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NLPN Sequences over GF (q)

Czesław Kościelny

Abstract

PN sequences over GF (q) are unsuitable directly for cryptography because of their
strong linear structure. In the paper it is shown that in order to obtain the sequence
with the same occurence of elements and with the same length as PN sequence,
but having non-linear structure, it simply suffices to modulate the PN sequence by
its cyclic shift using two-input quasigroup operator. Thus, such new sequences,
named NLPN sequences, which means Non-Linear Pseudo-Noise sequences, can
be easily generated over GF (q) for q ≥ 3. The method of generating the NLPN
sequences is exhaustively explained by a detailed example concerning non-linear
pseudo-noise sequences over GF (8). In the other example the way of constructing
good keys generator for generalized stream-ciphers over the alphabet of order 256
is sketched. It is hoped that NLPN sequences will find many applications in such
domains as cryptography, Monte-Carlo methods, spread-spectrum communication,
GSM systems, random number generators, scrambling, testing VLSI chips and
video encryption for pay-TV purposes.

1. Introduction

Non-binary pseudo-random sequences over GF (q) of length qm−1,
called PN sequences have been known for a long time [3,6,7]. Altho-
ugh they are used in many domains of modern technology, they are
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unsuitable directly for cryptographic applications, mainly because of
their strong linear structure. Therefore, several concepts have been
proposed in order to demolish this structure (e.g. non-linear filter ge-
nerators [2,7] and multiplexed sequences [4]), consisting in non-linear
filtering or modulating PN sequences over GF (2).

The presented method concerns sequences over GF (q) for q ≥ 3
and it uses a quasigroup operators in order to transform PN sequence
into a sequence, having much more randomness than the former. Thus
the generator of NLPN sequences consists of two identical linear shift
registers with feedback, determined by the same primitive polynomial
of degree m over GF (q), which are equipped with the possibility of
tuning the initial states. The method is very simple and it is well
adapted for both software and hardware implementations.

2. A Quasigroup-Based Method of Constructing
NLPN Sequences over GF (q) and Their Properties

Let
a = a0a1 · · ·aqm−2 (1)

be an arbitrary sequence of elements from GF (q), and let

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai ai+1 · · · ai+m+c−1

ai+1 ai+2 · · · ai+m+c

· · · · · ·
· · · · · ·
· · · · · ·
ai+m+c−1 ai+m+c · · · a2(i+m+c−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

be an (c + m) × (c + m) matrix over GF (q), the rows of which
are consecutive elements from the sequence (1). The subscripts i,
0 ≤ i ≤ qm − 2, are taken modulo qm − 1.
Definition: A sequence (1) is called a non-linear PN sequence and
further denoted as NLPN sequence, if

∃ i, 0 ≤ i ≤ qm − 2, ∃ c ≥ 1 [det(R) �= 0], (3)
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and if in the sequence only one element of GF (q) occurs qm−1 − 1
times, while every other element from GF (q) occurs qm−1 times.

The presented method stems from the following

Conjecture: Let q = pk > 2, p - prime, k - positive integer ≥ 1 and
let a and ai denote a PN sequence of length qm − 1 over GF (q) and
its cyclic shift i places to the right, respectively. Then there exist a
quasigroup

Q = 〈SQ, •〉, (4)

of order q, viz. |SQ| = q, SQ - set of the elements of a quasigroup,
represented in the same manner as the elements of GF (q), such that
sequences

a • ai, ai • a (5)

are NLPN sequences, if

i �= 0 (mod (qm − 1)/(q − 1)). (6)

It may be supposed that in the case when in the main diagonal of
the quasigroup’s operation table any element occurs only once, the
fulfilment of condition (6) may not be required.

The number of quasigroups, satisfying this conjecture is not yet
known, and one would rather expect that it will not be determined
in the near future. The experiments show, however, that it is hard
to find a true quasigroup, which does not produce NLPN sequences
according to the presented method.

The proof of the conjecture is the subject of current work and will
be reported in due course.

At present, the author knows only the following properties of NLPN
sequences:

Property I – The Number of Occurrences of Elements of GF (q) in an
NLPN sequence: If 0 denotes the identity element of the additive
group of GF (q), then the element equal to 0 • 0 occurs in the
NLPN sequence qm−1 − 1 times, while the remaining elements of
GF (q) occur in this sequence qm−1 times.

An algebraic system 〈SQ, •〉 is called a quasigroup if there is a binary ope-
ration • defined in SQ and if, when any two elements a, b ∈ SQ are given, the
equations a • x = b and y • a = b, each, have exactly one solution [1].
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Property II – The Set of All NLPN Sequences Derived from One PN
Sequence and One Quasigroup Q: Let SNLPN denote the set of
all different NLPN sequences generated by one PN sequence and
one quasigroup. Then

k(qm − 1) ≥ |SNLPN| ≥ k(qm − q − 1), (7)

where k = 1 if a quasigroup Q is abelian, and k = 2 if it is
non-abelian. This number depends on the elements forming the
main diagonal of the quasigroup’s operation table.

Property III – Autocorrelation function: Each NLPN sequence belon-
ging to SNLPN has distinct autocorrelation function resembling
the autocorrelation function of the random sequence of elements
of GF (q) having the length qm − 1.

3. Example 1

Since the presented method is rather a new one, it will now be
exhaustively explained.

Let 8-element finite field GF (8) = 〈{0, 1, . . . , 7}, +, ·〉 be construc-
ted using the polynomial x3 +x+1. Then the operations + and · can
be defined as follows:

x + y = x XOR y,

x · y =

{
0 if x = 0 or y = 0,
etn(nte(x) + nte(y) (mod 7)) otherwise.

It is easy to observe that the above representation of GF (8) results
from the assumption that α, primitive element of GF (8) and also a
root of the polynomial x3 + x + 1 over GF (2), is denoted by 2. Thus,
αi = etn(i) for i = 0, 1, . . . , 6. The functions nte(x) and etn(x),
named according to the tasks which they perform (nte - number to
exponent of α conversion, etn - exponent of α to number conversion)
are defined in Table 1.
The values of nte(0) and etn(7) are not used, therefore, they are not
defined.
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Table 1: Functions nte(x) and etn(x) used for Multiplying

in GF (8)

x 0 1 2 3 4 5 6 7
nte(x) ? 0 1 3 2 6 4 5
etn(x) 1 2 4 3 6 7 5 ?

Table 2: Addition and Multiplication Tables in GF (8)

+ 0 1 2 3 4 5 6 7 · 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0
1 1 0 3 2 5 4 7 6 1 0 1 2 3 4 5 6 7
2 2 3 0 1 6 7 4 5 2 0 2 4 6 3 1 7 5
3 3 2 1 0 7 6 5 4 3 0 3 6 5 7 4 1 2
4 4 5 6 7 0 1 2 3 4 0 4 3 7 6 2 5 1
5 5 4 7 6 1 0 3 2 5 0 5 1 4 2 7 3 6
6 6 7 4 5 2 3 0 1 6 0 6 7 1 5 3 2 4
7 7 6 5 4 3 2 1 0 7 0 7 5 2 1 6 4 3

Although the operations in GF (8) are simple, the reader can easier
follow the presented example by using the tables of addition and mul-
tiplication in GF (8), given in Table 2.

Let s= s0s1 · · · s62 be a PN sequence obtained from the primitive
polynomial x2 + 2x + 2 over GF (8). Therefore

si+2 = 2si+1 + 2si, i = 0, 1, . . . , 60.

If one specifies the initial values as s0 = 1, s1 = 0, then the whole PN
sequence will be

s = concat(γ, αγ, α2γ, α3γ, α4γ, α5γ, α6γ) = s0s1 · · · s62, (8)

where γ = 102476232 and α = 2. Finally s =

102476232204357464403615373306721656607542717705134525501263141.
(9)
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Further let

si = s62−i+1s62−i · · · s0s1 · · · sisi+1 · · · s62−i

where i ∈ {0, 1, . . . , 62} and the subscripts are computed modulo
63, denote the PN sequence s shifted i places to the right. Let also

Q = 〈{0, 1, 2, 3, 4, 5, 6, 7}, •〉,
be a quasigroup with operation • defined in Table 3.

Table 3: Operation Table in the Quasigroup Q
• 0 1 2 3 4 5 6 7
0 4 5 7 1 6 0 2 3
1 3 2 0 6 1 7 5 4
2 5 3 6 7 0 1 4 2
3 0 1 2 3 4 5 6 7
4 6 0 3 5 2 4 7 1
5 1 7 4 2 5 3 0 6
6 7 6 5 4 3 2 1 0
7 2 4 1 0 7 6 3 5

A half of all NLPN sequences s(i) = s • si, where

i ∈ {1, 2, . . . , 62} \ {9, 18, 27, 36, 45, 54},
obtained by means of the proposed method from the PN sequence s
in Tables 4 and 5 is presented. One can get the other half of these
sequences as s(i) = si • s since the quasigroup Q is non-abelian. In
this way one quasigroup of order 8 and one primitive polynomial of
degree 2 over GF (8) give 110 different NLPN sequences. Taking into
account that the number of primitive polynomials of degree 2 over
GF (8) equals to 18, that the total number of loops of order 8 is equal
to 535,281,401,856 [1], and that there are much more quasigroups of
the same order, which are not loops, one may easily appreciate the
importance of the proposed method for cryptograhic practice, where
q is often of order of a few dozen or of several hundreds.

A loop 〈L, +〉 is a quasigroup with an identity element: that is, a quasigroup
in which there exists an element e ∈ L with the property that e + x = x + e = x
for every x ∈ L.
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Table 4: A Half of the Set SNLPN Obtained from the PN

Sequence (9) and the Quasigroup defined in Table 3

i s(i)=s • si

1 255370427676426137260457507317320602122640144531715514303356601
2 153613266773050402764760163714244571223111705436350203407562552
3 263025074613217521224332645334055046103062611556404775377171076
4 650047642475242244166311331510073165626075577137476332500120235
5 513246520223341635434115006104576700553374246776271117267625300
6 027076306037221372507355423652026411074044335664411653711155762
7 274543315661640356215010470326674427131771352505070621356022743
8 356706013572701553663245674011416024725404653233121726102735047

10 705011710356255755370363776467042220412016456321452427633163140
11 001645433050047113572712554663275634010172123620374566734521627
12 771426667360111207312535367423756172430264504300501304654275251
13 106467324752172331773501405761703406215255341423566615432200706
14 661362516410474652122404073533301721600657255150767123574307342
15 210412103625154073236564224300741314156217033577557056360267467
16 757265155377377066367102210412505357424352062334264041601601413
17 303572651553624260674054312064621153713747560226017340137057214
19 435444056106143562050516613277777051362273665011573743023224012
20 232666741604071740251705732375206263167154470512361430325505134
21 452122330174514315061634456215151430327567326032607667005477720
22 033157117003532057554621277674163322063525054616636024727410441
23 172050553764236663711327014725060754237020263402435146455116317
24 766140201312546470323617122431170513405570730353675250672426564
25 400356275155431426076425140260366547316624712027731271030315573
26 331210372500356324652167441073540445760310317210255672124666775
28 525163673236570223400600344157104144572551513761660376213402277
29 724652022331034534305724601456261005471127647365337712616517005
30 221737250630762465202271116353433550170435766560146247314740510
32 054431571071165620565573042616732743021236210635542170706243374
33 473761402163775174014203521224402615333456137006162552057703665
34 536032465202264106453374560171031677565037102713447501222147653
35 322341164534445001601413265055372376777676001262772005115323456
37 615755361426737300130222462507465473652422300171134600563711754
38 417630614127066251037777375202230126354130551074345325061546246
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Table 5: Continuation of Table 4

i s • si

39 637521223407615433157033104572652504664766743114002216521073507
40 712507476324602122331041543405613641457705115372026573665030672
41 207104562657503604277646061362117775114503207524623102331434355
42 551554704270633771462026725113667216520723431730033455204014166
43 623400735433106716104547750554710237673200422166525461517236123
44 314064237521273417635306157006007532751053724275463264166104521
46 165536132716661014720075251737636335202734027451041062473045425
47 560601357215005367426743417130212452506106364757322644270533711
48 120224411735313150706136572750557623276363150467203520410674644
49 464277763111322703025151764236523274301345403055216406076650157
50 730773534305720611356250055470424736466441221317110165620752326
51 602233007454360577171170627565534012617331634122240754535642061
52 111171045720525546732653630703122067250546672470612731464453033
53 367453440517130145627520536032764660704221176254530537171212630
55 075202244066304441510144135627511566032307771601227235753637536
56 676674170462023025113756246521227340635143016103313077552554470
57 016323752022410764533430711601354255055661467673700442762372115
58 577317031267452510417461652122343033534615620704756760251360024
59 426515547132657647003062037251645762375712274063054134012061331
60 134305600701407275755442326776315110261602536415724357426331260
61 062714625014753236521266300635447107007413542652153311775764203
62 370135726565567732616672703020135201736532445207644413150441102

For such values of q the number of quasigroups can be expressed as a
factorial of astronomical number. Speaking more precisely, the number
of quasigroups of order n equals to the number of latin squares of the
same order L(n), which, for n > 10 satisfies [5]

n∏
k=1

k!
n
k ≥ L(n) ≥ n!2n

nn2 . (10)

At last it may be interesting to see the autocorrelation functions
of several NLPN sequences over GF (8) and to compare them with au-
tocorrelation functions of a PN sequence and of a random sequence.
Therefore, one period of the autocorrelation function for all PN sequ-
ences si in Fig. 1 can be seen.
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Figure 1: Autocorrelation function of all sequences si

This function is of course the same for all PN sequences of length 63
over GF (8), no matter which primitive polynomial of degree 2 over
GF (8) has been used.
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Figure 2: Autocorrelation function of the sequence s•s14

Figures 2, 3, 4 and 5 show one period of NLPN sequences s(i) =s • si

for i = 14, 28, 42 and 56, respectively, while one period of the auto-
correlation function of truly random sequence of length 63 over GF (8)

413402332717176544257642215026016410750637616550600040162402102
(11)

with the occurrence of elements

0 − 12, 1 − 9, 2 − 9, 3 − 4, 4 − 8, 5 − 6, 6 − 9, 7 − 6
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in Fig. 6 is presented.
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Figure 3: Autocorrelation function of the sequence s•s28
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Figure 4: Autocorrelation function of the sequence s•s42

The autocorrelation function ρ(i) is here defined as follows. Let A be
the number of places where the sequence s0s1 · · · s62 and its cyclic shift
sisi+1 · · · si−1 agree, and D the number of places where they disagree.
Then

ρ(i) =
A − D

63
.
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Figure 5: Autocorrelation function of the sequence s•s56
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Figure 6: Autocorrelation function of the random sequence (10)

4. Example 2

In the same manner as in Example 1 the Tables of addition and
multiplication in GF (256) = 〈{0, 1, . . . , 255}, +, ·〉 were constructed
using the primitive polynomial x8 +x4 +x3 +x2 +1 over GF (2). Then
the primitive polynomial P (x) = x3 + 132x2 + 152x + 2 over GF (256)
was found and the PN sequence s of length 16777215 was generated
using the following recurrence relation over GF (256)

si+3 = 132si+2 + 152si+1 + 2si, i = 0, 1, . . . , 16777214.
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This sequence and its cyclic shift si, i satisfying (5), was written to
the disk files, say, F1 and F2. To create a disk file F3 containing
NLPN sequence of length 16777215, as a quasigroup Q an isotope [1]
of the additive group of GF (256) was used. The generated NLPN
sequence was then tested by means of the battery of DIEHARD tests
of randomness [10], passing them all perfectly. Compared with the
length of the NLPN sequence (16777215 Bytes), which may be used
as a cryptographic key, to generate it one can use significantly smaller
data, namely 65545 Bytes at most (addition table in the quasigroup
Q, coefficients of the polynomial P (x), three Bytes of initial condition
for the recurrence relation and the number of places in the cyclic shift
– about 0.39% of 16777215 Bytes). Since

7.53 · 10102804 ≥ L(256) ≥ 3.04 · 10101723,

it is evident that in a very easy way one can construct simple yet very
good generators of cryptographic keys for universal stream-ciphers
over the alphabet, containing 256 characters (ASCII code), using
NLPN sequences.

5. Conclusions

In the paper only a tiny piece of the iceberg’s tip of the possi-
bilities, resulting from the application of quasigroups for generating
the sequences of elements of GF (q) with the desired complexity and
degree of randomness is presented. E.g. by applying two PN sequen-
ces of the same length, but generated by the feedback shift registers,
specified by two various primitive polynomials of the same degree,
to the inputs of a quasigroup operator, an almost random non-linear
sequence will appear on its output with an irregular, but flat distri-
bution of elements and with a high degree of complexity (as, e.g, the
sequence (11)). Furthermore, it is possible to combine different quasi-
group operators with all linear and non-linear devices and to construct
random GF (q)-element generators with controlled properties, having
many various structures.

The method is especially convenient for fast software encryption.
However, it also should be noted that there exists a large class of
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quasigroup operators which are easily implemented by means of bi-
nary logical circuits, appropriate for the implementation of very se-
cure and extremely fast hardware-oriented quasigroup-based generali-
zed stream-ciphers [6].
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