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Symmetric n-loops with the inverse
property

Leonid A. Ursu

Abstract
It is proved that the matrix ‖Iij‖, where the substitutions Iij are de�ned by

the equalities
(

i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
= e is one of the inversion matrices of the

symmetric n-IP -loop with an unique unit e. From this result it follows that the
matrix ‖Iij‖ is a unique inversion matrix of such loops of an odd arity.

A quasigroup Q(A) of arity n is said to be an IP -quasigroup [1]
if there exist substitutions νij, i, j = 1, n, on Q with νii = ε (ε is
the identical substitition) such that the equalities (the identities with
parameters)

A({νijxj}i−1
j=1, A(xn

1 ), {νijxj}n
j=i+1) = xi (1)

hold for any xi ∈ Q, i ∈ 1, n.
The substitutions νij are called inversion substitutions and the

matrix ‖νij‖ is called an inversion matrix, i ∈ 1, n, j ∈ 1, n + 1, where
νi,n+1 = ε for all i. The rows of this matrix are called inversion systems
(rows) of an n-IP -quasigroup.

A quasigroup Q(A) of an arity n is said to be an IP -quasigroup if
the following equalities

Aπi = ATi (2)
hold for all i ∈ 1, n, where πi is the transposition (i, n + 1), Aπi is the
i-th inverse operation for A and

Ti = ({νij}i−1
j=1, ε, {νij}n

j=i+1, ε).
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If an n-IP -quasigroup Q(A) has a unit e, then it is called an n-IP -
loop.

In [1] the substitutions Iij are de�ned by the equalities

A
(

i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
= e (3)

in an n-loop Q(A) with a unit e for any x ∈ Q, i, j ∈ 1, n, with
Iii = Ii,n+1 = ε. From (3) it follows that I−1

ij = Iji and Iije = e.
The following equality (cf. [1])

Iijx = Li(ēj)νjix (4)

shows a relation between Iij and νij, where

ēj = {νjke}n
k=1, νjje = e,

Li(ēj)x = A(νj1e, νj2e, . . . , νj,i−1e, x, νj,i+1e, . . . , νjne).

It is evident that Li(ēj) is a substitution on Q. From (4) we get the
following equality for the corresponding matrices

‖Iij‖ = ‖Li(ēj)‖ · ‖νji‖. (5)

An (n+1)-tuple T = (αn+1
1 ) of substitutions on Q is called an autotopy

for an n-quasigroup Q(A) if AT = A.
A quasigroup Q(A) of arity n is said to be symmetric (cf. [2]) if

A(xαn
α1 ) = A(xn

1 )

for all xn
1 ∈ Qn and any α ∈ Sn where Sn is the symmetric qroup of

degree n.
It is known that an n-IP -quasigroup (n > 2) can have more than

one inversion matrix [1]. In [2] some examples of nonsymmetric n-IP -
loops with the inversion matrix ‖Iij‖ are constructed.

Related to this V.D. Belousov has asced the following questions.
Is the matrix ‖Iij‖ always one of the inversion matrices of an n-

IP -loop ?
Does an n-IP -loop exist such that the matrix ‖Iij‖ is a unique

inversion matrix ?
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In this article some properties of the symmetric n-IP -loops are
established and answers are given to the V.D. Belousov's questions
for such loops.

Let Q(A) be a symmetric n-IP -quasigroup with an inversion ma-
trix ‖νij‖. Then the following properties are true.

1. A symmetric n-IP -quasigroup is de�ned by a unique identity.
Indeed, let the i-th inverse identity

A({νikxk}i−1
k=1, A(xn

1 ), {νikxk}n
k=i+1) = xi

holds in an n-IP -quasigroup Q(A). Then

A({νikxk}i−1
k=1, A(xn

1 ), {νikxk}n
k=i+1) =

A({νikxk}j−1
k=1, A(xj−1

1 , xi, x
n
j+1), {νikxk}n

k=j+1) = xi.

Thus, the j-th inverse identity holds in Q(A) for all j = 1, 2, . . . , i−1,
i+1, . . . n. It means that if ({νik}i−1

k=1, ε, {νik}n
k=i+1, ε) is the i-th row of

the inversion matrix ‖νij‖, then ({νik}j−1
k=1, ε, {νik}n

k=j+1, ε) is the j-th
row of this matrix, i, j ∈ 1, n, i 6= j.

Hence if one inversion row is known, then the inversion matrix is
known.

2. If (νi1, νi2, . . . , νi,i−1, ε, νi,i+1, . . . , νin, ε) is the i-th inversion
row, i ∈ 1, n, of a symmetric n-IP -quasigroup, then any permutation
of the substitutions νik, k = 1, 2, . . . , i − 1, i + 1, . . . , n, of this row is
the i-th inverse row of the quasigroup.

In fact, from

A({νikxk}i−1
k=1, A(xn

1 ), {νikxk}n
k=i+1) = xi

it follows that
A({νikxk}i−1

k=1, νitxj, {νikxk}i−1
k=j+1, A(xn

1 ), {νikxk}t−1
k=i+1, νijxt, {νikxk}n

t+1)

= A({νikxk}j−1
k=1, νijxt, {νikxk}i−1

k=j+1, A(xj−1
1 , xt, x

i−1
j+1, xi, x

t−1
i+1, xj, x

n
t+1),

{νikxk}t−1
k=i+1, νitxj, {νikxk}n

k=t+1) = xi

for any i, j, t ∈ 1, n, j < i < t.
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Next, for the sake of simplicity we shall take the �rst inversion iden-
tity, i.e. the �rst inversion row, as de�nition of an n-IP -quasigroup.
The corresponding inversion matrix we shall denote by ‖ν1‖.

3. If T = (αn
1 , β) is an autotopy of a symmetric n-IP -quasigroup

Q(A), then T̃ = (ασn
σ1 , β) is an autotopy of Q(A) also for any σ ∈ Sn.

In other words, any permutation of the �rst n components of an
autotopy of a symmetric n-IP -quasigroup is an autotopy of this quasi-
group as well.

Indeed, the equality

A({αkxk}i−1
k=1, αixi, {αkxk}j−1

k=i+1, αjxj, {αkxk}n
k=j+1) = βA(xn

1 )

implies that
A({αkxk}i−1

k=1, αjxj, {αkxk}j−1
k=i+1, αixi, {αkxk}n

k=j+1)

= βA(xi−1
1 , xj, x

j−1
i+1 , xi, x

n
j+1),

i.e. Ti,j = (αi−1
1 , αj, α

j−1
i+1 , αi, α

n
j+1, β) is an autotopy of Q(A) for any

i, j ∈ 1, n, i 6= j.

4. If T = (α1, α2, . . . , αi, . . . , αn, β) is an autotopy of a symmet-
ric n-IP -quasigroup Q(A) with an inversion system (ε, ν12, . . . , ν1n, ε)
(i.e. with an inverse matrix ‖ν1‖), then

(β, ν12α2ν12, ν13α3ν13, . . . , ν1,i−1αi−1ν1,i−1,

ν1iα1ν1i, ν1,i+1αi+1ν1,i+1, . . . , ν1nαnν1n, αi)

is an autotopy of this quasigroup for any i ∈ 1, n.

In fact, if (α1, α2, . . . , αi, . . . , αn, β) ∈ AA, where AA is the auto-
topy group of Q(A), then by property 3

(αi, α2, α3, . . . , αi−1, α1, αi+1, . . . , αn, β) ∈ AA.

and by the property of autotopies of n-IP -quasigroups, proved in [1],
(β, ν12α2ν12, ν13α3ν13, . . . , ν1,i−1αi−1ν1,i−1, ν1iα1ν1i,

ν1,i+1αi+1ν1,i+1, . . . , ν1nαnν1n, αi) ∈ AA.
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As a corollary from this result, we get that if
T1 = (ε, ν12, ν13, . . . , ν1n, ε)

is an inversion system of a symmetric n-IP -quasigroup, then

T 2
1 = (ε, ν2

12, ν
2
13, . . . , ν

2
1n, ε)

is its autotopy, since T =
(

n+1
ε

)
∈ AA.

5. Let Q(A) be a symmetric n-IP -loop with a unit e and with an
inversion matrix ‖ν1‖. Then ν2

1j = ε for any j ∈ 2, n.

Indeed, from the equality

A(A(xk
1), {ν1ixi}n

i=2) = x1

by x1 = x2 = · · · = xj−1 = xj+1 = · · · = xn = e we get

A(xj, {ν1ie}j−1
i=2 , ν1jxj, {ν1ie}n

i=j+1) = e.

Changing in this equality xj for ν1je we get

A(ν1je, {ν1ie}j−1
i=2 , ν2

1je, {ν1ie}n
i=j+1) = e

or A(ν2
1je, {ν1ie}n

i=2) = e. Thus, Aπ1(e, {ν1ie}n
i=2) = ν2

1je from which
according to (2) and symmetry we have

A(e, {ν2
1ie}n

i=2) = ν2
1je.

But T 2
1 ∈ AA so A(e, {ν2

1ie}n
i=2) = A

(
n
e
)

= e and ν2
1je = e for all

j ∈ 2, n.
Now from

A(x1, {ν2
1ixi}n

i=2) = A(xn
1 )

by x1 = x2 = · · · = xj−1 = xj+1 = · · · = xn = e, xj = x, j > 1, one
has ν2

1jx = x for any j ∈ 2, n.

6. If (ε, ν12, ν13, . . . , ν1n, ε) is an inversion system of a symmetric
n-IP -loop with a unique unit, then

(
i−1
ε , ν1iν1j,

j−i−1
ε , ν1jν1i,

n−j+1
ε

)
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is an autotopy of this loop for any i, j ∈ 2, n.

This statement follows from properties 2 and 5 since the product
(in the sense of component-wise multiplication) of two i-th inversion
systems of an n-IP -quasigroup is an autotopy of this quasigroup [1].

In fact, let (ε, ν12, . . . , ν1i, . . . , ν1n, ε) be an inversion system of a
symmetric n-IP -loop. Then by property 2

(ε, ν12, . . . , ν1,i−1, ν1j, ν1,i+1, . . . , ν1,j−1, ν1i, ν1,j+1, . . . , ν1n, ε)

is an inversion system of this loop too, and their product (since ν2
1i = ε)

(
i−1
ε , ν1iν1j,

j−i−1
e , ν1jν1i,

n−j−1
ε

)

is an autotopy of the loop for all i, j ∈ 2, n.

7. In a symmetric n-IP -loop Q() with an inversion matrix ‖ν1‖
the following equalities are true
ν1i(x

n
1 ) = (ν1ixi, ν12x2, ν13x3, . . . , ν1,i−1xi−1, ν1ixi, ν1,i+1xi+1, . . . , ν1nxn)

for any i ∈ 2, n.

Indeed, from

((xn
1 ), ν12x2, . . . , ν1,i−1xi−1, ν1ixi, ν1,i+1xi+1, . . . , ν1nxn) = x1

it follows that

(ν1ixi, ν12x2, . . . , ν1,i−1xi−1, (x
n
1 ), ν1,i+1xi+1, . . . , ν1nxn) = x1.

Using (2) and taking into account that ν2
1i = ε for all i ∈ 2, n we

get
(xi−1

1 , ν1i(x
n
1 ), xn

i+1) = ν1ixi

or
(ν1i(x

n
1 ), xi−1

2 , x1, x
n
i+1) = ν1ixi.

Using (2) again one has
ν1i(x

n
1 ) = (ν1ixi, ν12x2, ν13x3, . . . , ν1,i−1xi−1, ν1ix1, ν1,i+1xi+1, . . . , ν1nxn)
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for any i ∈ 2, n.

8. In a symmetric n-IP -loop
a) all substitutions Iij are equal, i.e. Iijx = Ix for any i, j ∈ 1, n,

i 6= j and any x ∈ Q,
b) I2 = ε.

We prove these statements.

a) Let e be a unit of a symmetric n-IP -loop. Then from the
equalities

(
i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
=

(
k−1
e , x,

t−k−1
e , Iktx,

n−t
e

)
= e

it follows that
(

i−1
e , x,

j−i−1
e , Iijx,

n−j
e

)
=

(
i−1
e , x,

j−i−1
e , Iktx,

n−j
e

)
,

i.e. Iijx = Iktx = Ix for all i, j, k, t ∈ 1, n, i 6= j, k 6= t and any x ∈ Q.

b) Changing in
(

i−1
e , x,

j−i−1
e , Ix,

n−1
e

)
= e the element x for Ix we

get
(

i−1→ e, Ix,
j−i−1→ e, I2x,

n−j→ e
)

= e =
(

i−1
e , Ix,

j−i−1
e , x,

n−j
e

)

from which it follows that

I2x = x for any x ∈ Q.

It is known (cf. [1]) that
i) the product of two autotopies of an n-quasigroup is an autotopy,
ii) the product of two i-th inversion systems, i ∈ 1, n, of an n-IP -

quasigroup is an autotopy,
iii) the product of an autotopy and an inversion system of

an n-IP -quasigroup is an inversion system of this quasigroup.

The analogous results are true for the product of corresponding
matrices.
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Let Q(A) be a symmetric n-IP -loop with a unique unit e and with
an inversion matrix ‖ν1‖. Then a connection between the substitute
I and the inversion substitutions ν1i is given by the following equality
(see [1])

Ix = (e, ν12e, . . . , ν1,i−1e, ν1ix, ν1,i+1e, . . . , ν1ne) = Li(ē)ν1ix (6)

where
Li(ē)x = (e, ν12e, . . . , ν1,i−1e, x, ν1,i+1e, . . . , ν1ne)

are substitutions of Q, i ∈ 1, n, (ē) = (e, ν12e, . . . , ν1ne).
Denote by OA the set of all inversion matrices and by AA the set

of all matrices of autotopies of a symmetric n-IP -loop Q(A). Let
‖L‖ = ‖Li(ē)‖. Then the equality (6) takes the form

‖I‖ = ‖L‖ · ‖ν1‖, (7)

i.e.



ε I I · · · I I ε
I ε I · · · I I ε
· · · · · · · · · · · · · · · · · · · · ·
I I I · · · I I ε


 =




ε L2(ē) L3(ē) · · · Ln−1(ē) Ln(ē) ε
L2(ē) ε L3(ē) · · · Ln−1(ē) Ln(ē) ε
· · · · · · · · · · · · · · · · · · · · ·

L2(ē) L3(ē) L4(ē) · · · Ln−1(ē) ε ε


×

×




ε ν12 ν13 · · · ν1,n−1 ν1n ε
ν12 ε ν13 · · · ν1,n−1 ν1n ε
· · · · · · · · · · · · · · · · · · · · ·
ν12 ν13 ν14 · · · ν1,n−1 ε ε


 .

From (7) it follows that

‖I‖ ∈ OA ⇐⇒ ‖L‖ ∈ AA. (8)

Theorem 1. The matrix ‖I‖ is one of the inversion matrices of a
symmetric n-IP -loop with a unique unit.
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Proof. Let Q(A) = Q( ) be a symmetric n-IP -loop with an inversion
matrix ‖ν1‖ and with a unique unit e. Then (ε, ν12, ν13, . . . , ν1n, ε) ∈
OA, and by property 3 any permutation of the �rst n substitutions of
this inversion system gives an inversion system of this loop. According
to property 6

(
i−1
ε , ν1iν1j,

j−i−1
ε , ν1jν1i,

n−j+1
ε

)
∈ AA

for any i, j ∈ 2, n. By property 3 any permutation of the �rst n com-
ponents is an autotopy of the loop. Thus, by 1 < i < j < n, we have

(ν1i, ν1j, ν12, ν13, . . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1,j+1, . . . , ν1n, ε, ε)×
×(ν1jν1i, ν1iν1j,

n−1→ ε) = (ν1iν1jν1i, ν1jν1iν1j, ν12, ν13, . . .

. . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1,j+1, . . . , ν1n, ε, ε) ∈ OA.
Then by property 5

(ε, ν1j, ν12, ν13, . . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1i, ν1,j+1, . . . , ν1n, ε)×
×(ν1iν1jν1i, ν1jν1iν1j, ν12, ν13, . . . , ν1,i−1, ν1,i+1, . . . , ν1,j−1, ν1,j+1, . . .

. . . , ν1n, ε, ε) = (ν1iν1jν1i, ν1iν1j,
j−3→ ε, ν1i,

n−j+1→ ε) ∈ AA .
Next,

(ν1iν1jν1i, ν1iν1j,
j−3→ ε, ν1i,

n−j+1→ ε) · (ε, ν1jν1i,
j−3→ ε, ν1iν1j,

n−j+1→ ε)

= (ν1iν1jν1i,
j−2→ ε, ν1j,

n−j+1→ ε) ∈ AA.
Now use properties 4 and 5:

(
j−1
ε , ν1j,

n−j
ε , ν1iν1jν1i

)
∈ AA,

i.e.
ν1iν1jν1iA(xn

1 ) = A(xj−1
1 , ν1jx, xn

j+1).

From these equalities by x1 = x2 = · · · = xj−1 = xj+1 = · · · = xn = e
we get that

ν1iν1jν1ix = ν1jx.

Replacing x by ν1ix and using property 5 one has

ν1iν1jx = ν1jν1ix (9)
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for all x ∈ Q and any i, j ∈ 1, n.
Now let Q(A) have an odd arity. Then by property 6 and equality

(9) the equality

(x, ν1iν1je, νijν1ie, ν1iν1je, ν1jν1ie, . . . , ν1iν1je, ν1jν1ie) = x

implies (
ν1i

k−1
ν1je, x, ν1i

n−k
ν1j e

)
= x

for any k ∈ 1, n and x ∈ Q. Thus, ν1iν1je = e, since n− 1 is an even
number and e is a unique unit. But then ν1ie = ν1je for any i, j ∈ 2, n
since the inverse substitutions have order two. Therefore,

ν12e = ν13e = · · · = ν1ne.

Next, since (
i−1
ε , ν1iν1j,

j−i−1
ε , ν1jν1i,

n−j+1
ε

)
∈ AA

then
(

i−1
e , x,

n−i
e

)
= x implies
(

i−1
e , ν1iν1jx,

j−i−1
e , ν1jν1ie,

n−j
e

)
= x,

from which receive ν1iν1jx = x and ν1ix = ν1jx for any i, j ∈ 2, n and
any x ∈ Q. From (x, ν12e, ν13e, . . . , ν1ne) = x (see (1) by i = 1) it
follows that

(
i−1
ν12e, x,

n−i
ν12e

)
= x for any i ∈ 1, n and x ∈ Q. Thus,

ν12e = ν13e = · · · = ν1ne = e and the equality

Ix = (e, ν12e, ν13e, . . . , ν1,i−1e, ν1ix, ν1,i+1e, . . . , ν1ne)

implies Ix = ν1ix for any i ∈ 2, n, x ∈ Q.
Now from (6) we have that Li(ē) = ε. Thus, ‖L‖ = ‖E‖, where

‖E‖ is the identical matrix, i.e. the matrix consisting of ε, and so
‖L‖ ∈ AA. But according to (8) and (7)

‖I‖ = ‖ν1‖. (10)

Now let Q(A) have an even arity. In this case

(ε, ν12ν13 . . . ν1n, ν13ν14 . . . ν1nν12, ν14ν15 . . . ν1nν12ν13, . . .
. . . , ν1nν12ν13 . . . ν1,n−1, ε) ∈ AA
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and according to (9)
(
ε, ν12ν13

n−1· · ·ν1n, ε
)
∈ AA.

Hence, by property 3 from
(

i−1
e , x,

n−i
e

)
= x it follows that

(
ν12ν13

i−1· · ·ν1ne, x, ν12ν13
n−i· · ·ν1ne

)
= x

for all i ∈ Q, i.e. ν12ν13 . . . ν1ne = e. On the other hand, since n is an
even arity, then

T = (ε, ν13ν14 . . . ν1n, ν12ν14ν15 . . . ν1n, . . . , ν12ν13 . . . ν1,i−1ν1,i+1 . . . ν1n,
. . . , ν12ν13 . . . ν1,n−1, ε) ∈ AA.

Using this autotopy, equality (9) and property 5 we get

Li(ē)x = (e, ν12e, ν13e, . . . , ν1,i−1e, x, ν1,i+1e, . . . , ν1ne) =
(e, ν12ν13 . . . ν1ne, ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1,i−1ν1,i+1 . . . ν1nx,

ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1ne) = ν12ν13 . . . ν1,i−1ν1,i+1 . . . ν1nx

for any i ∈ 2, n. Thus,

(ε, L2(ē), L3(ē), . . . , Li(ē), . . . , Ln(ē), ε) ∈ AA.

It means that ‖L‖ ∈ AA. Then by (8) ‖I‖ ∈ AA and
Ix = (e, ν12e, ν13e, . . . , ν1,i−1e, ν1ix, ν1,i+1e, . . . , ν1ne) =

(e, ν12ν13 . . . ν1ne, ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1,i−1ν1iν1,i+1 . . . ν1nx,

ν12ν13 . . . ν1ne, . . . , ν12ν13 . . . ν1ne) = ν12ν13 . . . ν1nx.
The theorem is proved.

Corollary 1. Any symmetric n-IP -loop of an odd arity with a unique
unit has only one inversion matrix, namely, the matrix ‖I‖.

This statement follows from the proof of the �rst part of Theorem,
since any inversion matrix of a symmetric n-IP -loop of an odd arity
with a unique unit coincides with the matrix ‖I‖.
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