On ordered n-groups

Janez Ušan and Mališa Žižović

Abstract

Among the results of the paper is the following proposition. Let $(Q, \{\cdot, \varphi, b\})$ be an arbitrary nHG-algebra associated to the *n*-group (Q, A), where $n \geq 3$. If \leq is a partial order defined on Q, then, (Q, A, \leq) is an ordered *n*-group iff (Q, \cdot, \leq) is an ordered group and for every $x, y \in Q$ the following implication holds $x \leq y \Longrightarrow \varphi(x) \leq \varphi(y)$.

1. Preliminaries

Definition 1.1. Let $n \ge 2$ and let (Q, A) be an *n*-groupoid. Then:

(a) (Q, A) is an *n*-semigroup iff for every $i, j \in \{1, ..., n\}, i < j$ the following law (called the (i, j)-associativity) holds

$$A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-1}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1}),$$

(b) (Q, A) is an n-quasigroup iff for every $i \in \{1, \ldots, n\}$ and for every $a_1^n \in Q$ is exactly one $x_i \in Q$ such that

$$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n \,,$$

(c) (Q, A) is a *Dörnte* n-group (briefly: n-group) iff is an n-semigroup and an n-quasigroup.

¹⁹⁹¹ Mathematics Subject Classification: 20N15

Keywords: *n*-semigroup, *n*-quasigroup, *n*-group, $\{1, n\}$ -neutral operation, nHG-algebra.

A notion of an n-group was introduced by W. Dörnte in [2] as a generalization of the notion of a group.

Proposition 1.2. [10] Let $n \ge 2$ and let (Q, A) be an *n*-groupoid. Then the following statements are equivalent:

- (i) (Q, A) is an n-group,
- (ii) there are mappings $^{-1}$ and **e** respectively of the sets Q^{n-1} and Q^{n-2} into the set Q such that in the algebra $(Q, \{A, ^{-1}, \mathbf{e}\})$ of the type < n, n 1, n 2 > the following laws hold:
 - (a) $A(x_1^{n-2}, A(x_{n-1}^{2n-2}), x_{2n-1}) = A(x_1^{n-1}, A(x_n^{2n-1})),$
 - (b) $A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x$,
 - $(c) \quad A((a_1^{n-2},a)^{-1},a_1^{n-2},a) = \mathbf{e}(a_1^{n-2})\,,$
- (iii) there are mappings $^{-1}$ and \mathbf{e} respectively of the sets Q^{n-1} and Q^{n-2} into the set Q such that in the algebra $(Q, \{A, ^{-1}, \mathbf{e}\})$ of the type < n, n 1, n 2 > the following laws hold:

$$(\overline{a}) \quad A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}),$$

$$(\overline{b}) \quad A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x,$$

$$(\overline{c}) \quad A(a, a_1^{n-2}, (a_1^{n-2}, a)^{-1}) = \mathbf{e}(a_1^{n-2}).$$

Remark 1.3. e is an $\{1, n\}$ -neutral operation of n-grupoid (Q, A) iff algebra $(Q, \{A, e\})$ of type $\langle n, n-2 \rangle$ satisfies the laws (b) and (\overline{b}) . The notion of $\{i, j\}$ -neutral operation $(i, j \in \{1, \ldots, n\}, i < j)$ of an n-groupoid is defined in a similar way (cf. [6]). In every n-groupoid there is at most one $\{i, j\}$ -neutral operation. A $\{1, n\}$ -neutral operation there exists in every n-group, but there are n-groups without $\{i, j\}$ -neutral operations with $\{i, j\} \neq \{1, n\}$ (cf. [9]). Operation ⁻¹ is a generalization of the inverse operation in a group. In fact, if (Q, A) is an n-group, $n \geq 2$, then for every $a \in Q$ and for every sequence a_1^{n-2} over Q is

$$(a_1^{n-2}, a)^{-1} = \mathsf{E}(a_1^{n-2}, a, a_1^{n-2}),$$

where E is an $\{1, 2n - 1\}$ -neutral operation of the (2n - 1)-group (Q, A) defined by $A(x_1^{2n-1}) = A(A(x_1^n), x_{n+1}^{2n-1})$ (cf. [7]). Obviously, for n = 2, $a^{-1} = \mathsf{E}(a)$; a^{-1} is the inverse element of the element a with respect to the neutral element $\mathbf{e}(\emptyset)$ of the group (Q, A).

Theorem 1.4. (Hosszú-Gluskin Theorem) (cf. [5], [4]) For every n-group (Q, A), $n \geq 3$, there is an algebra $(Q, \{\cdot, \varphi, b\})$ such that the following statements hold:

1°
$$(Q, \cdot)$$
 is a group,
2° $\varphi \in Aut(Q, \cdot)$,
3° $\varphi(b) = b$,
4° for every $x \in Q$, $\varphi^{n-1}(x) \cdot b = b \cdot x$,
5° for every $x_1^n \in Q$, $A(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-1}(x_n) \cdot b$. \Box

Definition 1.5. [8] We say that an algebra $(Q, \{\cdot, \varphi, b\})$ is a $Hosszú-Gluskin algebra of order <math>n \ (n \geq 3)$ (briefly: nHG-algebra) iff it satisfies $1^{\circ} - 4^{\circ}$ from the above theorem. If it satisfies also 5° , then we say that an nHG- algebra $(Q, \{\cdot, \varphi, b\})$ is associated to the n-group (Q, A).

Proposition 1.6. [8] Let $n \geq 3$, let (Q, A) be an *n*-group, and **e** its $\{1, n\}$ - neutral operation. Further on, let c_1^{n-2} be an arbitrary sequence over Q and let for every $x, y \in Q$

$$\begin{split} B_{(c_1^{n-2})}(x,y) &= A(x,c_1^{n-2},y)\,,\\ \varphi_{(c_1^{n-2})}(x) &= A(\mathbf{e}(c_1^{n-2}),x,c^{n-2}) \quad and\\ b_{(c_1^{n-2})} &= A(\mathbf{e}(c_1^{n-2}),\mathbf{e}(c_1^{n-2}),\ldots,\mathbf{e}(c_1^{n-2})) \end{split}$$

Then, the following statements hold

- (i) $(Q, \{B_{(c_1^{n-2})}, \varphi_{(c_1^{n-2})}, b_{(c_1^{n-2})})\}$ is an nHG-algebra associated to the n-group (Q, A) and
- (ii) $C_A = \{(Q, \{B_{(c_1^{n-2})}, \varphi_{(c_1^{n-2})}, b_{(c_1^{n-2})}\}) : c_1^{n-2} \in Q\}$ is the set of all nHG-algebras associated to the n-group (Q, A).

Proposition 1.7. [8] Let (Q, A) be an *n*-group, **e** its $\{1, n\}$ -neutral operation and $n \ge 3$. Then for every $a_1^{n-2} \in Q$ and every $1 \le i \le n-2$ there is exactly one $x_i \in Q$ such that $\mathbf{e}(a_1^{i-1}, x_i, a_i^{n-3}) = a_{n-2}$. \Box

2. Main results

Definition 2.1. Let (Q, A) be an *n*-group, $n \ge 2$. If \le is a partial order on Q such that

$$x \le y \Rightarrow A(z_1^{i-1}, x, z_i^{n-1}) \le A(z_1^{i-1}, y, z_i^{n-1})$$
 (1)

for all $x, y, z_1, ..., z_{n-1} \in Q$ and $i \in \{1, 2, ..., n-1\}$, then, we say that (Q, A, \leq) is an ordered n-group.

Note that in the case n = 2 (Q, A, \leq) is an ordered group in the sense of [3].

Theorem 2.2. Let \leq be a partial order on Q. Also, let $n \geq 3$ and let (Q, A) be an n-group. In addition, let $(Q, \{\cdot, \varphi, b\}\}$ be an arbitrary nHG-algebra associated to the n-group (Q, A). Then, (Q, A, \leq) is an ordered n-group iff for all $x, y, z \in Q$ the following two formulas hold

$$x \le y \quad \Rightarrow \quad xz \le yz \ \land \ zx \le zy \tag{2}$$

$$x \le y \Rightarrow \varphi(x) \le \varphi(y)).$$
 (3)

Proof. Let (Q, A, \leq) be an ordered n-group and let $n \geq 3$. Also, let **e** be an $\{1, n\}$ -neutral operation of the n-group (Q, A). In addition, let $(Q, \{\cdot, \varphi, b\})$ be an arbitrary nHG-algebra associated to the n-group (Q, A). Then, by Proposition 1.6, there is at least one sequence c_1^{n-2} over Q such that for every $x, y \in Q$ the following two equalities hold:

$$x \cdot y = A(x, c_1^{n-2}, y),$$

 $\varphi(x) = A(\mathbf{e}(c_1^{n-2}), x, c_1^{n-2})$

Hence, by Definition 2.1, we conclude that the formulas (2) and (3) hold in $(Q, \{\cdot, \varphi, b\})$.

Conversely, let $(Q, \{\cdot, \varphi, b\})$ be an arbitrary nHG-algebra associated to the *n*-group (Q, A). Also, let \leq be a partial order on Q. Assume that an nHG- algebra $(Q, \{\cdot, \varphi, b\})$ satisfies (2) and (3). Then, for every $x, y, z_1^{n-2} \in Q$ and $i \in \{1, 2, ..., n\}$ it satisfies also (1).

Indeed, for $1 \le i \le n-1$ $x \le y$ implies $\varphi^{i-1}(x) \le \varphi^{i-1}(y)$, and in the consequence

$$z_1 \cdot \ldots \cdot \varphi^{i-2}(z_{i-1}) \cdot \varphi^{i-1}(x) \le z_1 \cdot \ldots \cdot \varphi^{i-2}(z_{i-1}) \cdot \varphi^{i-1}(y) ,$$

which gives

$$z_1 \cdot \ldots \cdot \varphi^{i-2}(z_{i-1}) \cdot \varphi^{i-1}(x) \cdot \varphi^i(z_i) \cdot \ldots \cdot b \cdot z_{n-1} \leq z_1 \cdot \ldots \cdot \varphi^{i-2}(z_{i-1}) \cdot \varphi^{i-1}(y) \cdot \varphi^i(z_i) \cdot \ldots \cdot b \cdot z_{n-1}.$$

Hence, by Definition 1.5, we conclude that (1) holds.

The cases i = 1 and i = n are obvious.

Example 2.3. Let (Z, +) be the additive group of all integers, and let \leq by the natural order defined on Z. Then Z with the ternary operation A defined by

$$A(x, y, z) = x + (-y) + z$$

is a 3-group.

Moreover, $(Z, \{+, \varphi, 0\})$, where $\varphi(x) = -x$, is an *nHG*-algebra associated to a 3-group (Z, A).

Since for every $x, y \in Z$ $x \leq y$ implies $\varphi(y) \leq \varphi(x)$, we conclude (by Theorem 2.2) that (Z, A, \leq) is not an ordered 3-group.

Example 2.4. Let $(Z, +, \leq)$ be as in the previous example. Let

$$B(x_1^n) = x_1 + x_2 + \dots + x_n + 2$$

for every $x_1^n \in Z$, $n \ge 3$. Then, (Z, B) is an *n*-group with $(Z, \{+, id, 2\})$ as its associated nHG-algebra. Obviously (Z, B, \le) is an ordered *n*-group.

Moreover, (Z, C, \leq) and (Z, D, \leq) where

$$C(x_1^n) = x_1 + x_2 + \dots + x_n$$
,

$$D(x_1^n) = x_1 + x_2 + \dots + x_n + (-2)$$

are ordered n-groups as well.

Theorem 2.5. Let (Q, \leq) be a chain. Also, let (Q, A) be an n-group, ⁻¹ its inverse operation, \mathbf{e} its $\{1, n\}$ -neutral operation and $n \geq 3$. Moreover, let a be an arbitrary element of the set Q and a_1^{n-2} be an sequence over Q such that $\mathbf{e}(a_1^{n-2}) = a$. Then

- (i) $(\{x : a \le x\}, A)$ is an n-subsemigroup of the n-group (Q, A)iff $a \le A(a)$,
- (ii) $(\{x : (a_1^{n-2}, A(\overset{n}{a}))^{-1} \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A) iff $A(\overset{n}{a}) \leq a$,
- (iii) let $a \leq A(\overset{n}{a})$ and let c be an arbitrary element of the set Q such that $a \leq c$. Then $(\{x : c \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A),
- (iv) let $A(\overset{n}{a}) \leq a$ and let c be an arbitrary element of the set Q such that $(a_1^{n-2}, A(\overset{n}{a}))^{-1} \leq c$. Then $(\{x : c \leq x\}, A)$ is an n-subsemigroup of the n-group (Q, A).

Proof. 1) Let a be an arbitrary element of the set Q. Also let a_1^{n-2} be an sequence over Q such that $\mathbf{e}(a_1^{n-2}) = a$. Moreover, let

(a) $x \cdot y = A(x, a_1^{n-2}, y)$,

(b)
$$\varphi(x) = A(a, x, a_1^{n-2}),$$

(c) $b = A(\overset{n}{a}),$

(d)
$$x^{-1} = (a_1^{n-2}, x)^{-1}$$

for all $x, y \in Q$. Then:

- 1° $(Q, \{\cdot, \varphi, b\})$ is an *nHG*-algebra associated to (Q, A),
- 2^{o} $a = \mathbf{e}(a_1^{n-2})$ is a neutral element of the group (Q, \cdot) ,
- 3^{o} ⁻¹ is an inverse operation of the group (Q, \cdot) .

By Theorem 2.2 and 1° , we conclude that

- 4^{o} (Q, \cdot, \leq) is a linearly ordered group,
- $5^{o} \quad x \leq y \Rightarrow \varphi(x) \leq \varphi(y) \text{ for all } x, y \in Q.$

2) Assume now that $(\{x : a \leq x\}, A)$ is an *n*-subsemigroup of the *n*-group (Q, A). Then for all $x_1^n \in Q$ from $x_1^n \in \{x : a \leq x\}$ follows $A(x_1^n) \in \{x : a \leq x\}$, whence we conclude that $a \leq A(a)$.

Conversely, let $a \leq A(a)$. Hence, by 4° and 5°, we conclude that for every sequence x_1^n over Q the following implications hold:

$$\bigwedge_{i=1}^{n} x_i \in \{x : a \le x\} \Rightarrow a \le x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-1}(x_n) \cdot b \Rightarrow a \le A(x_1^n),$$

i.e.

$$(\forall x_i \in Q)_1^n (\bigwedge_{i=1}^n x_i \in \{x : a \le x\} \Rightarrow A(x_1^n) \in \{x : a \le x\}).$$

3) Let $(\{x : (a_1^{n-2}, A(a))^{-1} \le x\}, A)$ be an *n*-subsemigroup of the *n*-group (Q, A). Then for all

$$\bigwedge_{i=1}^n x_i \in \{x: b^{-1} \le x\} \Rightarrow A(x_1^n) \in \{x: b^{-1} \le x\}$$

by (c), (d). Whence, by 4^{o} , $\varphi(b) = b$, $\varphi(b^{-1}) = b^{-1}$ we conclude that $b^{-1} \leq A(b^{-1}, b^{-1}, \dots, b^{-1}) = b^{-1} \cdot \varphi(b^{-1}) \cdot \dots \cdot \varphi^{n-2}(b^{-1}) \cdot b \cdot b^{-1}$ $= b^{-1} \cdot b^{-1} \cdot \dots \cdot b^{-1} \cdot b \cdot b^{-1},$

i.e. $b^{n-2} \leq a$. Hence $b \leq a$ by 4^o .

On the other hand, if $A(a) \leq a$, then, by (c),(d) and 1°-4°, we have $a \leq b^{-1}$, whence, by 1° and $\varphi(b^{-1}) = b^{-1}$, we obtain

$$b^{-1} \leq b^{-1} \leq b^{-1}$$

$$a \leq b^{-1} \leq \varphi(b^{-1})$$

$$\dots \dots \dots$$

$$a \leq b^{-1} \leq \varphi^{n-2}(b^{-1})$$

$$b \leq b \leq b$$

$$b^{-1} \leq b^{-1} \leq b^{-1}$$

Hence, by 4° , 1° and 1.5, we conclude that

$$\begin{array}{rcl} b^{-1} & \leq & b^{-1} \cdot \varphi(b^{-1}) \cdot \ldots \cdot \varphi^{n-2}(b^{-1}) \cdot b \cdot b^{-1} = A(b^{-1}, b^{-1}, \ \ldots \ , b^{-1}) \,, \\ \text{i.e.} & & \\ & b^{-1} \ \leq \ A(b^{-1}, b^{-1}, \ \ldots \ , b^{-1}), \end{array}$$

whence, by (i), we see that $(\{x : b^{-1} \leq x\}, A)$ is an *n*-subsemigroup of the *n*-group (Q, A).

4) Let $a \leq A(a) = b$. Also let c be an arbitrary element of the set Q such that $a \leq c$. Since $a \leq b$, then

(a)
$$c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot a \leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot b.$$

By 1°, 2°, 5° and $a \leq c$, we obtain: $c \leq c$, $a \leq \varphi(c)$, ..., $a \leq \varphi^{n-1}(c)$, whence, by 2°, 4° and 5°, we conclude that

(b)
$$c \leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) = c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot a.$$

By (a) and (b), we conclude that

 $c \leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-1}(c) \cdot b,$

i.e. $c \leq A(\stackrel{n}{c})$. Hence, by (i) $(\{x : c \leq x\}, A)$ is an *n*-subsemigroup of the *n*-group (Q, A).

5) Let $A(a) \leq a$. Also let c be an arbitrary element of the set Q such that $b^{-1} \leq c$. Hence, by 1°, 1.5, 2°, 4° and 5°, we conclude

$$c = c \cdot a \cdot \ldots \cdot a \cdot b \cdot b^{-1} = c \cdot \varphi(a) \cdot \ldots \cdot \varphi^{n-2}(a) \cdot b \cdot b^{-1}$$

$$\leq c \cdot \varphi(b^{-1}) \cdot \ldots \cdot \varphi^{n-2}(b^{-1}) \cdot b \cdot b^{-1}$$

$$\leq c \cdot \varphi(c) \cdot \ldots \cdot \varphi^{n-2}(c) \cdot b \cdot c$$

$$= A(\overset{n}{c}),$$

whence, by (i) we prove that $(\{x : c \leq x\}, A)$ is an *n*-subsemigroup of the *n*-group (Q, A).

Remark 2.6. The above theorem describes so-called the *right cone* (cf. [3]), i.e. the set $K_r(c) = \{x : c \leq x\}$. The analogous result holds for the *left cone* $K_l(c) = \{x : x \leq c\}$.

3. Four propositions more

Proposition 3.1. If (Q, A, \leq) is an ordered n-group $(n \geq 2)$, then

$$(\forall x \in Q) \ (\forall y \in Q) \ (\forall z_j \in Q)_1^{n-1}$$
$$\bigwedge_{i=1}^n (x \le y \iff A(z_1^{i-1}, x, z_i^{n-1}) \le A(z_1^{i-1}, y, z_i^{n-1})).$$

Proof. We prove only \Leftarrow since the implication \Rightarrow is obvious. 1) In the case i = 1, $A(x, a_1^{n-2}, a) \leq A(y, a_1^{n-2}, a)$ implies $A(A(x, a_1^{n-2}, a), a_1^{n-2}, (a_1^{n-2}, a)^{-1}) \leq A(A(y, a_1^{n-2}, a), a_1^{n-2}, (a_1^{n-2}, a)^{-1}),$ and in the consequence

 $\begin{array}{l} A(x,a_1^{n-2},A(a,a_1^{n-2},(a_1^{n-2},a)^{-1})) \ \leq \ A(y,a_1^{n-2},A(a,a_1^{n-2},(a_1^{n-2},a)^{-1})),\\ \text{which gives} \\ A(x,a_1^{n-2},\mathbf{e}(a_1^{n-2})) \ \leq \ A(y,a_1^{n-2},\mathbf{e}(a_1^{n-2})). \ \text{Hence} \ x \leq y. \end{array}$

2) The case i = n may be proved analogously.

3) Let now
$$i \in \{2, \dots, n-1\}$$
. Then

$$A(a_1^{i-1}, x, a_i^{n-1}) \leq A(a_1^{i-1}, y, a_i^{n-1}) \Rightarrow$$

$$A(b_i^{n-1}, A(a_1^{i-1}, x, a_i^{n-1}), b_1^{i-1}) \leq A(b_i^{n-1}, A(a_1^{i-1}, y, a_i^{n-1}), b_1^{i-1}) \Rightarrow$$

$$A(A(b_i^{n-1}, a_1^{i-1}, x), a_i^{n-1}, b_1^{i-1}) \leq A(A(b_i^{n-1}, a_1^{i-1}, y), a_i^{n-1}, b_1^{i-1}) \Rightarrow$$

$$A(b_i^{n-1}, a_1^{i-1}, x) \leq A(b_i^{n-1}, a_1^{i-1}, y) \Rightarrow x \leq y.$$

Proposition 3.2. Let (Q, A, \leq) be an ordered n-group and let $n \geq 2$. Also, let ⁻¹ be an inverse operation of the n-group (Q, A). Then

$$(\forall x, y \in Q) (\forall a_j \in Q)_1^{n-1} \quad x \le y \Leftrightarrow (a_1^{n-1}, y)^{-1} \le (a_1^{n-1}, x)^{-1}$$

$$\begin{array}{l} \textit{Proof.} \ x \leq y \Leftrightarrow A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, x) \leq A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y) \Leftrightarrow \\ \mathbf{e}(a_1^{n-2}) \leq A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y) \Leftrightarrow A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, (a_1^{n-2}, y)^{-1}) \leq \\ \leq A(A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y), a_1^{n-2}, (a_1^{n-2}, y)^{-1}) \Leftrightarrow \\ (a_1^{n-2}, y)^{-1} \leq A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, A(y, a_1^{n-2}, (a_1^{n-2}, y)^{-1})) \Leftrightarrow \\ (a_1^{n-2}, y)^{-1} \leq A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) \Leftrightarrow \\ (a_1^{n-2}, y)^{-1} \leq (a_1^{n-2}, x)^{-1}. \end{array}$$

Proposition 3.3. Let (Q, A, \leq) be an ordered n-group and let $n \geq 3$. Also, let **e** be an $\{1, n\}$ -neutral operation of the n-group (Q, A). Then

$$(\forall x \in Q) (\forall y \in Q) (\forall a_j \in Q)_1^{n-3}$$
$$\bigwedge_{i=1}^{n-2} (x \le y \Leftrightarrow \mathbf{e}(a_1^{i-1}, y, a_i^{n-3}) \le \mathbf{e}(a_1^{i-1}, x, a_i^{n-3})).$$

Proof. Since $A(a, x_1^{n-2}, b) = A(A(a, y_1^{n-2}, (y_1^{n-2}, \mathbf{e}(x_1^{n-2}))^{-1}), y_1^{n-2}, b)$ by Theorem 4 from [7], then

$$\begin{split} x &\leq y \Leftrightarrow A(a, a_1^{i-1}, x, a_i^{n-3}, b) \leq A(a, a_1^{i-1}, y, a_i^{n-3}, b) \Leftrightarrow \\ A(A(a, c_1^{n-2}, (c_1^{n-2}, \mathbf{e}(a_1^{i-1}, x, a_i^{n-3}))^{-1}), c_1^{n-2}, b) \leq \\ A(A(a, c_1^{n-2}, (c_1^{n-2}, \mathbf{e}(a_1^{i-1}, y, a_i^{n-3}))^{-1}), c_1^{n-2}, b) \Leftrightarrow \\ A(a, c_1^{n-2}, (c_1^{n-2}, \mathbf{e}(a_1^{i-1}, x, a_i^{n-3}))^{-1}) \leq \\ A(a, c_1^{n-2}, (c_1^{n-2}, \mathbf{e}(a_1^{i-1}, x, a_i^{n-3}))^{-1}) \leq \\ (c_1^{n-2}, \mathbf{e}(a_1^{i-1}, x, a_i^{n-3}))^{-1} \leq (c_1^{n-2}, \mathbf{e}(a_1^{i-1}, y, a_i^{n-3}))^{-1} \Leftrightarrow \\ \mathbf{e}(a_1^{i-1}, y, a_i^{n-3}) \leq \mathbf{e}(a_1^{i-1}, x, a_i^{n-3}). \end{split}$$

Proposition 3.4. Let (Q, A, \leq) be an ordered n-group and let $n \geq 3$. Also, let $^{-1}$ be an inverse operation of the n-group (Q, A). Then

$$(\forall x \in Q) (\forall y \in Q) (\forall b \in Q) (\forall a_j \in Q)_1^{n-3}$$
$$\bigwedge_{i=1}^{n-2} (x \le y \implies (a_1^{i-1}, y, a_i^{n-3}, b)^{-1} \le (a_1^{i-1}, x, a_i^{n-3}, b)^{-1}).$$

Proof. Since $x \leq y$ implies

$$\mathsf{E}(a_1^{i-1}, y, a_i^{n-3}, b, a_1^{i-1}, y, a_i^{n-3}) \leq \mathsf{E}(a_1^{i-1}, y, a_i^{n-3}, b, a_1^{i-1}, x, a_i^{n-3})$$
 and

$$\mathbf{E}(a^{i-1}, a^{n-3}, b^{-i-1})$$

$$\mathsf{E}(a_1^{i-1}, y, a_i^{n-3}, b, a_1^{i-1}, x, a_i^{n-3}) \le \mathsf{E}(a_1^{i-1}, x, a_i^{n-3}, b, a_1^{i-1}, x, a_i^{n-3}),$$

then from the transitivity of \leq follows that $x \leq y$ implies

$$\mathsf{E}(a_1^{i-1}, y, a_i^{n-3}, b, a_1^{i-1}, y, a_i^{n-3}) \le \mathsf{E}(a_1^{i-1}, x, a_i^{n-3}, b, a_1^{i-1}, x, a_i^{n-3}).$$

This completes the proof because

$$(a_1^{i-1}, z, a_i^{n-3}, b)^{-1} = \mathsf{E}(a_1^{i-1}, z, a_i^{n-3}, b, a_1^{i-1}, z, a_i^{n-3}).$$

. .

References

- [1] G. Crombez: On partially ordered n-groups, Abh. Math. Sem., Hamburg **38** (1972), 141 - -146.
- [2] W. Dörnte: Untersuchengen über einen verallgemeinerten *Gruppenbegriff*, Math. Z. **29** (1928), 1 - 19.

- [3] L. Fuchs: Partially ordered algebraic systems, Pergamon Press, Oxford 1963.
- [4] L. M. Gluskin: Positional operatives, (Russian), 68(110) (1965), 444 472.
- [5] M. Hosszú: On the explicit form of n-group operations, Publ. Math., Debrecen 10 (1963), 88 - 92.
- [6] J. Ušan: Neutral operations of n-groupoids, (Russian), Rev. of Research, Fac.of Sci. Univ. of Novi Sad, Math. Ser. 18.2 (1988), 117-126.
- [7] J. Ušan: A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24.1 (1994), 281 - -288.
- [8] J. Ušan: On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25.1 (1995), 101 - -119.
- [9] J. Ušan: On n-groups with $\{i, j\}$ -neutral operation for $\{i, j\} \neq \{1, n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25.2 (1995), 167 178.
- [10] **J. Ušan**: n-groups, $n \ge 2$, as varieties of type $\langle n, n-1, n-2 \rangle$, Algebra and Model Theory, Collection of papers edited by A. G. Pinus and K. N. Ponomaryov, Novosibirsk 1997, 182 – 208.

Received September 20 1997 and in revised form March 29, 1999

J. Ušan Institute of Mathematics University of Novi Sad Trg D. Obradovića 4 21000 Novi Sad Yugoslavia M. Žižovič Faculty of Technical Science University of Kragujevac Svetog Save 65 32000 Čačak Yugoslavia