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Invertible elements in associates and
semigroups. 1

Fedir Sokhatsky

Abstract

Some invertibility criteria of an element in associates, in particular in n-ary
semigroups, are given. As a corollary, axiomatics for polyagroups and n-ary groups
are obtained.

Invertible elements play a special role in the theory of n-ary groupo-
ids. For example, the structure of operations in an associate without
invertible elements is still open. However, in the associate of the type
(r, s, n) the structure of its operation is determined by Theorem 4
from [2] as soon as there exists at least one r-multiple invertible el-
ement in it. In particular, this theorem reduces the study of the
groupoid to the study of associate of the type (1, s, n) with invertible
elements. Since, as was shown in [3], a binary semigroup with an in-
vertible element is exactly a monoid, so we will take the characteristic
to introduce a notion of multiary monoid.

1. Necessary informations
Let (Q; f) be an (n + 1)-ary groupoid. The operation f and the
groupoid (Q; f) are called (i, j)-associative, if the identity

f(x0, . . . , xi−1, f(xi, . . . , xi+n), xi+n+1, . . . , x2n)

= f(x0, . . . , xj−1, f(xj, . . . , xj+n), xj+n+1, . . . , x2n).
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holds in (G; f).

De�nition 1. A groupoid (Q; f) of the arity n + 1 is said to be an
associate of the type (r, s, n), where r divides s, s divides n, and n > s,
if it is (i, j)-associative for all (i, j) such, that i ≡ j ≡ 0 (mod r), and
i ≡ j (mod s). In an associate of the type (s, n), that is of the type
(1, s, n), the number s will be called a degree of associativity, and the
associative operation f will be called s-associative. The least of the
associativity degrees will be called a period of associativity.

The following theorem is proved in [4].

Theorem 1. Let (Q; f) be an associate of a type (r, s, n). If the words
w1 and w2 di�er from each other by bracketting only; the coordinate
of every f 's occurrence in the words w1 and w2 is divisible by r and
there exists an one-to-one correspondence between f 's occurrences in
the word w1 and those in the word w2 such that the corresponding
coordinates are congruent modulo s, then the formula w1 = w2 is an
identity in (Q; f).

Here the coordinate of the i-th occurrence of the symbol f in a
word w is called a number of all individual variables and constants,
appearing in the word w from the beginning of w to the i-th occurrence
of the operation symbol f .

To de�ne an invertible element we need the notion of a shift.
Let (Q; f) be an (n + 1)-ary groupoid. The notation i

a denotes a
sequence a, . . . , a (i times).

A transformation λi,a of the set Q, which is determined by the
equality

λi,a(x) = f(
i
a, x,

n−i
a ), (1)

is said to be an i-th shift of the groupoid (Q; f), induced by an element
a. Hence, the i-th shift is a partial case of the translation (see [1]). If
an i-th shift is a substitution of the set Q, then the element a is called
i-invertible. If an element a is i-invertible for all i multiple of r, then
it is called r-multiple invertible, when r = 1 it is called invertible. The
unit is always invertible, since, it determines a shift being an identity
transformation.
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The notion of an invertible element for binary and n-ary groupoids
coincides with a well known one. Namely, if (Q; ·) is a semigroup, and
a is its arbitrary invertible element, that is the shifts λ0,a and λ1,a

are substitutions of the set Q, then it is easy to prove (see [3]), that
the elements λ−1

0,a(a), λ−1
1,a(a) are right and left identity elements in the

semigroup. Therefore, λ−1
0,a(a) = λ−1

1,a(a) is an identity element, left
and right inverse elements of the element a are λ−2

1,a(a) and λ−2
0,a(a)

respectively. Thus, a−1 := λ−2
1,a(a) = λ−2

0,a(a) is an inverse element of a.
If an element a of a multiary groupoid is i-invertible, then the

element λ−1
i,a (a) coincides with the i-th skew element of a, which is

denoted by āi, where ā = ā0, and it is determined by the equality

f(
i
a, āi,

n−i
a ) = a.

The following two lemmas are proved in [2]

Lemma 2. If in an associate of the type (r, s, n) an element a is s-
multiple invertible and i ≡ 0 (mod s), then there exists a unique i-th
skew of the element a, and, in addition, the equality

ā = āi (2)

holds.

Lemma 3. In every associate of the type (r, s, n) for every s-multiple
invertible element of the element a and for all i ≡ 0 (mod s) the
following identities are true

f(
i
a, ā,

n−i−1
a , x) = x, f(x,

n−i−1
a , ā,

i
a) = x. (3)

2. Criteria of invertibility of elements
One of the main results of this article is the following.

Theorem 4. An element a ∈ Q is r-multiple invertible in an associate
(Q; f) of the type (r, s, n) i� there exists an element ā ∈ Q such that

f(ā, a, . . . a, x) = x, f(x, a, . . . a, ā) = x (4)

holds for all x ∈ Q.
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Proof. If an element a is r-multiple invertible in (Q; f), then the
relation (4) follows from (3) when i = 0.

Let the relationship (4) hold. To establish the invertibility of the
element a, we have to prove the existence of an inverse transformation
for every of the shifts induced by the element a. This follows from the
following lemma.
Lemma 5. Let (Q; f) be an associate of the type (r, s, n). If for a ∈ Q
there exists an element ā satisfying (4), then every i-th shift, induced by
a, has an inverse transformation, which can be found by the formulae

λ−1
0,a(x) = f

(
x,

n−s−1
a , ā,

s−1
a , ā

)
,

λ−1
n,a(x) = f

(
ā,

s−1
a , ā,

n−s−1
a , x

)
,

λ−1
i,a (x) = f

(
n−s−i

a , ā,
s−1
a , x,

i−1
a , ā

)
, when 0 < i 6 n− s,

λ−1
i,a (x) = f

(
ā,

n−i−1
a , x,

s−1
a , ā,

i−s
a

)
, when s 6 i < n.

(5)

Proof of Lemma. If i in (3) is a multiple of s, then

x
(4)
= f(ā,

n−1
a , x)

(4)
= f(ā,

i−1
a , f(

n
a, ā),

n−i−1
a , x)

Th1
= f(f(ā,

n
a),

i−1
a , ā,

n−i−1
a , x)

(4)
= f(

i
a, ā,

n−i−1
a , x).

The other relationships from (3) are proved by the same way:

x
(4)
= f(x,

n−1
a , ā)

(4)
= f(x,

n−i−1
a , f(ā,

n
a),

i−1
a , ā)

Th1
= f(x,

n−i−1
a , ā,

i−1
a , f(

n
a, ā))

(4)
= f(x,

n−i−1
a , ā,

i
a).

Let us prove that the transformation λ−1
0,a, which is determined by the

equality (5) is inverse to λ0,a.

λ−1
0,aλ0,a(x)

(5)
= f(λn,a(x),

n−s−1
a , ā,

s−1
a , ā)

(1)
= f(f(x,

n
a),

n−s−1
a , ā,

s−1
a , ā)

Th1
= f(x,

n−s−1
a , f(

n
a, ā),

s−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x ,

λ0,aλ
−1
0,a(x)

(5)
= λ0,af(x,

n−s−1
a , ā,

s−1
a , ā)

(1)
= f(f(x,

n−s−1
a , ā,

s−1
a , ā),

n
a)

Th1
= f(x,

n−s−1
a , ā,

s−1
a , f(ā,

n
a))

(3)
= f(x,

n−s−1
a , ā,

s
a)

(3)
= x.
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Hence λ0,aλ
−1
0,a = λ−1

0,aλ0,a = ε, where ε is the identity mapping. Thus,
the transformation λ−1

0,a, determined by the equality (5), is inverse to
the shift λ0,a. Analogously one can prove the other equalities from
(5).

λ−1
n,aλn,a(x)

(5)
= f(ā,

s−1
a , ā,

n−s−1
a , λn,a(x))

(1)
= f(ā,

s−1
a , ā,

n−s−1
a , f(

n
a, x))

Th1
= f(ā,

s−1
a , f(ā,

n
a),

n−s−1
a , x)

(3)
= f(ā,

n−1
a , x)

(3)
= x ,

λn,aλ
−1
n,a(x)

(5)
= λn,af(ā,

s−1
a , ā,

n−s−1
a , x)

(1)
= f(

n
a, f(ā,

s−1
a , ā,

n−s−1
a , x))

Th1
= f(f(

n
a, ā),

s−1
a , ā,

n−s−1
a , x)

(3)
= f(

s
a, ā,

n−s−1
a , x)

(3)
= x.

Let number i 6 n− 3 be a multiple of r. Then

λi,aλ
−1
i,a (x)

(5)
= f(

i
a, f(

n−s−i
a , ā,

s−1
a , x,

i−1
a , ā),

n−i
a )

(3)
= f(

i
a, f(

n−s−i
a , ā,

s−1
a , x,

i−1
a , ā),

n−i−1
a , f(

n
a, ā))

Th1
= f(f(

n−s
a , ā,

s−1
a , x),

i−1
a , f(ā,

n
a),

n−i−1
a , ā) =

(3)
= f(f(

n−s
a , ā,

s−1
a , x),

n−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x.

If i = n− s, then the equality (5) de�nes the transformation

λ−1
n−s,a(x) = f(ā,

s−1
a , x,

n−s−1
a , ā) ,

which implies

λ−1
n−s,aλn−s,a(x)

(1)
= f(ā,

s−1
a , f(

n−s
a , x,

s
a),

n−s−1
a , ā)

Th1
= f(f(ā,

n−1
a , x),

n−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x.

If i < n− s, then

λ−1
i,aλi,a(x)

(5)
= f(

n−s−i
a , ā,

s−1
a , f(

i
a, x,

n−i
a ),

i−1
a , ā)

(3)
= f(f(ā,

n
a),

n−s−i−1
a , ā,

s−1
a , f(

i
a, x,

n−i
a ),

i−1
a , ā)

Th1
= f(f(ā,

n−i−1
a , f(

n−s
a , ā,

s
a),

i−1
a , x),

n−1
a , ā)

(3)
= x.
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If i > s, then

λi,aλ
−1
i,a (x)

(5)
= f(

i
a, f(ā,

n−i−1
a , x,

s−1
a , ā,

i−s
a ),

n−i
a )

(3)
= f(f(ā,

n
a),

i−1
a , f(ā,

n−i−1
a , x,

s−1
a , ā,

i−s
a ),

n−i
a )

Th1
= f(f(ā,

i−1
a , f(

n
a, ā),

n−i−1
a , x),

s−1
a , ā,

n−s
a )

(3)
= x.

To prove λ−1
i,aλi,a(x) = ε, we consider two cases: i = s and i > s. If

i = s, then (5) can be rewritten as λ−1
s,a(x) = f(ā,

n−s−1
a , x,

s−1
a , ā).

Therefore we get

λ−1
s,aλs,a(x)

(1)
= f(ā,

n−s−1
a , f(

s
a, x,

n−s
a ),

s−1
a , ā)

Th1
= f(f(ā,

n−1
a , x),

n−1
a , ā)

(3)
= f(x,

n−1
a , ā)

(3)
= x.

If i > s, then

λ−1
i,aλi,a(x)

(5)
= f(ā,

n−i−1
a , f(

i
a, x,

n−i
a ),

s−1
a , ā,

i−s
a )

(3)
= f(ā,

n−i−1
a , f(

i
a, x,

n−i
a ),

s−1
a , ā,

i−s−1
a , f(

n
a, ā))

Th1
= f(f(ā,

n−1
a , x),

n−i−1
a , f(

s
a, ā,

n−s
a ),

i−1
a , ā)

(3)
= x.

The lemma and the theorem has been proved.

Since for r = s = 1 we obtain an (n + 1)-ary semigroup, then the
following corollary is true.

Corollary 1. An element a ∈ Q is invertible in an (n + 1)-ary semi-
group (Q; f) i� there exists an element ā ∈ Q such that (4) holds for
all x ∈ Q.

3. Monoids and invertible elements
In the associate of the type (r, s, n) the structure of its operation is
determined by Theorem 4 from [2] as soon as there exists at least one
r-multiple invertible element in it. In particular, this theorem implies
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(see Corollary 11 in [2]) that the study of the groupoid reduces to the
study of an associate of the type (1, s, n) with invertible elements, that
is why we will consider the last ones only. Since, as it was shown above,
a binary semigroup with an invertible element is exactly a monoid, so
we will use this characteristic to introduce its generalization and we
will call it invert (a multiary monoid was called a semigroup with an
identity element).

Since every invertible element of an invert determines some de-
composition monoid, natural questions on the relations between the
algebraic notions for a monoid and decomposition monoids as well as
about relations between di�erent decompositions of the same monoid
arise. Here we will consider this relation between the sets of invertible
elements.

De�nition 2. An associate of the type (1, s, n) containing at least
one invertible element will be called an invert of the type (s, n).

When s = 1, then an invert is an (n+1)-ary semigroup containing
at least one invertible element. So, every (n + 1)-ary monoid is an
invert.

If an invert has at least one neutral element e, then, as follows from
the results given below, the automorphism of its e-decomposition is
identical, therefore its associativity period is equal to one, that is, such
invert is a monoid. Every (n + 1)-ary group is an invert, since every
its element is invertible.

The next statement, which follows from Theorem 4 in [2], gives a
decomposition of the operation of an invert.

Theorem 6. Let (Q; f) be an (n + 1)-ary invert of the associativity
period s. Then for every its invertible element 0 there exists a unique
triple of operations (+, ϕ, a) such, that (Q; +) is a semigroup with a
neutral element 0, an automorphism ϕ and an invertible element a,
which satis�es the following relations:

ϕn(x) + a = a + x, ϕs(a) = a, (6)
f(x0, x1, . . . , xn) = x0 + ϕ(x1) + ϕ2(x2) + · · ·+ ϕn(xn) + a. (7)

And conversely, if an endomorphism ϕ and an element a of an
semigroup (Q; +) are connected by the relations (6), then the groupoid
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(G; f) determined by the equality (7) is an (n+1)-ary associate of the
associativity degree s.

We will use the following terminology: (Q; +) is called a monoid
of the 0-decomposition; ϕ is said to be an automorphism of the 0-
decomposition; a is called a free member of the 0-decomposition; +,
ϕ, a are called components of the 0-decomposition; and (Q; +, ϕ, a) is
said to be an algebra of the 0-decomposition of the invert (Q; f).

Lemma 7. Let k be a nonnegative integer, which is not greater than
n and is a multiple of s, 0 is an arbitrary invertible element of the
invert (Q; f), then the components of its 0-decomposition are uniquely
determined by the following equalities

x + y = f(x,
k−1

0 , 0̄,
n−k−1

0 , y);

a = f(0, 0, . . . , 0); −a = 0̄;

ϕi(x) = λ−1
0,0λi,0(x) = f(

i

0, x,
n−i−1

0 , 0̄);

ϕ−i(x) = λ−1
n,0λn−i,0(x) = f(0̄,

n−i−1

0 , x,
i

0)

(8)

for all i = 1, . . . , n− 1.

Proof. In [2] the �rst three of the equalities were proved. Since n
divides s, then (6) implies ϕn(a) = a, therefore

ϕn(0̄) = ϕn(−a) = −ϕn(a) = −a = 0̄.

The transformation ϕ is an automorphism of the semigroup (Q; f),
therefore ϕ(0) = 0 and

ϕi(x) = ϕi(x)− a + a = 0 + ϕ(0) + · · ·+ ϕi−1(0) + ϕi(x)+

+ϕi+1(0) + · · ·+ ϕn−1(0) + ϕn(0̄) + a
(6)
= f(

i

0, x,
n−i−1

0 , 0̄).

Let us now make use of the relationships (5):

λ−1
0,0λi,0(x)

(5)
= f(f(

i

0, x,
n−i

0 ),
n−s−1

0 , 0̄,
s−1

0 , 0̄)

Th1
= f(

i

0, x,
n−i−1

0 , f(
n−s

0 , 0̄,
s−1

0 , 0̄))
(3)
= f(

i

0, x,
n−i−1

0 , 0̄)
(7)
= ϕi(x).
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λ−1
n,0λn−i,0(x)

(5)
= f(0̄,

s−1

0 , 0̄,
n−s−1

0 , f(
n−i

0 , x,
i

0)) =

Th1
= f(f(0̄,

s−1

0 , 0̄,
n−s

0 ),
n−i−1

0 , x,
i

0)
(3)
= f(0̄,

n−i−1

0 , x,
i

0)
(7)
= 0̄ + ϕ(0) + · · ·+ ϕn−i(x) + ϕn−i+1(0) + · · ·+ ϕn(0) + a
(6)
= −a + ϕn(ϕ−i(x)) + a

(6)
= ϕ−i(x).

The lemma is proved.

Corollary 2. Under the notations of Theorem 6 the associativity pe-
riod of the invert is equal to the least of the numbers s, such that
ϕs(a) = a, i.e. it is equal to the length of the orbit of the element a,
when we consider the action of the cyclic group 〈ϕ〉 generated by the
automorphism ϕ.

If an element x is invertible in an a-decomposition monoid, then
its inverse element will be denoted by −x〈a〉 or by x−1

〈a〉 depending on
additive or multiplicative notation of the a-decomposition monoid. It
should be noted that the element −x〈a〉 is uniquely determined by the
elements a and x.

Theorem 8. An element of an invert will be invertible i� it is invert-
ible in one (hence, in every) of the decomposition monoids.

Proof. Let (Q; f) be an invert of the type (s, n) with an invertible
element 0 and (Q; +) be a 0-decomposition monoid. Let x be invertible
in (Q; f) and let

−x〈0〉 := f(0,
n−s−1

x , x̄,
s−1
x , 0). (9)

To prove that the element −x〈0〉 is inverse to x, we will use the equality
(8) when k = s.

x + (−x〈0〉)
(8)
= f(x,

s−1

0 , 0̄,
n−s−1

0 ,−x〈0〉)

(9)
= f(x,

s−1

0 , 0̄,
n−s−1

0 , f(0,
n−s−1

x , x̄,
s−1
x , 0))

Th1
= f(f(x,

s−1

0 , 0̄,
n−s

0 ),
n−s−1

x , x̄,
s−1
x , 0)

(3)
= f(

n−s
x , x̄,

s−1
x , 0)

(3)
= 0.
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−x〈0〉 + x
(8)
= f(−x〈0〉,

s−1

0 , 0̄,
n−s−1

0 , x)

(9)
= f(f(0,

n−s−1
x , x̄,

s−1
x , 0),

s−1

0 , 0̄,
n−s−1

0 , x)

Th1
= f(0,

n−s−1
x , x̄,

s−1
x , f(

s

0, 0̄,
n−s−1

0 , x))
(3)
= f(0,

n−s−1
x , x̄,

s
x)

(3)
= 0.

Hence, the element −x〈0〉 is inverse to x in (Q; +).
Conversely, let the element x be invertible in the 0-decomposition

monoid (Q; +). Then the element

f(0, x, . . . , x, 0)
(7)
= ϕx + ϕ2x + · · ·+ ϕn−1x + a

is invertible in (Q; +) too. Let us de�ne the element x̄ by

x̄ = −f(0, x, . . . x, 0)〈0〉. (10)

In particular, this means that

x̄ + f(0, x, . . . x, 0)〈0〉 = 0.

Then for any element y of Q we get the following relations:

y = 0 + y = x̄ + f(0,
n−1
x , 0) + y

(8)
= f(f(x̄,

s−1

0 , 0̄,
n−s−1

0 , f(0,
n−1
x , 0)),

s−1

0 , 0̄,
n−s−1

0 , y)

Th1
= f(f(x̄,

s−1

0 , 0̄,
n−s

0 ),
n−1
x , f(

s

0, 0̄,
n−s−1

0 , y))
(3)
= f(x̄,

n−1
x , y) ,

y = y + 0
(10)
= y + f(0,

n−1
x , 0) + x̄

(8)
= f

(
f(y,

s−1

0 , 0̄,
n−s−1

0 , f(0,
n−2
x , 0)),

s−1

0 , 0̄,
n−s−1

0 , x̄
)

Th1
= f

(
f(y,

s−1

0 , 0̄,
n−s−1

0 ),
n−2
x , f(

s

0, 0̄,
n−s−1

0 , x̄)
)

(3)
= f(y,

n−2
x , x̄).

From Theorem 4 we get the invertibility of the element x in the invert
(Q; f).

Corollary 3. The sets of all invertible elements of multiary monoid
and decomposition monoids are pairwise equal.



Invertible elements in associates 63

Corollary 4. Let 0 be an invertible element of a monoid (Q; f) of
the type (s, n) and let k be multiple of s. Then the element x will be
invertible in (Q; f) i� there exists an element −x〈0〉 such that

f(x,
s−1

0 , 0̄,
n−s−1

0 ,−x〈0〉) = f(−x〈0〉,
s−1

0 , 0̄,
n−s−1

0 , x) = 0 (11)

hold.

Proof. The equality (11) according to the equalities (8) means the
truth of the relations x+(−x〈0〉) = −x〈0〉+x = 0, where (Q; +) is the
0-decomposition monoid, that is the element x is invertible in (Q; +).
Hence, by Theorem 8 it will be invertible in the associate (Q; f).

Lemma 9. Let (Q; f) be an invert of the type (s, n), (+, ϕ, a) be its
0-decomposition. A triple (·, ψ, b) of operations de�ned on Q will be a
decomposition of (Q; f) i� there exists an invertible in (Q; +) element
e satisfying the conditions

x · y = x− e + y, ψ(x) = e + ϕ(x)− ϕ(e),

b = e + ϕ(e) + ϕ2(e) + · · ·+ ϕn(e) + a.
(12)

The algebra (Q; ·, ψ, b) in this case will be e-decomposition of the invert
(Q; f).

Proof. Let (·, ψ, b) be e-decomposition of the invert (Q; f), then

x · y (8)
= f(x,

s−1
e , ē,

n−s−1
e , y)

(7)
= x + ϕe + · · ·+ ϕs−1(e)+

+ϕs(ē) + ϕs+1(e) + · · ·+ ϕn−1(e) + ϕn(y) + a

(6)
= x + (ϕ(e) + · · ·+ ϕs−1(e) + ϕ3(ē)+

+ϕs+1(e) + · · ·+ ϕn−1(e) + a) + y .

Hence x ·y = x+ c+ y for some c ∈ Q and all x, y ∈ Q. In particular,
when x = e, y = 0 and x = 0, y = e we get the invertibility of the
element c in (Q; +), and the relation c = −e. Next,

ψ(x)
(8)
= f(e, x,

n−2
e , ē)

(7)
= e + ϕ(x) + ϕ2(e) + · · ·+

+ϕn−1(e) + ϕn(ē) + a = e + ϕ(x) + d
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for some d ∈ Q. But e = ψ(e) = e + ϕ(e) + d, therefore d = −ϕ(e).
On the other hand, let an element e be invertible in (Q; +) and

determine a triple of operations (·, ψ, b) on Q by the equalities (12).
The invertibility of the element e in the invert (Q; f) is ensured by
Theorem 8. If the component of the e-decomposition of the invert
(Q; f) are denoted by (◦, χ, c), then just proved assertion gives

x ◦ y = x− e + y, χ(x) = e + ϕ(x)− ϕ(e),

c = e + ϕ(e) + ϕ2(e) + · · ·+ ϕn(e) + a .

Therefore (·, ψ, b) = (◦, χ, c). This means, that (·, ψ, b) will be a de-
composition of (Q; f).

We say that the monoids (Q; ·) and (Q; +) di�er from each other
by a unit, if the equality x · y = x − e + y holds for some invertible
in (Q; +) element e, because they coincide once their units coincide.
This relationship between monoids is stronger than isomorphism since
the translations L−1

e and R−1
e are isomorphic mappings from one to

the other. Therefore the following statement is obvious.

Corollary 5. Any two decomposition monoids of the same invert dif-
fer from each other by a unit.

Theorem 10. The set of all invertible elements of an invert is its
subquasigroup and coincides with the group of all invertible elements
of any of its decomposition monoids.

Proof. Let (Q; f) be an invert of the type (s, n) and let (+, ϕ, a) be
its 0-decomposition. Theorem 8 implies that the sets of all invertible
elements of groupoids (Q; f) and (Q; +) coincide. Denote this set by
G. Inasmuch as G is a subgroup of the monoid (Q; +) and ϕG = G,
a ∈ G, so for any elements c0, c1, . . . , cn ∈ G the element

f(c0, c1, . . . , cn)
(7)
= c0 + ϕ(c1) + ϕ2(c2) + · · ·+ ϕn(cn) + a

is in G also. Furthermore for any number i = 0, 1, . . . , n the solu-
tion of f(c0, . . . , ci−1, x, ci+1, . . . , cn) = c , where c ∈ G, is unique and
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coincides with the element

x
(6)
= ϕ−i

(
− ϕi−1(ci−1)− · · · −ϕ(c1)− c0 + c− a−

−ϕn(cn)− · · · − ϕi+1(ci+1)
)
.

(13)

which is in G too. Hence, (G; f) is a subquasigroup of (Q; f).

Theorem 11. The period of associativity of the invert determined
by (θ, a) coincides with the number of di�erent skew elements of an
invertible element and with the length of the orbit < θ > (a), where
< θ > is the automorphism group generated by θ.

Proof. Let number s be the period of associativity of the (n + 1)-ary
invert (Q; f) and let x be any of its invertible elements. Denote by
(∗, ψ, b) the x-decomposition of the invert (Q; f). Since

f(
i
x, ψn−i(x̄),

n−i
x )

(8)
= f(

i
x, f(

n−i
x , x̄,

i−1
x , x̄),

n−i−1
x , f(

n
x, x̄))

Th1
= f(f(

n
x, x̄),

i−1
x , f(x̄,

n
x),

n−i−1
x , x̄)

(3)
= f(

n
x, x̄) = x,

then the i-th skew x̄i of the element x is determined by the equality

x̄i = ψn−i(x̄)
(8)
= f(

n−i
x , x̄,

i−1
x , x̄), i = 0, 1, . . . , n. (14)

Inasmuch as, in accordance with the equality (8),

ψs(x̄) = ψs(b−1) = (ψs(b))−1 = b−1 = x̄,

there are at most s di�erent skew elements of the element x: Namely
x̄, x̄1, . . . , x̄s−1.

Suppose, for some numbers i, j with i < j < s, the i-th and j-th
skew elements of x coincide. The results obtained imply the equality
ψn−i(x̄) = ψn−j(x̄), so that ψj−i(x̄) = x̄. The last equality together
with equality ψs(x̄) = x̄ give the relation ψd(x̄) = x̄, where d =
g.c.d.(s, j − i). In view of (8) this implies ψd(b) = b. It follows from
Theorem 6 that the pair (d, n) will be a type of the invert (Q; f).
At the same time d < s. A contradiction to the de�nition of the
associativity period.
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Thus, the element x has exactly s skew elements. They are de-
termined by the relation (14) and by any full collection of pairwise
noncongruent indices modulo s.

Corollary 6. If one of skew elements of an invertible element x of
a monoid coincides with x, then all skew elements of x are equal and
this invert is a semigroup.

Proof. Let 0̄i = 0. The relation (14) implies ϕn−i(0̄) = 0, where ϕ
denotes an automorphism of the 0-decomposition. Apply to the last
equality ϕi we obtain ϕn(0̄) = ϕi(0).

Since ϕn(0̄) = ϕn(−a) = −ϕn(a) = −a = 0̄, then accounting to (8)
we obtain f(

i

0, 0,
n−i−1

0 , 0̄) = 0̄, that is 0̄ = 0. Thus a = f(0, . . . , 0) = 0
and ϕ(a) = ϕ(0) = 0 = a. Hence, by Theorem 11 the associativity
period of the invert is equal to 1, i.e. the invert is a semigroup.

Corollary 7. An invert of associativity period s has at least s + 1
di�erent invertible elements.

Corollary 8. An invert having at most two invertible elements is
associative i.e. is a semigroup.

Proof. If an invert has exactly one invertible element, then it will be
associative by Corollary 6, since its skews coincide with it. If the in-
vert has exactly two invertible elements a and b, then ā0 = a or ā0 = b.
If ā0 = a, then according to Corollary 6 the invert is a semigroup. If
ā0 = b, then Theorem 11 implies ā1 = a. And Theorem 11 implies
that the invert is a quasigroup.

Axiomatics of polyagroups
Both for binary and for n-ary cases an associative quasigroup is called
a group. Therefore, retaining this regularity we will introduce the no-
tion of a polyagroup.



Invertible elements in associates 67

De�nition 3. When s < n the s-associative (n + 1)-ary quasigroup
we will call a nonsingular polyagroup of the type (s, n).

It is easy to see, that s = 1 means the polyagroup is an (n+1)-ary
group. Theorem 6 implies an analogue of Gluskin-Hosszú theorem.

Proposition 12. Any polyagroup of the type (s, n) is (i, j)-associative
for all i, j with i ≡ j (mod s). When s is its associativity period, then
no other (i, j)-associativity identity holds.

Theorem 13. Let (Q; f) be an associate of the type (s, n) and s < n,
n > 1. Then the following statements are equivalent

1) (Q; f) is a polyagroup,
2) every element of the associate is invertible,
3) for every x ∈ Q there exists x̄ ∈ Q such that

f(x̄, x, . . . , x, y) = f(y, x, . . . , x, x̄) = y (15)

holds for all y ∈ Q,
4) (Q; f) has an invertible element 0 and for every x ∈ Q there

exists y ∈ Q such that

f(x,
s−1

0 , 0̄,
n−s−1

0 , y) = 0, f(y,
s−1

0 , 0̄,
n−s−1

0 , x) = 0 (16)

holds.

Proof. 1)⇔2) follows from Theorem 10; 2)⇔3) from Corollary 1;
2)⇔4) from Corollary 4.

When s = 1 we get a criterion for n-ary groups.

Corollary 9. Let (Q; f) be (n+1)-ary a semigroup. Then the follow-
ing statements are equivalent

1) (Q; f) is an (n + 1)-ary group,
2) every element of the semigroup is invertible,
3) for every x ∈ Q there exists x̄ ∈ Q such that (15) holds for every

y ∈ Q,
4) (Q; f) has an invertible element 0 and for every x ∈ Q there

exists y ∈ Q such that (16) hold.
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