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On the associativity of multiplace
operations

Fedir M. Sokhatsky

Abstract

In previous paper the study of (i, j)-associative (n + 1)-ary groupoids is reduced
to the study of groupoids, which are (k,m)-associative for all k, m satisfying
k ≡ m ≡ 0 (mod r), k ≡ m (mod s), where r|s|n. The last groupoids are called
associates of the sort (r, s, n) and of the sort (s, n), when r = 1. Here, �rst order
balanced identities are described in the associates. In other words, a bracketing
rule is given.

1. Introduction
It is well known that the investigation of unary transformations of a
set leads to semigroups; of multiplace transformations of a set leads to
superassociative groupoids, i.e. Menger algebras (see [4]); and of unary
transformations of a sequence of sets reduce to multiary semigroups,
alternatives (translated from Russian) and others [3, 5, 6].

The de�ning properties of associativity for binary and multiary op-
erations are the same: the result of a repeated operation use doesn't
depend on brackets. However, although for the binary case one iden-
tity is enough, for a multiary operation we have to demand a family
of (i, j)-associative identities asserting that the result will not change
if we �move� brackets from the i-th place to the j-th (we begin the
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numeration of the indexes by 0). The problem of dependence between
the (i, j)-associative identities with di�erent i, j has been under con-
sideration by many algebraists up through the present time. In [8]
the author showed that in a surjective injective (n + 1)-ary groupoid
the family of (i, j)-associative identities is equivalent to such and to a
family of all identities of (i, j)-associativity, for which s ≡ i ≡ j ≡ 0
(mod r), i ≡ j (mod s), n ≡ 0 (mod s) for some integers r, s. Such
groupoids are called associates of the sort (r, s, n). An associate of the
sort (1, 1, n) is an (n + 1)-ary semigroup.

Here, we continue an investigation in this direction. Namely, we
give an answer for the question: how to �move� brackets in a word with
the repeated operation use? More exactly, what �rst kind balanced
identities hold in associates?

2. Necessary informations
Let (Q; f) be an (n + 1)-ary groupoid, i.e. a nonempty set Q with
(n+1)-ary operation f de�ned on Q. The operation f and a groupoid
(Q; f) are called (i, j)-associative, if in (Q; f) the following identity
holds:

f(x0, . . . , xi−1, f(xi, . . . , xi+n), xi+n+1, . . . , x2n) =

= f(x0, . . . , xj−1, f(xj, . . . , xj+n), xj+n+1, . . . , x2n).

Let M be a nonempty set of pairs of nonnegative integers, such
that every of them is not greater than n. Then a groupoid (Q; f) is
called M-associative, if it is (i, j)-associative for all pairs (i, j) from
the set M . If the set M is empty or consists of the pair (i, i) only, then
every groupoid is M -associative. Therefore from here on we admit,
that i < j if (i, j) ∈ M and M 6= ∅.

If an operation f is (i, j)-associative for all i < j, then it is called
associative, respective groupoid is called (n + 1)-semigroup or semi-
group of the rank n.

One of the most important examples of binary semigroups is a
semigroup of all transformations of a set. Among the examples of
(n + 1)-ary semigroups there also exist (n + 1)-ary transformation
semigroups of set sequences [5, 6].
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For groupoids (Q; f) of the arity n + 1 we use the following nota-
tions:

M := {(i1, j1), (i2, j2), . . . , (im, jm)}, n := ||f ||,
s := g.c.d.(j1 − i1, . . . , jm − im, n), r := g.c.d.(i1, . . . , im, s).

(1)

De�nition 1. A groupoid (Q; f) of the arity n + 1 will be called an
associate of the sort (r, s, n), where r divides s, and s divides n, if
it is (i, j)-associative for all (i, j) such that i ≡ j ≡ 0 (mod r), and
i ≡ j (mod s). In an associate of the sort (s, n) (i.e. in an associate
of the sort (1, s, n)) the number s will be called the degree of associa-
tivity. The operation f will be called s-associative. The least of the
associativity degree will be called the period of associativity.

Note. If the sort of an associate is equal to (r, n, n), i.e. if s = n,
then the (i, j)-associativity and the conditions

0 ≤ i ≤ n, 0 ≤ j ≤ n, i ≡ j (mod n)

imply i = 0, j = n or i = j. Hence, such associate is (0, n)-associative
only. Therefore r = n, and any associate of the sort (r, n, n) is an
associate of the sort (n, n, n).

It is clear, that any associate of the sort (1, 1, n) is (n + 1)-ary
semigroup, but there exist associates, which are not semigroups. For
example, alternatives (described in [3]), i.e. groupoids (Q; h) de�ned
by the identities of (0, j)-associativity, when j is even and identities
of the type

h(h(x0, . . . , xn), xn+1, . . . , x2n) =

= h(x0, . . . , xj−1, h(xj+n, xj+n−1, . . . , xj), xj+n+1, . . . , x2n)

when j is odd.
To formulate the next result we need the following de�nition.

De�nition 2. An groupoid (Q; f) of the arity n + 1 is called:

a) surjective, if the function f is a mapping Qn+1 onto Q,
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b) j-injective, if for any di�erent elements a, b ∈ Q there exist ele-
ments a1, . . . , an ∈ Q such that

f(a1, . . . , aj, a, aj+1, . . . , an) 6= f(a1, . . . , aj, b, aj+1, . . . , an),

c) r-multiinjective, if it is j-injective for all j which are multiples
of r,

d) injective, if it is 1-multiinjective, i.e. it is j-injective for all j =
1, 2, . . . , n.

The theorem 3 from [8] implies the following statement.

Theorem 1. In surjective r-multiple injective groupoid (Q; f) of the
arity n + 1 the following conditions are equivalent:

1) (Q; f) is (i, j)-associative for all (i, j) from of the set M , where
M is as in (1),

2) (Q; f) is (r, r + s)-associative,

3) (Q; f) is an associate of the sort (r, s, n).

Here we deal with balanced identities of �rst kind. Recall, that a
word w of some signature is called repetition-free, if every individual
variable appears in it at most one time. If the repetition-free words
w1, w2 consist of the same variables and have no individual constant,
then the formula w1 = w2 is said to be balanced. If in addition their
variables occur in the same order, then we says that it is a formula of
the �rst kind.

To write down repetition-free words and balanced formulas of the
�rst kind, it is convenient to exploit a variable-free notation using the
following convention.

(
f

i
+ g

)
(x0, . . . , xm+n) =

= f(x0, . . . , xi−1, g(xi, . . . , xi+m), xi+m+1, . . . , xm+n).
(2)
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The relation (2) de�nes on the set Γ(Q) of all operations on Q
the collection of partial compositions, which are called positional or
�Cupona's superposition (see [2]). The algebra (Φ; Σ), where

Φ ⊆ Γ(Q) and Σ =
{ 0
+,

1
+,

2
+, . . .

}
,

is called a position algebra (see [1]). In [7] it is proved that the abstract
class of all position algebras is exactly the class of algebras (G; Σ) hav-
ing a mapping ρ(f) := ||f || from the set G into N ∪{−1; 0} satisfying
the conditions

f
i
+ g is determined⇐⇒ 0 ≤ i ≤ ||f ||, (3)

||f i
+ g|| = ||f ||+ ||g||, (4)

f
i
+

(
g

j
+ h

)
=

(
f

i
+ g

)
i+j
+ h, (5)

(
f

i
+ g

)
j
+ h =

(
f

j
+ h

)
i+||h||
+ g, if i > j. (6)

For position algebras of operations, the mapping ρ (rank) is de�ned
as ρ(f) = |f | − 1, where |f | is the arity of f .

It is easy to verify that:
(
f

i
+ g

)
j
+ h = f

i
+

(
g

j−i
+ h

)
, if i ≤ j ≤ i + ‖g‖; (7)

(
f

i
+ g

)
j
+ h =

(
f

j−‖g‖
+ h

)
i
+ g, if j > i + ‖g‖ (8)

where f , g, h are elements of (G; Σ).
Hence, a groupoid (Q; f) is an associate of the sort (r, s, n), if

f
i
+ f = f

j
+ f (9)

for all i, j such that i ≡ j (mod s) , i ≡ j ≡ 0 (mod r).
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3. The main result and corollaries
Theorem 1 describes in (i, j)-associative groupoids with the noted
properties a family of the balanced identities of the �rst kind with
twofold operation use. The following question seems to be natural:
what identities are true with repeated operation use ? Here we will
give an answer to this question. But �rst we have to introduce the
notion of a functional symbol coordinate in a word.

The sequence of individual variables and constants appearing in
a word w will be denoted by seq0w. The sequence of the functional
symbols will be denoted with seq1w.

Hence, a repetition-free word can be de�ned as word w with the
conditions: the sequence seq0w has no individual constants and the
members of seq0w are di�erent pairwise. There is no restriction on
the functional symbols of the word. The appearances of functional
symbols are numerated from left to right.
De�nition 3. Let (f0, f1, . . . , fk) := w, then a number of the in-
dividual variables and constants appearing in the word w from the
beginning of the word till the functional symbol fi, i = 0, 1, . . . , k is
called a coordinate of the symbol fi in word w.

Hence, the coordinate of the i-th appearance of symbol f in a word
w of the signature {f} is the coordinate of symbol fi in the word w
with a new notation (f0, f1, . . . , fk) := seq1w.

Lemma 2. Let w be an arbitrary repetition-free word and let

(x0, x1, . . . , xp) := seq0w, (f0, f1, . . . , fk) := seq1w. (10)

Then the following relation

w =
((

. . .
((

f0

j1
+ f1

)
j2
+ f2

)
j3
+ . . .

)
jk

+ fk

)
(x0, x1, . . . , xp) (11)

holds, where j1 ≤ j2 ≤ . . . ≤ jk and ji is a coordinate of the symbol
fi in the word w, for all i = 0, 1, . . . , k.

We shall agree to make the bracketting from left to right, i.e. like
the equality (11).
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Proof. The proof shall be given by induction in k, that is in the number
of elements in the sequence seq1w. When k = 1, the lemma follows
from the de�nition of the �Cupona superposition (see (2)).

Let us assume that the lemma is true for all words having the
length of functional symbols equal to k − 1 and we shall consider a
word w (see (10)). Let us prove the relation (11).

Since there is no functional symbol on the right from fk in word
w and, under the condition of the lemma, jk is the coordinate of the
symbol fk, that is there are exactly jk individual variables on the left
from fk, then there is a subword

fk(xjk
, . . . , xjk+m),

in the word w, where m = ||f ||. We replace this subword by the new
individual variable z. As the result we obtain a word w′ such that the
length of its functional variable sequence is equal to k − 1. By the
inductive assumption the lemma holds for the word w′, therefore

w′ =

((
. . .

((
f0

j1
+ f1

)
j2
+ f2

)
j3
+ . . .

)
jk−1

+ fk−1

)
(xjk−1

0 , z, xp
jk+m+1)

where j1 ≤ j2 ≤ . . . ≤ jk−1. Note that xj
i is the sequence xi, xi+1, . . .,

xj when i ≤ j and the empty sequence otherwise. Since this equality
holds for all values of the individual variable z, then it will ful�ll when

z = fk(xjk
, . . . , xjk+m).

Therefore

w =

((
...

((
f0

j1
+ f1

)
j2
+ f2

)
j3
+ ...

)
jk−1

+ fk−1

)
(xjk−1

0 , fk(x
jk+m
jk

), xp
jk+m+1).

Using the de�nition of �Cupona superposition we have

w =

(((
. . .

((
f0

j1
+ f1

)
j2
+ f2

)
j3
+ . . .

)
jk−1

+ fk−1

)
jk

+ fk

)
(x0, . . . , xp).

Since the symbol fk−1 is more left than fk in word w, then number of
the propositional variables being more than fk−1 is not greater than
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the number of propositional variables in the word w, i.e. jk−1 ≤ jk.
So the lemma is proved for k.

Thus, by induction, the lemma is true for every natural number.

The main result of this article is the following theorem.

Theorem 3. Let (Q; f) be an associate of a sort (r, s, n). If the words
w1 and w2 di�er from each other by the bracket arrangements only;
the coordinate of every f 's appearance in the words w1 and w2 is di-
visible by r and there exists a one-to-one correspondence between f 's
appearances in the word w1 and those in the word w2 such that the
corresponding coordinates are congruent modulo s, then the formula
w1 = w2 is an identity in (Q; f).

Proof. First, we shall establish that for all divisible by r nonnegative
integers i, j, k with

k ≤ i ≤ k + s, k ≤ j ≤ k + s,

and for every operation g of the arity more than k, the following
equality

((
g

k
+ f

)
j
+ f

)
i
+ f =

((
g

k
+ f

)
i
+ f

)
j
+ f (12)

is obtained. Without loss of generality we put j > i and denote
` = j − k, p = i− k, then
(
f

`
+ f

)
p
+ f

(6)
=

(
f

p
+ f

)
`+n
+ f

(9)
=

(
f

p+s
+ f

)
`+n
+ f

(7)
= f

p+s
+

(
f

`−p+n−s
+ f

)
(9)
= f

p+s
+

(
f

`−p
+ f

)

(5)
=

(
f

p+s
+ f

)
`+s
+ f

(9)
=

(
f

p
+ f

)
`+s
+ f

(7)
= f

p
+

(
f

`−p+s
+ f

)

(9)
= f

p
+

(
f

`−p
+ f

)
(5)
=

(
f

p
+ f

)
`
+ f.
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Hence, for arbitrary `, p such that 0 ≤ ` ≤ s, 0 ≤ p ≤ s, the equality
(
f

`
+ f

)
p
+ f =

(
f

p
+ f

)
`
+ f (13)

holds. This implies the equality (12):
((

g
k
+ f

)
j
+ f

)
i
+ f

(7)
=

(
g

k
+

(
f

j−k
+ f

))
i
+ f

(7)
= g

k
+

((
f

j−k
+ f

)
i−k
+ f

)
(13)
= g

k
+

((
f

i−k
+ f

)
j−k
+ f

)

(5)
=

(
g

k
+

(
f

i−k
+ f

))
j
+ f

(5)
=

((
g

k
+ f

)
i
+ f

)
j
+ f.

Lemma 2 implies that every balanced identity w = v is equivalent
to the equality

f
j1
+ f

j2
+ f

j3
+ · · · jk

+ f = f
`1
+ f

`2
+ f

`3
+ · · · `k

+ f,

where sequences j1, j2, . . . , jk; `1, `2, . . . , `k are nondecreasing, every
numbers jm, `m are the coordinates of the m-th appearances of the
symbol f in the words w, v respectively, m = 1, 2, . . . , k. Hence, to
prove the theorem it is enough to prove the statement P (k):

"For every positive integer k every relation

f
j1
+ f

j2
+ f

j3
+ · · · jk

+ f = f
i1
+ f

i2
+ f

i3
+ · · · ik

+ f

holds, where the sequences j1, j2, . . ., jk; i1, i2, . . ., ik are nondecreas-
ing, and members of the sequence i1, i2, . . ., ik are the remainders of
the numbers j1, j2, . . ., jk on division by s (not necessary respectively).�

We will prove the statement by the mathematical induction. We
will consider two cases n > s and n = s.

Let assume that n > s. As the �rst step, we will prove the asser-
tions: P (1) and P (2). The assertion P (1) follows from the de�nition
of an associate.
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Let us consider the assertion P (2). Let j1 ≤ j2 and let i1, i2 be the
remainders of the numbers j1, j2 on division by s respectively, then

g :=
(
f

j1
+ f

)
j2
+ f

(9)
=

(
f

i1
+ f

)
j2
+ f. (14)

We will consider two possible cases j2 ≤ i1 + n and j2 > i1 + n.
Let us assume that j2 ≤ i1 + n, then taking into account that

i1 ≤ j2, we have
g

(7)
= f

i1
+

(
f

j2−i1
+ f

)
.

If i2 ≥ i1, then

g
(9)
= f

i1
+

(
f

i2−i1
+ f

)
(5)
=

(
f

i1
+ f

)
i2
+ f.

Thus, the statement P (2) holds. Let i2 < i1, then

g
(9)
= f

i1
+

(
f

s+i2−i1
+ f

)
(5)
=

(
f

i1
+ f

)
s+i2
+ f

(9)
=

(
f

n−s+i1
+ f

)
s+i2
+ f.

The inequalities i1 > i2 and n − s ≥ s imply the inequalities
n− s + i1 > s + i2, therefore

g
(6)
=

(
f

s+i2
+ f

)
2n−s+i1

+ f
(9)
=

(
f

i2
+ f

)
2n−s+i1

+ f.

Since i2 + ||f || = i2 + n < 2n− s + i1, then

g
(7)
=

(
f

n−s+i1
+ f

)
i2
+ f

(9)
=

(
f

i1
+ f

)
i2
+ f

(13)
=

(
f

i2
+ f

)
i1
+ f.

Since i2 < i1, then the statement P (2) is proved in this case. Hence,
P (2) is proved when j2 ≤ i1 + n.

We assume, that j2 > i1 + n, then (14) can be rewritten as follows

g
(7)
=

(
f

j2−n
+ f

)
i1
+ f

(9)
=

(
f

i2
+ f

)
i1
+ f.

If i2 ≤ i1, then statement P (2) is proved, and if i2 > i1, then

g
(13)
=

(
f

i1
+ f

)
i2
+ f.
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So the statement P (2) is proved.
Now we shall establish, that for all natural numbers k > 2 the

statement P (k) implies P (k + 1). Let

g =
(
f

j1
+ f

j2
+ f

j3
+ . . .

jk

+ f
)

j
+ f.

According to the inductive assumption

g =
(
f

i1
+ f

i2
+ f

i3
+ . . .

ik
+ f

)
j
+ f. (15)

Since 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik < s ≤ n, then i1 ≤ im < i1 + n for all
m = 2, . . . , k, therefore we can apply (k − 1 times) the relation (7) to
the expression singled out by brackets in (15):

g =
((

f
i1
+ f

)
i2
+ f

)
i3
+ f

i4
+ . . .

ik
+ f

j
+ f

(7)
=

((
f

i1
+

(
f

i2−i1
+ f

))
i3
+ f

)
i4
+ . . .

ik
+ f

j
+ f

(7)
=

(
f

i1
+

((
f

i2−i1
+ f

)
i3−i1
+ f

))
i4
+ . . .

ik
+ f

j
+ f

(7)
= . . . =

(7)
=

(
f

i1
+

(
f

i2−i1
+ f

i3−i1
+ . . .

ik−i1
+ f

))
j
+ f. (16)

We consider three cases:
1) i1 ≤ j ≤ i1 + kn, 2) i1 > j, 3) j > i1 + kn.

1) Let i1 ≤ j ≤ i1 + kn, then

g
(7)
= f

i1
+

(
f

i2−i1
+ f

i3−i1
+ . . .

ik−i1
+ f

j−i1
+ f

)
.

We apply the inductive assumption to the expression in brackets again.
After the redesignation of the numbers i2 − i1, . . . , ik − i1 and the re-
mainder on division by s of the number j − i1 (not necessary respec-
tively) by `1, `2, . . ., `k (`1 ≤ `2 ≤ . . . ≤ `k) we shall get

g = f
i1
+

(
f

`1
+ f

`2
+ . . .

`k

+ f
)

(5)
= f

i1
+ f

`1+i1
+ f

`2+i1
+ . . .

`k+i1
+ f.
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Since {i2, . . . , ik} ⊂ {`1 + i1, . . . , `k + i1}, then the statement
P (k + 1) is true, if `k + i1 < s. Therefore we shall assume, that
`k + i1 ≥ s. We shall analyse this case, using the de�nition of the
number `k.

If `k = im− i1 for some number m = 2, 3, . . . , k, then im = `k + i1,
this, by the assumption, is not less than s. This is impossible, because
im is a remainder on division by s.

Hence, the number `k is a remainder on division of the number
j − i1 by s, then `1 = i2 − i1, . . ., `k−1 = ik − i1 , because

i1 ≤ . . . ≤ ik, `1 ≤ . . . ≤ `k.

Since i1 is also a remainder on division by s, then `k < s and
i1 < s. The sum of these inequalities gives `k+i1 < 2s. But `k+i1 ≥ s,
therefore `k+i1 = i+s for some number i, which satis�es the condition
0 ≤ i < s. Since `k ≡ j − i1 (mod s), then

j ≡ `k + i1 = i + s ≡ i (mod s).

This means, that the number i is a remainder on division the number
j by s. Hence, the last expression for g can be rewritten as

g = f
i1
+ f

i2
+ · · · f

ik−1

+ f
ik
+ f

i+s
+ f. (17)

Since i+s− i1 = `k < s, then i < i1. But i1 ≤ ik−1, therefore i < ik−1.
Hence,

ik−1 ≤ ik < ik−1 + s, ik−1 < i + s < ik−1 + s.

This permits us to apply the relationship (12) to (17):

g =

(
f

i1
+ f

i2
+ · · · f

ik−1

+ f
i+s
+ f

)
ik
+ f.

Applying the inductive assumption to the expression in brackets, as a
result, taking into account that i < i1, we get

g =

(
f

i
+ f

i1
+ f

i2
+ · · ·

ik−1

+ f

)
ik
+ f.
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Hence, in this case the statement P (k + 1) is proved.

2) Let i1 > j. We apply k times (6) to the relation (15):

g
(6)
=

(
f

j
+ f

i1+n
+ f

i2+n
+ . . .

ik−1+n

+ f

)
ik+n
+ f.

Then, we apply the inductive assumption to the expression in brackets.
Taking into account the inequalities ik ≥ . . . ≥ i1 > j, we shall get

g =

(
f

j
+ f

i1
+ f

i2
+ . . .

ik−1

+ f

)
ik+n
+ f.

Since k > 2 and j < ik + n < j + kn, then just being proved p.1)
implies P (k + 1).

Then, just being proved p.1) and p.2) imply that P (k+1) is proved
for the case j ≤ i1 + kn.

3) Let j > i1+kn, then the relation (16) can be rewritten as follows

g
(7)
=

(
f

j−kn
+

(
f

i2−i1
+ f

i3−i1
+ . . .

ik−i1
+ f

))
i1
+ f

(5)
=

(
f

j−kn
+ f

q1

+ f
q2

+ . . .
qk

+ f
)

i1
+ f,

where qu = iu−i1+j−kn, for all u = 2, . . . , k. We apply the inductive
assumption to the expression singled out by brackets:

g =
(
f

p1

+ f
p2

+ f . . .
pk

+ f
)

i1
+ f,

where the numbers p1, . . . , pk are remainders on division (not necessary
respectively) of the numbers j − kn, q2, . . . , qk by s. Since

i1 < s < n ≤ kn ≤ p1 + kn,

then i1 ≤ p1 + kn, and just being proved 1) and 2) imply P (k + 1).
According to the mathematical induction, the statement P (k) is

true for an arbitrary positive integer k.
To prove the theorem it remains to consider the case n = s. From

the note given to the de�nition of an associate, the equalities mean
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that n = s = r. Hence, the coordinate of every appearance of the
symbol f in the given balanced formula is divided by n, therefore all
the remainders equal to 0.

The truth of the statement P (1) follows from the de�nition of
an associate. Assume, that the statement P (k) is true and consider
P (k + 1).

Analogously to the above one we can show that the equality (15),
where i1 = i2 = . . . = ik = 0 ful�lls. Since j = pn, then, using the
relation (7) p times, we get

g
(15)
=

(
f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

k times

) pn
+ f

(7)
=

(
f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

k−1 times

(p−1)n

+ f
) 0

+ f

(7)
=

(
f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

k−2 times

(p−2)n

+ f
) 0

+ f
0
+ f

(7)
= . . .

(7)
=

(
f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

k−p+1 times

n
+ f

) 0
+ f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

p−1 times

(6)
=

(
f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

k−p times

0
+

(
f

n
+ f

) ) 0
+ f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

p−1 times

(9)
=

(
f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

k−p times

0
+

(
f

0
+ f

) ) 0
+ f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

p−1 times

(5)
= f

0
+ f

0
+ . . .

0
+ f︸ ︷︷ ︸

k+1 times

.

According to the mathematical induction, the statement P (k) is proved
for all k, when n = s. This completes our proof.

In the associate of the sort (r, s, n) the structure of its operation
is determined by theorem 4 from [8] as soon as there exists at least
one r-multiple invertible element in it. In particular, this theorem
reduces the study of a groupoid to the study of an associate of the
sort (1, s, n), that is (s, n), with invertible elements. The description
of balanced identities of the �rst kind is in the following corollary.
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Corollary 4. Let (Q; f) be an associate of a sort (r, s). The equal-
ity w1 = w2 is an identity in the groupoid (Q; f), if the words w1

and w2 di�er from each other by the bracketting only and there exists
an one-to-one correspondence between f 's appearances in the word w1

and those in the word w2 such that the corresponding coordinates are
congruent modulo s.

Proof. It is enough to put r = 1 in Theorem 3.

For example, in any associate (Q; f) of the sort (2, 4, 8) the follow-
ing identity

0

f (
0

f (x0, x1,
2

f (x2, x3,
4

f (x4, . . . , x12), x13, . . . , x18), x19, . . . , x24),

x25, . . . , x29,
30

f (x30, . . . , x38), x39, x40) =

=
0

f (
0

f (x0, . . . , x8), x9,
10

f (
10

f (x10, . . . , x18), x19, . . . , x28),

x29, . . . , x31,
32

f (x32, . . . , x40)),

holds, in which the number of the functional symbol is the coordinate
of its appearance.

Corollary 5. In any semigroup (of any arity) any balanced identities
of the �rst kind holds.

By other words, in a semigroup of an arbitrary arity the result of
repeated operation use does not depend on a bracketting.

Proof. The period of the associativity of a semigroup of an arbitrary
arity is equal to 1. Therefore it is enough to put s = 1 in Corollary 4,
as the result we shall obtain the truth of the given statement.
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