,
ii) the product of two i-th inversion systems, $i \in \overline{1, n}$, of an $n-I P$ quasigroup is an autotopy,
iii) the product of an autotopy and an inversion system of an n - $I P$-quasigroup is an inversion system of this quasigroup.

The analogous results are true for the product of corresponding matrices.

Let $Q(A)$ be a symmetric n - $I P$-loop with a unique unit e and with an inversion matrix $\left\|\nu_{1}\right\|$. Then a connection between the substitute I and the inversion substitutions $\nu_{1 i}$ is given by the following equality (see [1])

$$
\begin{equation*}
I x=\left(e, \nu_{12} e, \ldots, \nu_{1, i-1} e, \nu_{1 i} x, \nu_{1, i+1} e, \ldots, \nu_{1 n} e\right)=L_{i}(\bar{e}) \nu_{1 i} x \tag{6}
\end{equation*}
$$

where

$$
L_{i}(\bar{e}) x=\left(e, \nu_{12} e, \ldots, \nu_{1, i-1} e, x, \nu_{1, i+1} e, \ldots, \nu_{1 n} e\right)
$$

are substitutions of $Q, i \in \overline{1, n},(\bar{e})=\left(e, \nu_{12} e, \ldots, \nu_{1 n} e\right)$.
Denote by \mathfrak{D}_{A} the set of all inversion matrices and by \mathfrak{A}_{A} the set of all matrices of autotopies of a symmetric n - $I P$-loop $Q(A)$. Let $\|\mathcal{L}\|=\left\|L_{i}(\bar{e})\right\|$. Then the equality (6) takes the form

$$
\begin{equation*}
\|I\|=\|\mathcal{L}\| \cdot\left\|\nu_{1}\right\| \tag{7}
\end{equation*}
$$

i.e.

$$
\begin{gathered}
\left(\begin{array}{ccccccc}
\varepsilon & I & I & \cdots & I & I & \varepsilon \\
I & \varepsilon & I & \cdots & I & I & \varepsilon \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
I & I & I & \cdots & I & I & \varepsilon
\end{array}\right)= \\
\left(\begin{array}{ccccccc}
\varepsilon & L_{2}(\bar{e}) & L_{3}(\bar{e}) & \cdots & L_{n-1}(\bar{e}) & L_{n}(\bar{e}) & \varepsilon \\
L_{2}(\bar{e}) & \varepsilon & L_{3}(\bar{e}) & \cdots & L_{n-1}(\bar{e}) & L_{n}(\bar{e}) & \varepsilon \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
L_{2}(\bar{e}) & L_{3}(\bar{e}) & L_{4}(\bar{e}) & \cdots & L_{n-1}(\bar{e}) & \varepsilon & \varepsilon
\end{array}\right) \times \\
\quad \times\left(\begin{array}{ccccccc}
\varepsilon & \nu_{12} & \nu_{13} & \cdots & \nu_{1, n-1} & \nu_{1 n} & \varepsilon \\
\nu_{12} & \varepsilon & \nu_{13} & \cdots & \nu_{1, n-1} & \nu_{1 n} & \varepsilon \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\nu_{12} & \nu_{13} & \nu_{14} & \cdots & \nu_{1, n-1} & \varepsilon & \varepsilon
\end{array}\right)
\end{gathered}
$$

From (7) it follows that

$$
\begin{equation*}
\|I\| \in \mathfrak{O}_{A} \Longleftrightarrow\|\mathcal{L}\| \in \mathfrak{A}_{A} . \tag{8}
\end{equation*}
$$

Theorem 1. The matrix $\|I\|$ is one of the inversion matrices of a symmetric n-IP-loop with a unique unit.

Proof. Let $Q(A)=Q()$ be a symmetric n - $I P$-loop with an inversion matrix $\left\|\nu_{1}\right\|$ and with a unique unit e. Then $\left(\varepsilon, \nu_{12}, \nu_{13}, \ldots, \nu_{1 n}, \varepsilon\right) \in$ \mathfrak{O}_{A}, and by property 3 any permutation of the first n substitutions of this inversion system gives an inversion system of this loop. According to property 6

$$
\left(\stackrel{i-1}{\varepsilon}, \nu_{1 i} \nu_{1 j}, \stackrel{j-i-1}{\varepsilon}, \nu_{1 j} \nu_{1 i}, \stackrel{n-j+1}{\varepsilon}\right) \in \mathfrak{A}_{A}
$$

for any $i, j \in \overline{2, n}$. By property 3 any permutation of the first n components is an autotopy of the loop. Thus, by $1<i<j<n$, we have

$$
\begin{gathered}
\left(\nu_{1 i}, \nu_{1 j}, \nu_{12}, \nu_{13}, \ldots, \nu_{1, i-1}, \nu_{1, i+1}, \ldots, \nu_{1, j-1}, \nu_{1, j+1}, \ldots, \nu_{1 n}, \varepsilon, \varepsilon\right) \times \\
\times\left(\nu_{1 j} \nu_{1 i}, \nu_{1 i} \nu_{1 j}, \xrightarrow{n-1} \varepsilon\right)=\left(\nu_{1 i} \nu_{1 j} \nu_{1 i}, \nu_{1 j} \nu_{1 i} \nu_{1 j}, \nu_{12}, \nu_{13}, \ldots\right. \\
\left.\ldots, \nu_{1, i-1}, \nu_{1, i+1}, \ldots, \nu_{1, j-1}, \nu_{1, j+1}, \ldots, \nu_{1 n}, \varepsilon, \varepsilon\right) \in \mathfrak{O}_{A} .
\end{gathered}
$$

Then by property 5

$$
\begin{gathered}
\left(\varepsilon, \nu_{1 j}, \nu_{12}, \nu_{13}, \ldots, \nu_{1, i-1}, \nu_{1, i+1}, \ldots, \nu_{1, j-1}, \nu_{1 i}, \nu_{1, j+1}, \ldots, \nu_{1 n}, \varepsilon\right) \times \\
\times\left(\nu_{1 i} \nu_{1 j} \nu_{1 i}, \nu_{1 j} \nu_{1 i} \nu_{1 j}, \nu_{12}, \nu_{13}, \ldots, \nu_{1, i-1}, \nu_{1, i+1}, \ldots, \nu_{1, j-1}, \nu_{1, j+1}, \ldots\right. \\
\left.\ldots, \nu_{1 n}, \varepsilon, \varepsilon\right)=\left(\nu_{1 i} \nu_{1 j} \nu_{1 i}, \nu_{1 i} \nu_{1 j}, \xrightarrow{j-3} \varepsilon, \nu_{1 i}, \xrightarrow{n-j+1} \varepsilon\right) \in \mathfrak{A}_{A}
\end{gathered}
$$

Next,

$$
\begin{gathered}
\left(\nu_{1 i} \nu_{1 j} \nu_{1 i}, \nu_{1 i} \nu_{1 j}, \xrightarrow{j-3} \varepsilon, \nu_{1 i}, \xrightarrow{n-j+1} \varepsilon\right) \cdot\left(\varepsilon, \nu_{1 j} \nu_{1 i}, \xrightarrow{j-3} \varepsilon, \nu_{1 i} \nu_{1 j}, \xrightarrow{n-j+1} \varepsilon\right) \\
=\left(\nu_{1 i} \nu_{1 j} \nu_{1 i}, \xrightarrow{j-2} \varepsilon, \nu_{1 j}, \xrightarrow{n-j+1} \varepsilon\right) \in \mathfrak{A}_{A} .
\end{gathered}
$$

Now use properties 4 and 5 :

$$
\left({ }^{j-1} \varepsilon^{\prime}, \nu_{1 j}, \stackrel{n-j}{\varepsilon}, \nu_{1 i} \nu_{1 j} \nu_{1 i}\right) \in \mathfrak{A}_{A}
$$

i.e.

$$
\nu_{1 i} \nu_{1 j} \nu_{1 i} A\left(x_{1}^{n}\right)=A\left(x_{1}^{j-1}, \nu_{1 j} x, x_{j+1}^{n}\right) .
$$

From these equalities by $x_{1}=x_{2}=\cdots=x_{j-1}=x_{j+1}=\cdots=x_{n}=e$ we get that

$$
\nu_{1 i} \nu_{1 j} \nu_{1 i} x=\nu_{1 j} x
$$

Replacing x by $\nu_{1 i} x$ and using property 5 one has

$$
\begin{equation*}
\nu_{1 i} \nu_{1 j} x=\nu_{1 j} \nu_{1 i} x \tag{9}
\end{equation*}
$$

for all $x \in Q$ and any $i, j \in \overline{1, n}$.
Now let $Q(A)$ have an odd arity. Then by property 6 and equality (9) the equality

$$
\left(x, \nu_{1 i} \nu_{1 j} e, \nu_{i j} \nu_{1 i} e, \nu_{1 i} \nu_{1 j} e, \nu_{1 j} \nu_{1 i} e, \ldots, \nu_{1 i} \nu_{1 j} e, \nu_{1 j} \nu_{1 i} e\right)=x
$$

implies

$$
\left(\nu_{1 i}{ }_{\nu}^{k-1} e, x, \nu_{1 i} \stackrel{n-k}{\nu_{1 j}} e\right)=x
$$

for any $k \in \overline{1, n}$ and $x \in Q$. Thus, $\nu_{1 i} \nu_{1 j} e=e$, since $n-1$ is an even number and e is a unique unit. But then $\nu_{1 i} e=\nu_{1 j} e$ for any $i, j \in \overline{2, n}$ since the inverse substitutions have order two. Therefore,

$$
\nu_{12} e=\nu_{13} e=\cdots=\nu_{1 n} e
$$

Next, since

$$
\left(\stackrel{i-1}{\varepsilon}, \nu_{1 i} \nu_{1 j}, \stackrel{j-i-1}{\varepsilon}, \nu_{1 j} \nu_{1 i}, \stackrel{n-j+1}{\varepsilon}\right) \in \mathfrak{A}_{A}
$$

then $(\stackrel{i-1}{e}, x, \stackrel{n-i}{e})=x$ implies

$$
\left(\stackrel{i-1}{e}, \nu_{1 i} \nu_{1 j} x, \stackrel{j-i-1}{e}, \nu_{1 j} \nu_{1 i} e, \stackrel{n-j}{e}\right)=x,
$$

from which receive $\nu_{1 i} \nu_{1 j} x=x$ and $\nu_{1 i} x=\nu_{1 j} x$ for any $i, j \in \overline{2, n}$ and any $x \in Q$. From $\left(x, \nu_{12} e, \nu_{13} e, \ldots, \nu_{1 n} e\right)=x$ (see (1) by $i=1$) it follows that $\left(\stackrel{i-1}{\nu_{12}} e, x, \stackrel{n-i}{\nu}{ }_{12} e\right)=x$ for any $i \in \overline{1, n}$ and $x \in Q$. Thus, $\nu_{12} e=\nu_{13} e=\cdots=\nu_{1 n} e=e$ and the equality

$$
I x=\left(e, \nu_{12} e, \nu_{13} e, \ldots, \nu_{1, i-1} e, \nu_{1 i} x, \nu_{1, i+1} e, \ldots, \nu_{1 n} e\right)
$$

implies $I x=\nu_{1 i} x$ for any $i \in \overline{2, n}, x \in Q$.
Now from (6) we have that $L_{i}(\bar{e})=\varepsilon$. Thus, $\|\mathcal{L}\|=\|E\|$, where $\|E\|$ is the identical matrix, i.e. the matrix consisting of ε, and so $\|\mathcal{L}\| \in \mathfrak{A}_{A}$. But according to (8) and (7)

$$
\begin{equation*}
\|I\|=\left\|\nu_{1}\right\| \tag{10}
\end{equation*}
$$

Now let $Q(A)$ have an even arity. In this case

$$
\begin{gathered}
\left(\varepsilon, \nu_{12} \nu_{13} \ldots \nu_{1 n}, \nu_{13} \nu_{14} \ldots \nu_{1 n} \nu_{12}, \nu_{14} \nu_{15} \ldots \nu_{1 n} \nu_{12} \nu_{13}, \ldots\right. \\
\left.\ldots, \nu_{1 n} \nu_{12} \nu_{13} \ldots \nu_{1, n-1}, \varepsilon\right) \in \mathfrak{A}_{A}
\end{gathered}
$$

and according to (9)

$$
\left(\varepsilon, \nu_{12} \nu_{13} \stackrel{n-1}{\cdots} \nu_{1 n}, \varepsilon\right) \in \mathfrak{A}_{A} .
$$

Hence, by property 3 from $\left(\begin{array}{c}i-1 \\ e\end{array}, x, \stackrel{n-i}{e}\right)=x$ it follows that

$$
\left(\nu_{12} \nu_{13} \stackrel{i-1}{\cdots} \cdot \nu_{1 n} e, x, \nu_{12} \nu_{13} \stackrel{n-i}{\cdots} \nu_{1 n} e\right)=x
$$

for all $i \in Q$, i.e. $\nu_{12} \nu_{13} \ldots \nu_{1 n} e=e$. On the other hand, since n is an even arity, then

$$
\begin{gathered}
T=\left(\varepsilon, \nu_{13} \nu_{14} \ldots \nu_{1 n}, \nu_{12} \nu_{14} \nu_{15} \ldots \nu_{1 n}, \ldots, \nu_{12} \nu_{13} \ldots \nu_{1, i-1} \nu_{1, i+1} \ldots \nu_{1 n}\right. \\
\left.\ldots, \nu_{12} \nu_{13} \ldots \nu_{1, n-1}, \varepsilon\right) \in \mathfrak{A}_{A}
\end{gathered}
$$

Using this autotopy, equality (9) and property 5 we get

$$
\begin{aligned}
& L_{i}(\bar{e}) x=\left(e, \nu_{12} e, \nu_{13} e, \ldots, \nu_{1, i-1} e, x, \nu_{1, i+1} e, \ldots, \nu_{1 n} e\right)= \\
& \left(e, \nu_{12} \nu_{13} \ldots \nu_{1 n} e, \nu_{12} \nu_{13} \ldots \nu_{1 n} e, \ldots, \nu_{12} \nu_{13} \ldots \nu_{1, i-1} \nu_{1, i+1} \ldots \nu_{1 n} x\right. \\
& \left.\quad \nu_{12} \nu_{13} \ldots \nu_{1 n} e, \ldots, \nu_{12} \nu_{13} \ldots \nu_{1 n} e\right)=\nu_{12} \nu_{13} \ldots \nu_{1, i-1} \nu_{1, i+1} \ldots \nu_{1 n} x
\end{aligned}
$$

for any $i \in \overline{2, n}$. Thus,

$$
\left(\varepsilon, L_{2}(\bar{e}), L_{3}(\bar{e}), \ldots, L_{i}(\bar{e}), \ldots, L_{n}(\bar{e}), \varepsilon\right) \in \mathfrak{A}_{A}
$$

It means that $\|\mathcal{L}\| \in \mathfrak{A}_{A}$. Then by (8) $\|I\| \in \mathfrak{A}_{A}$ and

$$
\begin{aligned}
& I x=\left(e, \nu_{12} e, \nu_{13} e, \ldots, \nu_{1, i-1} e, \nu_{1 i} x, \nu_{1, i+1} e, \ldots, \nu_{1 n} e\right)= \\
& \left(e, \nu_{12} \nu_{13} \ldots \nu_{1 n} e, \nu_{12} \nu_{13} \ldots \nu_{1 n} e, \ldots, \nu_{12} \nu_{13} \ldots \nu_{1, i-1} \nu_{1 i} \nu_{1, i+1} \ldots \nu_{1 n} x\right. \\
& \left.\nu_{12} \nu_{13} \ldots \nu_{1 n} e, \ldots, \nu_{12} \nu_{13} \ldots \nu_{1 n} e\right)=\nu_{12} \nu_{13} \ldots \nu_{1 n} x .
\end{aligned}
$$

The theorem is proved.

Corollary 1. Any symmetric n-IP-loop of an odd arity with a unique unit has only one inversion matrix, namely, the matrix $\|I\|$.

This statement follows from the proof of the first part of Theorem, since any inversion matrix of a symmetric n - $I P$-loop of an odd arity with a unique unit coincides with the matrix $\|I\|$.

References

[1] V. D. Belousov: n-Ary quasigroups, (Russian), Ştiinţa, Chişinău 1972.
[2] L. A. Ursu: n-Ary loop with the inverse property, (Russian), Mat. Issled., 113 (1990), 108 - 118.

Department of Higher Mathematics
Received August 16, 1998
Technical State University
Dacia str., 41
MD-2060 Chishinau
Moldova

