On ordered n-groups

Janez Ušan and Mališa Žižović

Abstract

Among the results of the paper is the following proposition. Let $(Q,\{\cdot, \varphi, b\})$ be an arbitrary $n H G$-algebra associated to the n-group (Q, A), where $n \geq 3$. If \leq is a partial order defined on Q, then, (Q, A, \leq) is an ordered n-group iff (Q, \cdot, \leq) is an ordered group and for every $x, y \in Q$ the following implication holds $x \leq y \Longrightarrow \varphi(x) \leq \varphi(y)$.

1. Preliminaries

Definition 1.1. Let $n \geq 2$ and let (Q, A) be an n-groupoid. Then:
(a) (Q, A) is an n-semigroup iff for every $i, j \in\{1, \ldots, n\}, i<j$ the following law (called the (i, j)-associativity) holds

$$
A\left(x_{1}^{i-1}, A\left(x_{i}^{i+n-1}\right), x_{i+n}^{2 n-1}\right)=A\left(x_{1}^{j-1}, A\left(x_{j}^{j+n-1}\right), x_{j+n}^{2 n-1}\right),
$$

(b) (Q, A) is an n-quasigroup iff for every $i \in\{1, \ldots, n\}$ and for every $a_{1}^{n} \in Q$ is exactly one $x_{i} \in Q$ such that

$$
A\left(a_{1}^{i-1}, x_{i}, a_{i}^{n-1}\right)=a_{n},
$$

(c) (Q, A) is a Dörnte n-group (briefly: n-group) iff is an n-semigroup and an n-quasigroup.

1991 Mathematics Subject Classification: 20N15
Keywords: n-semigroup, n-quasigroup, n-group, $\{1, n\}$-neutral operation, $n H G$-algebra.

A notion of an n-group was introduced by W. Dörnte in [2] as a generalization of the notion of a group.

Proposition 1.2. [10] Let $n \geq 2$ and let (Q, A) be an n-groupoid. Then the following statements are equivalent:
(i) (Q, A) is an n-group,
(ii) there are mappings ${ }^{-1}$ and \mathbf{e} respectively of the sets Q^{n-1} and Q^{n-2} into the set Q such that in the algebra $\left(Q,\left\{A,{ }^{-1}, \mathbf{e}\right\}\right)$ of the type $<n, n-1, n-2>$ the following laws hold:
(a) $A\left(x_{1}^{n-2}, A\left(x_{n-1}^{2 n-2}\right), x_{2 n-1}\right)=A\left(x_{1}^{n-1}, A\left(x_{n}^{2 n-1}\right)\right)$,
(b) $A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=x$,
(c) $A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$,
(iii) there are mappings ${ }^{-1}$ and \mathbf{e} respectively of the sets Q^{n-1} and Q^{n-2} into the set Q such that in the algebra $\left(Q,\left\{A,,^{-1}, \mathbf{e}\right\}\right)$ of the type $<n, n-1, n-2>$ the following laws hold:
($\bar{a}) \quad A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A\left(x_{1}, A\left(x_{2}^{n+1}\right), x_{n+2}^{2 n-1}\right)$,
($\bar{b}) \quad A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)=x$,
($\bar{c}) \quad A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$.

Remark 1.3. e is an $\{1, n\}$-neutral operation of n-grupoid (Q, A) iff algebra $(Q,\{A, \mathbf{e}\})$ of type $<n, n-2>$ satisfies the laws (b) and (\bar{b}). The notion of $\{i, j\}$-neutral operation $(i, j \in\{1, \ldots, n\}, i<j)$ of an n-groupoid is defined in a similar way (cf. [6]). In every n-groupoid there is at most one $\{i, j\}$-neutral operation. A $\{1, n\}$-neutral operation there exists in every n-group, but there are n-groups without $\{i, j\}$-neutral operations with $\{i, j\} \neq\{1, n\}$ (cf. [9]). Operation ${ }^{-1}$ is a generalization of the inverse operation in a group. In fact, if (Q, A) is an n-group, $n \geq 2$, then for every $a \in Q$ and for every sequence a_{1}^{n-2} over Q is

$$
\left(a_{1}^{n-2}, a\right)^{-1}=\mathrm{E}\left(a_{1}^{n-2}, a, a_{1}^{n-2}\right),
$$

where E is an $\{1,2 n-1\}$-neutral operation of the $(2 n-1)$-group $(Q, \stackrel{2}{A})$ defined by ${ }^{2}\left(x_{1}^{2 n-1}\right)=A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)$ (cf. [7]). Obviously, for $n=2, \quad a^{-1}=\mathrm{E}(a) ; a^{-1}$ is the inverse element of the element a with respect to the neutral element $\mathbf{e}(\emptyset)$ of the group (Q, A).

Theorem 1.4. (Hosszú-Gluskin Theorem) (cf. [5], [4])
For every $n-$ group $(Q, A), n \geq 3$, there is an algebra $(Q,\{\cdot, \varphi, b\})$ such that the following statements hold:
$1^{\circ}(Q, \cdot)$ is a group, $2^{\circ} \varphi \in \operatorname{Aut}(Q, \cdot)$, $3^{\circ} \varphi(b)=b$,
4° for every $x \in Q, \quad \varphi^{n-1}(x) \cdot b=b \cdot x$, 5° for every $x_{1}^{n} \in Q, \quad A\left(x_{1}^{n}\right)=x_{1} \cdot \varphi\left(x_{2}\right) \cdot \ldots \cdot \varphi^{n-1}\left(x_{n}\right) \cdot b$.

Definition 1.5. [8] We say that an algebra $(Q,\{\cdot, \varphi, b\})$ is a HosszúGluskin algebra of order $n(n \geq 3)$ (briefly: $n H G$-algebra) iff it satisfies $1^{\circ}-4^{\circ}$ from the above theorem. If it satisfies also 5°, then we say that an $n H G-$ algebra $(Q,\{\cdot, \varphi, b\})$) is associated to the $n-\operatorname{group}(Q, A)$.

Proposition 1.6. [8] Let $n \geq 3$, let (Q, A) be an n-group, and \mathbf{e} its $\{1, n\}-$ neutral operation. Further on, let c_{1}^{n-2} be an arbitrary sequence over Q and let for every $x, y \in Q$

$$
\begin{aligned}
& B_{\left(c_{1}^{n-2}\right)}(x, y)=A\left(x, c_{1}^{n-2}, y\right), \\
& \varphi_{\left(c_{1}^{n-2}\right)}(x)=A\left(\mathbf{e}\left(c_{1}^{n-2}\right), x, c^{n-2}\right) \quad \text { and } \\
& b_{\left(c_{1}^{n-2}\right)}=A\left(\mathbf{e}\left(c_{1}^{n-2}\right), \mathbf{e}\left(c_{1}^{n-2}\right), \ldots, \mathbf{e}\left(c_{1}^{n-2}\right)\right) .
\end{aligned}
$$

Then, the following statements hold
(i) $\left(Q,\left\{B_{\left(c_{1}^{n-2}\right)}, \varphi_{\left(c_{1}^{n-2}\right)}, b_{\left(c_{1}^{n-2}\right)}\right)\right\}$ is an $n H G-$ algebra associated to the n-group (Q, A) and
(ii) $\mathcal{C}_{A}=\left\{\left(Q,\left\{B_{\left(c_{1}^{n-2}\right)}, \varphi_{\left(c_{1}^{n-2}\right)}, b_{\left(c_{1}^{n-2}\right)}\right\}\right): c_{1}^{n-2} \in Q\right\}$ is the set of all $n H G$-algebras associated to the n-group (Q, A).

Proposition 1.7. [8] Let (Q, A) be an n-group, e its $\{1, n\}$-neutral operation and $n \geq 3$. Then for every $a_{1}^{n-2} \in Q$ and every $1 \leq i \leq n-2$ there is exactly one $x_{i} \in Q$ such that $\mathbf{e}\left(a_{1}^{i-1}, x_{i}, a_{i}^{n-3}\right)=a_{n-2}$.

2. Main results

Definition 2.1. Let (Q, A) be an n-group, $n \geq 2$. If \leq is a partial order on Q such that

$$
\begin{equation*}
x \leq y \Rightarrow A\left(z_{1}^{i-1}, x, z_{i}^{n-1}\right) \leq A\left(z_{1}^{i-1}, y, z_{i}^{n-1}\right) \tag{1}
\end{equation*}
$$

for all $x, y, z_{1}, \ldots, z_{n-1} \in Q$ and $i \in\{1,2, \ldots, n-1\}$, then, we say that (Q, A, \leq) is an ordered $n-$ group.

Note that in the case $n=2(Q, A, \leq)$ is an ordered group in the sense of [3].

Theorem 2.2. Let \leq be a partial order on Q. Also, let $n \geq 3$ and let (Q, A) be an n-group. In addition, let $(Q,\{\cdot, \varphi, b\}\}$ be an arbitrary $n H G$-algebra associated to the n-group (Q, A). Then, (Q, A, \leq) is an ordered n-group iff for all $x, y, z \in Q$ the following two formulas hold

$$
\begin{gather*}
x \leq y \Rightarrow x z \leq y z \wedge z x \leq z y \tag{2}\\
x \leq y \Rightarrow \varphi(x) \leq \varphi(y)) \tag{3}
\end{gather*}
$$

Proof. Let (Q, A, \leq) be an ordered n-group and let $n \geq 3$. Also, let \mathbf{e} be an $\{1, n\}$-neutral operation of the n-group (Q, A). In addition, let $(Q,\{\cdot, \varphi, b\})$ be an arbitrary $n H G$-algebra associated to the n-group (Q, A). Then, by Proposition 1.6, there is at least one sequence c_{1}^{n-2} over Q such that for every $x, y \in Q$ the following two equalities hold:

$$
\begin{gathered}
x \cdot y=A\left(x, c_{1}^{n-2}, y\right) \\
\varphi(x)=A\left(\mathbf{e}\left(c_{1}^{n-2}\right), x, c_{1}^{n-2}\right) .
\end{gathered}
$$

Hence, by Definition 2.1, we conclude that the formulas (2) and (3) hold in ($Q,\{\cdot, \varphi, b\}$).

Conversely, let $(Q,\{\cdot, \varphi, b\})$ be an arbitrary $n H G$-algebra associated to the n-group (Q, A). Also, let \leq be a partial order on Q. Assume that an $n H G-$ algebra $(Q,\{\cdot, \varphi, b\})$ satisfies (2) and (3). Then, for every $x, y, z_{1}^{n-2} \in Q$ and $i \in\{1,2, \ldots, n\}$ it satisfies also (1).

Indeed, for $1 \leq i \leq n-1 \quad x \leq y$ implies $\quad \varphi^{i-1}(x) \leq \varphi^{i-1}(y)$, and in the consequence

$$
z_{1} \cdot \ldots \cdot \varphi^{i-2}\left(z_{i-1}\right) \cdot \varphi^{i-1}(x) \leq z_{1} \cdot \ldots \cdot \varphi^{i-2}\left(z_{i-1}\right) \cdot \varphi^{i-1}(y)
$$

which gives

$$
\begin{aligned}
& z_{1} \cdot \ldots \cdot \varphi^{i-2}\left(z_{i-1}\right) \cdot \varphi^{i-1}(x) \cdot \varphi^{i}\left(z_{i}\right) \cdot \ldots \cdot b \cdot z_{n-1} \leq \\
& \quad z_{1} \cdot \ldots \cdot \varphi^{i-2}\left(z_{i-1}\right) \cdot \varphi^{i-1}(y) \cdot \varphi^{i}\left(z_{i}\right) \cdot \ldots \cdot b \cdot z_{n-1}
\end{aligned}
$$

Hence, by Definition 1.5, we conclude that (1) holds.
The cases $i=1$ and $i=n$ are obvious.

Example 2.3. Let $(Z,+)$ be the additive group of all integers, and let \leq by the natural order defined on Z. Then Z with the ternary operation A defined by

$$
A(x, y, z)=x+(-y)+z
$$

is a 3-group.
Moreover, $(Z,\{+, \varphi, 0\})$, where $\varphi(x)=-x$, is an $n H G$-algebra associated to a 3 -group (Z, A).

Since for every $x, y \in Z \quad x \leq y$ implies $\varphi(y) \leq \varphi(x)$, we conclude (by Theorem 2.2) that (Z, A, \leq) is not an ordered 3-group.

Example 2.4. Let $(Z,+, \leq)$ be as in the previous example. Let

$$
B\left(x_{1}^{n}\right)=x_{1}+x_{2}+\ldots+x_{n}+2
$$

for every $x_{1}^{n} \in Z, n \geq 3$. Then, (Z, B) is an $n-\operatorname{group}$ with $(Z,\{+, i d, 2\})$ as its associated $n H G$-algebra. Obviously (Z, B, \leq) is an ordered n-group.

Moreover, (Z, C, \leq) and (Z, D, \leq) where

$$
\begin{gathered}
C\left(x_{1}^{n}\right)=x_{1}+x_{2}+\ldots+x_{n}, \\
D\left(x_{1}^{n}\right)=x_{1}+x_{2}+\ldots+x_{n}+(-2)
\end{gathered}
$$

are ordered n-groups as well.

Theorem 2.5. Let (Q, \leq) be a chain. Also, let (Q, A) be an $n-$ group, ${ }^{-1}$ its inverse operation, \mathbf{e} its $\{1, n\}$-neutral operation and $n \geq 3$. Moreover, let a be an arbitrary element of the set Q and a_{1}^{n-2} be an sequence over Q such that $\mathbf{e}\left(a_{1}^{n-2}\right)=a$. Then
(i) $(\{x: a \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A) iff $a \leq A(\stackrel{n}{a})$,
(ii) $\left(\left\{x:\left(a_{1}^{n-2}, A(a)\right)^{-1} \leq x\right\}, A\right)$ is an n-subsemigroup of the $n-\operatorname{group}(Q, A)$ iff $\quad A(a) \leq a$,
(iii) let $a \leq A(\stackrel{n}{a})$ and let c be an arbitrary element of the set Q such that $a \leq c$. Then $(\{x: c \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A),
(iv) let $A(\stackrel{n}{a}) \leq a$ and let c be an arbitrary element of the set Q such that $\left(a_{1}^{n-2}, A(a)\right)^{-1} \leq c$. Then $(\{x: c \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A).

Proof. 1) Let a be an arbitrary element of the set Q. Also let a_{1}^{n-2} be an sequence over Q such that $\mathbf{e}\left(a_{1}^{n-2}\right)=a$. Moreover, let

$$
\begin{align*}
& x \cdot y=A\left(x, a_{1}^{n-2}, y\right), \tag{a}\\
& \varphi(x)=A\left(a, x, a_{1}^{n-2}\right), \\
& b=A(a) \\
& x^{-1}=\left(a_{1}^{n-2}, x\right)^{-1}
\end{align*}
$$

for all $x, y \in Q$. Then:
$1^{\circ}(Q,\{\cdot, \varphi, b\})$ is an $n H G$-algebra associated to (Q, A),
$2^{o} \quad a=\mathbf{e}\left(a_{1}^{n-2}\right)$ is a neutral element of the group (Q, \cdot),
$3^{o}{ }^{-\mathbf{1}}$ is an inverse operation of the group (Q, \cdot).
By Theorem 2.2 and 1°, we conclude that
$4^{o}(Q, \cdot, \leq)$ is a linearly ordered group,
$5^{o} \quad x \leq y \Rightarrow \varphi(x) \leq \varphi(y)$ for all $x, y \in Q$.
2) Assume now that $(\{x: a \leq x\}, A)$ is an n-subsemigroup of the $n-\operatorname{group}(Q, A)$. Then for all $x_{1}^{n} \in Q$ from $x_{1}^{n} \in\{x: a \leq x\}$ follows $\left.A\left(x_{1}^{n}\right) \in\{x: a \leq x\}\right)$, whence we conclude that $a \leq A(a)$.

Conversely, let $a \leq A(\stackrel{n}{a})$. Hence, by 4^{o} and 5°, we conclude that for every sequence x_{1}^{n} over Q the following implications hold:
$\bigwedge_{i=1}^{n} x_{i} \in\{x: a \leq x\} \Rightarrow a \leq x_{1} \cdot \varphi\left(x_{2}\right) \cdot \ldots \cdot \varphi^{n-1}\left(x_{n}\right) \cdot b \Rightarrow a \leq A\left(x_{1}^{n}\right)$,
i.e.

$$
\left(\forall x_{i} \in Q\right)_{1}^{n}\left(\bigwedge_{i=1}^{n} x_{i} \in\{x: a \leq x\} \Rightarrow A\left(x_{1}^{n}\right) \in\{x: a \leq x\}\right)
$$

3) Let $\left(\left\{x:\left(a_{1}^{n-2}, A(\stackrel{n}{a})\right)^{-1} \leq x\right\}, A\right)$ be an n-subsemigroup of the $n-\operatorname{group}(Q, A)$. Then for all

$$
\bigwedge_{i=1}^{n} x_{i} \in\left\{x: b^{-1} \leq x\right\} \Rightarrow A\left(x_{1}^{n}\right) \in\left\{x: b^{-1} \leq x\right\}
$$

by (c), (d). Whence, by $4^{o}, \varphi(b)=b, \varphi\left(b^{-1}\right)=b^{-1}$ we conclude that $b^{-1} \leq A\left(b^{-1}, b^{-1}, \ldots, b^{-1}\right)=b^{-1} \cdot \varphi\left(b^{-1}\right) \cdot \ldots \cdot \varphi^{n-2}\left(b^{-1}\right) \cdot b \cdot b^{-1}$ $=b^{-1} \cdot b^{-1} \cdot \ldots \cdot b^{-1} \cdot b \cdot b^{-1}$,
i.e. $b^{n-2} \leq a$. Hence $b \leq a$ by 4^{o}.

On the other hand, if $A(\stackrel{n}{a}) \leq a$, then, by (c),(d) and $1^{\circ}-4^{\circ}$, we have $a \leq b^{-1}$, whence, by 1° and $\varphi\left(b^{-1}\right)=b^{-1}$, we obtain

$$
\begin{aligned}
& b^{-1} \leq b^{-1} \leq b^{-1} \\
& a \leq b^{-1} \leq \varphi\left(b^{-1}\right) \\
& \cdots \cdots \\
& \cdots \cdots \\
& a \leq b^{-1} \leq \varphi^{n-2}\left(b^{-1}\right) \\
& b \leq b \leq b \\
& b^{-1} \leq b^{-1} \leq b^{-1}
\end{aligned}
$$

Hence, by $4^{\circ}, 1^{\circ}$ and 1.5 , we conclude that

$$
b^{-1} \leq b^{-1} \cdot \varphi\left(b^{-1}\right) \cdot \ldots \cdot \varphi^{n-2}\left(b^{-1}\right) \cdot b \cdot b^{-1}=A\left(b^{-1}, b^{-1}, \ldots, b^{-1}\right)
$$

i.e.

$$
b^{-1} \leq A\left(b^{-1}, b^{-1}, \ldots, b^{-1}\right)
$$

whence, by (i), we see that $\left(\left\{x: b^{-1} \leq x\right\}, A\right)$ is an n-subsemigroup of the n-group (Q, A).
4) Let $a \leq A(\stackrel{n}{a})=b$. Also let c be an arbitrary element of the set Q such that $a \leq c$. Since $a \leq b$, then
(a) $c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot a \leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot b$.

By $1^{\circ}, 2^{\circ}, 5^{\circ}$ and $a \leq c$, we obtain: $c \leq c, a \leq \varphi(c), \ldots, a \leq \varphi^{n-1}(c)$, whence, by $2^{\circ}, 4^{\circ}$ and 5°, we conclude that

$$
\begin{equation*}
c \leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c)=c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot a \tag{b}
\end{equation*}
$$

By (a) and (b), we conclude that

$$
c \leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot b
$$

i.e. $\quad c \leq A(c)$. Hence, by (i) $(\{x: c \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A).
5) Let $A(\stackrel{n}{a}) \leq a$. Also let c be an arbitrary element of the set Q such that $b^{-1} \leq c$. Hence, by $1^{\circ}, 1.5,2^{\circ}, 4^{\circ}$ and 5°, we conclude

$$
\begin{aligned}
c & =c \cdot a \cdot \ldots \cdot a \cdot b \cdot b^{-1}=c \cdot \varphi(a) \cdot \ldots \cdot \varphi^{n-2}(a) \cdot b \cdot b^{-1} \\
& \leq c \cdot \varphi\left(b^{-1}\right) \cdot \ldots \cdot \varphi^{n-2}\left(b^{-1}\right) \cdot b \cdot b^{-1} \\
& \leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-2}(c) \cdot b \cdot c \\
& =A(c),
\end{aligned}
$$

whence, by (i) we prove that $(\{x: c \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A).

Remark 2.6. The above theorem describes so-called the right cone (cf. [3]), i.e. the set $K_{r}(c)=\{x: c \leq x\}$. The analogous result holds for the left cone $K_{l}(c)=\{x: x \leq c\}$.

3. Four propositions more

Proposition 3.1. If (Q, A, \leq) is an ordered n-group ($n \geq 2$), then

$$
\begin{gathered}
(\forall x \in Q)(\forall y \in Q)\left(\forall z_{j} \in Q\right)_{1}^{n-1} \\
\bigwedge_{i=1}^{n}\left(x \leq y \Longleftrightarrow A\left(z_{1}^{i-1}, x, z_{i}^{n-1}\right) \leq A\left(z_{1}^{i-1}, y, z_{i}^{n-1}\right)\right)
\end{gathered}
$$

Proof. We prove only \Leftarrow since the implication \Rightarrow is obvious.

1) In the case $i=1, A\left(x, a_{1}^{n-2}, a\right) \leq A\left(y, a_{1}^{n-2}, a\right)$ implies $A\left(A\left(x, a_{1}^{n-2}, a\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \leq A\left(A\left(y, a_{1}^{n-2}, a\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)$,
and in the consequence
$A\left(x, a_{1}^{n-2}, A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)\right) \leq A\left(y, a_{1}^{n-2}, A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)\right)$, which gives
$A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right) \leq A\left(y, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)$. Hence $x \leq y$.
2) The case $i=n$ may be proved analogously.
3) Let now $i \in\{2, \ldots, n-1\}$. Then

$$
\begin{aligned}
& A\left(a_{1}^{i-1}, x, a_{i}^{n-1}\right) \leq A\left(a_{1}^{i-1}, y, a_{i}^{n-1}\right) \Rightarrow \\
& A\left(b_{i}^{n-1}, A\left(a_{1}^{i-1}, x, a_{i}^{n-1}\right), b_{1}^{i-1}\right) \leq A\left(b_{i}^{n-1}, A\left(a_{1}^{i-1}, y, a_{i}^{n-1}\right), b_{1}^{i-1}\right) \Rightarrow \\
& A\left(A\left(b_{i}^{n-1}, a_{1}^{i-1}, x\right), a_{i}^{n-1}, b_{1}^{i-1}\right) \leq A\left(A\left(b_{i}^{n-1}, a_{1}^{i-1}, y\right), a_{i}^{n-1}, b_{1}^{i-1}\right) \Rightarrow \\
& A\left(b_{i}^{n-1}, a_{1}^{i-1}, x\right) \leq A\left(b_{i}^{n-1}, a_{1}^{i-1}, y\right) \Rightarrow x \leq y .
\end{aligned}
$$

Proposition 3.2. Let (Q, A, \leq) be an ordered n-group and let $n \geq 2$. Also, let ${ }^{-1}$ be an inverse operation of the $n-$ group (Q, A). Then

$$
(\forall x, y \in Q)\left(\forall a_{j} \in Q\right)_{1}^{n-1} \quad x \leq y \Leftrightarrow\left(a_{1}^{n-1}, y\right)^{-1} \leq\left(a_{1}^{n-1}, x\right)^{-1}
$$

Proof. $x \leq y \Leftrightarrow A\left(\left(a_{1}^{n-2}, x\right)^{-1}, a_{1}^{n-2}, x\right) \leq A\left(\left(a_{1}^{n-2}, x\right)^{-1}, a_{1}^{n-2}, y\right) \Leftrightarrow$
$\mathbf{e}\left(a_{1}^{n-2}\right) \leq A\left(\left(a_{1}^{n-2}, x\right)^{-1}, a_{1}^{n-2}, y\right) \Leftrightarrow A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2},\left(a_{1}^{n-2}, y\right)^{-1}\right) \leq$
$\leq A\left(A\left(\left(a_{1}^{n-2}, x\right)^{-1}, a_{1}^{n-2}, y\right), a_{1}^{n-2},\left(a_{1}^{n-2}, y\right)^{-1}\right) \Leftrightarrow$
$\left(a_{1}^{n-2}, y\right)^{-1} \leq A\left(\left(a_{1}^{n-2}, x\right)^{-1}, a_{1}^{n-2}, A\left(y, a_{1}^{n-2},\left(a_{1}^{n-2}, y\right)^{-1}\right)\right) \Leftrightarrow$
$\left(a_{1}^{n-2}, y\right)^{-1} \leq A\left(\left(a_{1}^{n-2}, x\right)^{-1}, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right) \Leftrightarrow$
$\left(a_{1}^{n-2}, y\right)^{-1} \leq\left(a_{1}^{n-2}, x\right)^{-1}$.

Proposition 3.3. Let (Q, A, \leq) be an ordered $n-$ group and let $n \geq 3$. Also, let \mathbf{e} be an $\{1, n\}$-neutral operation of the n-group (Q, A). Then

$$
\begin{aligned}
&(\forall x \in Q)(\forall y \in Q)\left(\forall a_{j} \in Q\right)_{1}^{n-3} \\
& \bigwedge_{i=1}^{n-2}\left(x \leq y \Leftrightarrow \mathbf{e}\left(a_{1}^{i-1}, y, a_{i}^{n-3}\right) \leq \mathbf{e}\left(a_{1}^{i-1}, x, a_{i}^{n-3}\right)\right)
\end{aligned}
$$

Proof. Since $A\left(a, x_{1}^{n-2}, b\right)=A\left(A\left(a, y_{1}^{n-2},\left(y_{1}^{n-2}, \mathbf{e}\left(x_{1}^{n-2}\right)\right)^{-1}\right), y_{1}^{n-2}, b\right)$ by Theorem 4 from [7], then

$$
\begin{aligned}
& x \leq y \Leftrightarrow A\left(a, a_{1}^{i-1}, x, a_{i}^{n-3}, b\right) \leq A\left(a, a_{1}^{i-1}, y, a_{i}^{n-3}, b\right) \Leftrightarrow \\
& A\left(A\left(a, c_{1}^{n-2},\left(c_{1}^{n-2}, \mathbf{e}\left(a_{1}^{i-1}, x, a_{i}^{n-3}\right)\right)^{-1}\right), c_{1}^{n-2}, b\right) \leq \\
& A\left(A\left(a, c_{1}^{n-2},\left(c_{1}^{n-2}, \mathbf{e}\left(a_{1}^{i-1}, y, a_{i}^{n-3}\right)\right)^{-1}\right), c_{1}^{n-2}, b\right) \Leftrightarrow \\
& A\left(a, c_{1}^{n-2},\left(c_{1}^{n-2}, \mathbf{e}\left(a_{1}^{i-1}, x, a_{i}^{n-3}\right)\right)^{-1}\right) \leq \\
& A\left(a, c_{1}^{n-2},\left(c_{1}^{n-2}, \mathbf{e}\left(a_{1}^{i-1}, y, a_{i}^{n-3}\right)\right)^{-1}\right) \Leftrightarrow \\
& \left(c_{1}^{n-2}, \mathbf{e}\left(a_{1}^{i-1}, x, a_{i}^{n-3}\right)\right)^{-1} \leq\left(c_{1}^{n-2}, \mathbf{e}\left(a_{1}^{i-1}, y, a_{i}^{n-3}\right)\right)^{-1} \Leftrightarrow \\
& \mathbf{e}\left(a_{1}^{i-1}, y, a_{i}^{n-3}\right) \leq \mathbf{e}\left(a_{1}^{i-1}, x, a_{i}^{n-3}\right) .
\end{aligned}
$$

Proposition 3.4. Let (Q, A, \leq) be an ordered n-group and let $n \geq 3$. Also, let ${ }^{-1}$ be an inverse operation of the $n-$ group (Q, A). Then

$$
\begin{aligned}
& \quad(\forall x \in Q)(\forall y \in Q)(\forall b \in Q)\left(\forall a_{j} \in Q\right)_{1}^{n-3} \\
& \bigwedge_{i=1}^{n-2}\left(x \leq y \Rightarrow\left(a_{1}^{i-1}, y, a_{i}^{n-3}, b\right)^{-1} \leq\left(a_{1}^{i-1}, x, a_{i}^{n-3}, b\right)^{-1}\right) .
\end{aligned}
$$

Proof. Since $x \leq y$ implies

$$
\mathrm{E}\left(a_{1}^{i-1}, y, a_{i}^{n-3}, b, a_{1}^{i-1}, y, a_{i}^{n-3}\right) \leq \mathrm{E}\left(a_{1}^{i-1}, y, a_{i}^{n-3}, b, a_{1}^{i-1}, x, a_{i}^{n-3}\right)
$$

and

$$
\mathrm{E}\left(a_{1}^{i-1}, y, a_{i}^{n-3}, b, a_{1}^{i-1}, x, a_{i}^{n-3}\right) \leq \mathrm{E}\left(a_{1}^{i-1}, x, a_{i}^{n-3}, b, a_{1}^{i-1}, x, a_{i}^{n-3}\right),
$$

then from the transitivity of \leq follows that $x \leq y$ implies

$$
\mathrm{E}\left(a_{1}^{i-1}, y, a_{i}^{n-3}, b, a_{1}^{i-1}, y, a_{i}^{n-3}\right) \leq \mathrm{E}\left(a_{1}^{i-1}, x, a_{i}^{n-3}, b, a_{1}^{i-1}, x, a_{i}^{n-3}\right)
$$

This completes the proof because

$$
\left(a_{1}^{i-1}, z, a_{i}^{n-3}, b\right)^{-1}=\mathrm{E}\left(a_{1}^{i-1}, z, a_{i}^{n-3}, b, a_{1}^{i-1}, z, a_{i}^{n-3}\right) .
$$

References

[1] G. Crombez: On partially ordered n-groups, Abh. Math. Sem., Hamburg 38 (1972), $141--146$.
[2] W. Dörnte: Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1 - 19.
[3] L. Fuchs: Partially ordered algebraic systems, Pergamon Press, Oxford 1963.
[4] L. M. Gluskin: Positional operatives, (Russian), 68(110) (1965), $444-472$.
[5] M. Hosszú: On the explicit form of n-group operations, Publ. Math., Debrecen 10 (1963), 88 - 92.
[6] J. Ušan: Neutral operations of n-groupoids, (Russian), Rev. of Research, Fac.of Sci. Univ. of Novi Sad, Math. Ser. 18.2 (1988), 117-126.
[7] J. Ušan: A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24.1 (1994), 281 - - 288.
[8] J. Ušan: On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25.1 (1995), 101 - - 119.
[9] J. Ušan: On n-groups with $\{i, j\}$-neutral operation for $\{i, j\} \neq$ $\{1, n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25.2 (1995), 167 - 178.
[10] J. Ušan: n-groups, $n \geq 2$, as varieties of type $\langle n, n-1, n-2\rangle$, Algebra and Model Theory, Collection of papers edited by A. G. Pinus and K. N. Ponomaryov, Novosibirsk 1997, 182 - 208.

Received September 201997 and in revised form March 29, 1999
J. Ušan

Institute of Mathematics
University of Novi Sad
Trg D. Obradovića 4
21000 Novi Sad
Yugoslavia
M. Žižovič
Faculty of Technical Science
University of Kragujevac
Svetog Save 65
32000 Čačak
Yugoslavia

