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The transitive and multitransitive
automorphism groups of the multiplace

quasigroups

Oleg U. Kirnasovsky

Abstract

In this paper, for every k, the multiplace group isotopes, which have k−transitive
automorphism groups, are described.

1. Introduction
A groupoid (G; g) is called an isotope of a group (Q; +), i� for some
bijections γ1, . . ., γn and γ of G on Q the equality

γg(x1, . . . , xn) = γ1x1 + . . . + γnxn

holds. The groupoid (G; g) is called also a group isotope. A groupoid
(G; g) is called a linear isotope of a group (G; +) i� there are auto-
morphisms α1, . . . , αn of a group (G; +) such that

g(x1, . . . , xn) = α1x1 + . . . + αnxn + a

for some �xed a ∈ G. It is easy to see that every group isotope is
a quasigroup. Also a quasigroup isomorphic to a linear isotope is a
linear isotope.

Let S(Q) be a permutation group of Q. We say that a group S(Q)
is k-times transitive (or k-transitive) on the set H ⊂ Q, where k is a
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�xed cardinal number, i� |H| ≥ k, σ(H) = H for every σ ∈ S(Q)
and for each bijection ϕ : A → B of k-element subsets A, B of H
there exists α ∈ S(Q) such that αx = ϕx for all x ∈ A.

1-transitive group will be also called transitive. The words �on the
set H� will be omitted if H = Q.

The D-quasigroups, i.e. the �nite binary quasigroups having double-
transitive automorphism groups, are investigated in [3]. The �nite
binary groupoids having double-transitive automorphism groups are
described in [2]. Here we continue the investigation for the case of the
multiplace quasigroups.

The author would like to expresses his sincere thanks to Dr. Volody-
myr Derech for suggesting the problem. Author also expresses his
great thanks to Dr. Fedir Sokhatsky for his very useful comments.

2. Some individual cases
Theorem 1. The automorphism group of an unary quasigroup (Q; f)
is transitive i� either all cycles of f are in�nite, or all these cycles are
�nite and have the same length.

Proof. Let the automorphism group be transitive and
(x1, . . . , xn), (. . . , y1, . . . , yn, . . .)

be some cycles of f , and let the length of the second cycle be greater
than n (or be in�nite). Transitivity of the automorphism group implies
the existence of an automorphism α of the unary quasigroup (Q; f),
for which αx1 = y1. Then α commutes with f , and in the consequence,
with fn. Thus yn+1 = fny1 = fnαx1 = αfnx1 = αx1 = y1, which is
a contradiction.

On the other hand, let all cycles of f have the same (may be
in�nite) length and let x, y ∈ Q be arbitrary elements. If they are in
the same cycle, then there exists a positive integer n such that fnx = y
and fn is an automorphism of (Q; +). If x = x1, y = y1, and

(. . . , x1, . . . , xn, . . .), (. . . , y1, . . . , yn, . . .)

are di�erent cycles of f , then the permutation α being the product of
all cycles of the type (xi, yi) is an automorphism of (Q; f), with the
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condition αx = y. This proves the transitivity.

We say that a groupoid (Q; h) is derived from a group (Q; +), i�

h(x1, . . . , xn) = x1 + . . . + xn . (1)

Lemma 2. Every quasigroup with at most 3 elements is a linear iso-
tope of a cyclic group.

Proof. Let (Q; f) be a quasigroup. For |Q| = 1 the lemma is evident.
Let |Q| > 1. We consider the ring (Q; +, ·). The element 0 is an
idempotent of the operation g:

g(x1, . . . , xn) = f(x1, . . . , xn)− f(0, . . . , 0).

De�ne the operation h by
h(x1, x2, . . . , xn) =

= g(g(1, 0, . . . , 0) · x1, g(0, 1, 0, 0, . . . , 0) · x2, . . . , g(0, . . . , 0, 1) · xn).

We prove that the groupoid (Q; h) is derived from the cyclic group
(Q; +). For |Q| = 2 the equality is easy provable by the induction
on the number of the appearances of the element 1 in the collection
〈x1, . . . , xn〉. Let |Q| = 3. Denote by ri the number of the appearances
for an element i in the collection 〈x1, . . . , xn〉. For k = 0 we have:

h(0, . . . , 0) = g(0, . . . , 0) = 0.

Assume by the induction that this is true for k = j. We prove it for
k = j + 1. At �rst, we consider the case when r1 and r2 are positive.
Then we replace either one of the appearances of the element 1 by the
element 0, or one of the appearances of the element 2 by the element
0. In this case the result of the operation will be changed because h is
a quasigroup operation. Then by the inductive hypothesis the result
of the application of h to the given collection is not equal modulo 3
to none of the numbers

(r0 + 1) · 0 + (r1 − 1) · 1 + r2 · 2, (r0 + 1) · 0 + r1 · 1 + (r2 − 1) · 2,

and consequently, is equal to 0 · r0 + 1 · r1 + 2 · r2 = r1 + 2r2.
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Now, let r1 = 0, then r2 6= 0, since k > 0. For r2 = 1 the statement
follows from the construction of the operation h. If r2 > 1, then we
replace either one of the appearances of the element 2 by the element
0, or one of the appearances of the element 2 by the element 1. Then
by the hypothesis and by the statement proved above, the result of
the application of h to the given collection is not equal modulo 3 to
none of the numbers

(r0 + 1) · 0 + r1 · 1 + (r2 − 1) · 2, r0 · 0 + (r1 + 1) · 1 + (r2 − 1) · 2.

Now, let r2 = 0. Then we replace either one of the appearances of the
element 1 by the element 0, or one of the appearances of the element
1 by the element 2. Thence, analogously by the inductive hypothesis
and by the statement proved above, we receive that the result of the
application of h to the given collection is not equal modulo 3 to none
of the numbers

(r0 + 1) · 0 + (r1 − 1) · 1 + r2 · 2, r0 · 0 + (r1 − 1) · 1 + (r2 + 1) · 2,

which completes the proof.

As a consequence of the above Lemma we obtain

Corollary 3. The automorphism group of the quasigroup (Q; f) with
|Q| = 2 is double-transitive.

A group S(Q) is called k-cotransitive, where k is some �xed cardi-
nal number, i� |Q| ≥ k, and for every bijection ϕ : Q \ A → Q \ B,
where A and B are arbitrary k-subsets of Q, there exists α ∈ S(Q)
such that αx = ϕx for all x ∈ Q \ A.

It is clear that with |Q| = n < ℵ0 such k-cotransitivity is equiva-
lent to the (n− k)-times transitivity of this group.

Lemma 4. Let (Q, Ω) be an algebra containing in�nitary opera-
tions perhaps. If a subset M of Q is k-transitive with |M | + 1 ≤
k, |Q\M | ≥ 2, or k-cotransitive with |Q\M | ≥ k + 1, |Q\M | ≥ 2,
then M is a subalgebra of the given algebra.
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Proof. Since the case of the k-transitivity follows from the case of the
k-cotransitivity, we prove only the case of the k-cotransitivity. If M is
not a subalgebra, then there exist an operation σ of this algebra and
the sequence

〈xi | i ∈ I〉 (2)

(the cardinal number of I and the arity of σ are equal), such that

(∀i ∈ I) xi ∈ M, y = σ(〈xi | i ∈ I〉) /∈ M. (3)

But for |Q\M | ≥ 2 there exists z ∈ Q\M such that z 6= y. Moreover,
the k-cotransitivity implies the existence of an automorphism ϕ of
(Q, Ω) for which ϕy = z and ϕxi = xi for all i ∈ I. Thus

z = ϕy = ϕσ(〈xi | i ∈ I〉) = σ(〈ϕxi | i ∈ I〉) = σ(〈xi | i ∈ I〉),

which is impossible.

Corollary 5. If the automorphism group of an algebra (Q, Ω) is k-
transitive and the maximal power of the arities of the operations of the
algebra exists and is equal to n, where n + 1 ≤ k, n + 1 < |Q|, then
each non-empty subset of the set Q is a subalgebra.

Proof. If we assume the contrary, then we get the existence of an oper-
ation σ ∈ Ω and of a collection (2), for which the conditions (3) hold.
But this contradicts to the existence of M = {xi | i ∈ I} concerning
the operation σ, although such existence follows from the previous
Lemma.

Theorem 6. The automorphism group of an unary quasigroup (Q; f),
where |Q| > 2, is double-transitive i� f is the identical permutation.
In this case the automorphism group is |Q|-transitive.

Proof. If the automorphism group is double-transitive, then f is the
identical substitution, by Lemma 4. On the other hand, every substi-
tution of Q commutes with the identical permutation, and in the con-
sequence, it is an automorphism of the respective unary quasigroup.
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Theorem 7. The automorphism group of the quasigroups (Q; f) with
|Q| = 3 is triple-transitive i� the quasigroup is idempotent.

Proof. By Lemma 2, given quasigroup is a linear isotope of a cyclic
group. Such triple-transitivity is equivalent to the isomorphism of
the given automorphism group to the holomorph of the cyclic group.
From results of [4] it follows that such isomorphism is equivalent to
idempotency of the quasigroup (Q; f).

Lemma 8. Non-one-element quasigroups, in which all one-element
and two-element subsets are their subquasigroups, have odd arities and
are described by the system of identities f(u1, . . . , un) = un+1, where
metavariables u1, . . ., un+1 accept values in the set of the propositional
variables {x; y}, and, besides un+1 coincides with propositional vari-
able x or y, appearing in the sequence u1, . . ., un odd number of times.

Proof. Indeed, let {a; b} be �xed. At once we throw the case away
when the arity of the quasigroup is equal to zero, because then the
lemma conditions are false. The oddness of the operation arity fol-
lows by evident way from the assertion on the operation value, since
an operation of an even arity may have each from the elements a and
b odd number of times in the role of arguments. And we prove the
assertion about the operation value by the induction on the number
k of the appearances, for example, of the element b in the role. If
k = 0, then the assertion follows from Lemma 4. Let with k = i the
assertion be true. We have to prove it for k = i+1. By Lemma 4, the
operation value on the given collection is equal to either a or b. It re-
mains to take into account that we must get other value, if we replace
one of the appearances of b on a, because f is a quasigroup operation.

Theorem 9. The automorphism group of a quasigroup (Q; f) with
|Q| = 4 is quadruple-transitive i� the arity of the operation is odd and
the quasigroup is derived from the group Z2 × Z2.

Proof. Let the automorphism group be quadruple-transitive. We de-
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�ne on the set Q an operation (+) being isomorphic to the operation
of the group Z2 × Z2. Using Lemmas 4 and 8 we get the oddness of
the arity n of the quasigroup (Q; f) and the truth of the formula

f(x1, . . . , xn) = x1 + . . . + xn (4)
for the case, when |{x1; . . . ; xn}| ≤ 2, since in the group (Q; +) the
identity 2x = 0 holds.

We prove (4) for the other cases. We will do it by the induction
on the value of the product

P = (a + 1)(b + 1)(c + 1)(d + 1),

where a, b, c and d are numbers of the appearances of each of four
elements of Q in the collection of the arguments of the operation f in
(4). Without restricting the generality we assume that

a ≥ b ≥ c ≥ d,

whence we have c > 0 (with c = 0 the statement has just been proved
above). Let u, v, w ∈ Q correspond to the numbers a, b and c re-
spectively. In the �xed collection of all arguments of the operation
f we make three independent changes (in so doing, we receive three
individual collections). First: we replace an arbitrary appearance of
the element v with the element u. Second: we replace an arbitrary
appearance of the element w with the element u. And third: we re-
place an arbitrary appearance of the element w with the element v.
In this case the value of the product P is respectively replaced by the
products

P1 = (a + 2)b(c + 1)(d + 1),
P2 = (a + 2)(b + 1)c(d + 1),
P3 = (a + 1)(b + 2)c(d + 1),

which are less than P . By the inductive hypothesis, values of f on
three obtained collections are pairwise di�erent and all of them must
be di�erent from the value on the given collection, because f is a
quasigroup operation. But values of the right side of (4) on all these
four collections are also pairwise di�erent. Therefore, taking into ac-
count that |Q| = 4, we get the truth of the formula (4) on the given
collection. The rest follows from the fact that the given automorphism
group is isomorphic to Hol(Z2 × Z2), and the holomorph consists of
all substitutions of the basis set.
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3. The general case
Lemma 10. For all mappings α1, . . ., αn of a group (Q; +) and for
the mappings β1, . . ., βn de�ned by

βi = α1 + . . . + αi, where i = 0, . . . , n, (5)

the equality of the subgroups

{ψ ∈ Aut(Q; +) |ψβi = βiψ, i = 1, . . . , n} =
= {ψ ∈ Aut(Q; +) |ψαi = αiψ, i = 1, . . . , n}

of the group Aut(Q; +) holds.

Proof. Let ψ commute with αi when i = 1, . . . , n. Then, for each i we
have that

ψβi = ψ(α1 + . . . + αi) = ψα1 + . . . + ψαi =
= α1ψ + . . . + αiψ = (α1 + . . . + αi)ψ = βiψ.

Now on the contrary, let ψ commute with βi when i = 1, . . . , n. It is
evident that ψ commutes with β0 as well. Then, for all i, we have that
ψαi = −ψβi−1 + ψβi−1 + ψαi = −ψβi−1 + ψ(βi−1 + αi)

= −ψβi−1 + ψβi = −βi−1ψ + βiψ = −βi−1ψ + (βi−1 + αi)ψ

= (−βi−1 + βi−1 + αi)ψ = αiψ.

We denote by Lc and Rc respectively the left and right translations
of the group operation (+), by Ic the inner automorphism L−1

c Rc, and
by ε the identical permutation.

For shortening of the statement wording we reach agreement about
uni�ed notations further in this point (except the end of the article).
Namely: let us �x an arbitrary group, denoted as (Q; +), its arbitrary
element, denoted as a, an arbitrary integer greater than one, denoted
as n, arbitrary n unitary substitutions, denoted as α1, . . ., αn. Under
these designations let us �x also the notation (Q; f) for the group
isotope speci�ed by the equality

f(x1, . . . , xn) = α1x1 + . . . + αnxn + a,
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also the notation β0, . . ., βn for the mappings of the set Q speci�ed by
the equalities (5) (here, it is natural that β0 is the null-endomorphism
of the given group). Finally, let us �x the notation H for the subgroup
of Aut(Q; +), consisting of all automorphisms, stated in Theorem 10,
and the notation γ for the mapping, speci�ed by the equality γ =
Raβn − ε.

During the conference in Barnaul (1991) F. Sokhatsky announced
the following result.

Theorem 11. A transformation α is an endomorphism of a group
isotope (Q; f) i� α = Rcθ for some endomorphism θ of the group
(Q; +) and some element c such that

θa + c = α1c + . . . + αnc + a, (6)
RαicIα1c+...+αi−1cθαi = αiRcθ for all i = 1, . . . , n. (7)

Theorem 12. A transformation α is an endomorphism of a group
isotope (Q; f) i� α = Rcθ for some element c and for some endomor-
phism θ of the group (Q; +) such that

θa + c = βnc + a, (8)
Rβicθβi = βiRcθ for all i = 1, . . . , n. (9)

Proof. The equality (6) is equivalent to (8), therefore by Theorem
11 it is enough to show that (7) is equivalent to (9). Replace the
number n by as arbitrary number k and let us prove the equivalence
of the obtained systems for all natural k, not greater than n. Make
that by the induction on k. For when k = 1 we have one equality in
both systems only, which are equivalent, because β1 = α1, Iβ0c = ε.
Assume that for i = m these systems are equivalent. For i = m + 1
the equality (9) may be rewritten in the form

Rαm+1cRβmcθ(βm + αm+1) = (βm + αm+1)Rcθ. (10)

Since (9) holds when i = m, then

(βm + αm+1)Rcθ = βmRcθ + αm+1Rcθ = Rβmcθβm + αm+1Rcθ,

and hence, (10) may be rewritten in the form

Rαm+1cRβmcθ(βm + αm+1) = Rβmcθβm + αm+1Rcθ,
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that is

θβm + Rαm+1cRβmcθαm+1 = θβm + Lβmcαm+1Rcθ,

whence after equivalent transformations we have

Rαm+1cIβmcθαm+1 = αm+1Rcθ,

which is equivalent to (7) with i = m + 1. This completes the proof.

Theorem 13. The automorphism group of a group isotope (Q; f) is
transitive i� for every element c ∈ Q there exists an automorphism θ
of the group (Q; +) such that (9) holds and the element θ−1γc is the
image of the element a under the action of some transformation from
the group H.

Proof. Let Aut(Q; f) be transitive. Then for every c ∈ Q there exists
an automorphism α of of the group isotope (Q; f) which maps the
neutral element of (Q; +) to c. By Theorem 12 it means that for each
c ∈ Q there exists an automorphism θ of (Q; +) satisfying (8) and (9).
From (8) we have that θ−1γc = a, but the identical automorphism of
(Q; +) maps a to itself and commutes with all βi.

On the other hand, let for every c ∈ Q there exist an automorphism
θ of (Q; +) satisfying (9), and thereto for these c and θ, the element
θ−1γc is the image of a under the action of some automorphism ψ
from H. Then for these triples of c, θ and ψ we have

θψa + c = θθ−1(βnc + a− c) + c = βnc + a,

Rβicθψβi = Rβicθβiψ = βiRcθψ for all i = 1, . . . , n, (11)

whence taking into account bijectivity of the transformations of Rcθψ
we have, by Theorem 12, that they are automorphisms of the group
isotope (Q; f). Consequently, for an arbitrary �xed x, y ∈ Q there
are automorphisms θ′, ψ′, θ′′ and ψ′′ such that Rxθ

′ψ′ and Ryθ
′′ψ′′ are

automorphisms of the group isotope (Q; f). But

Ryθ
′′ψ′′(Rxθ

′ψ′)−1x = Ryθ
′′ψ′′(ψ′)−1(θ′)−1R−1

x x

= Ryθ
′′ψ′′(ψ′)−1(θ′)−10 = Ry0 = y,
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whence Aut(Q; f) is transitive.

Corollary 14. If transformations β1, . . ., βn are endomorphisms (for
example, if the group (Q; +) is abelian and its isotope (Q; f) is linear)
of a group (Q; +) then the automorphism group of a group isotope
(Q; f) is transitive i� one of the following equivalent conditions holds:

• the set Im γ is a subset of the set of images of a under the action
of all transformations of the group H;

• for all x, y ∈ Im γ there exists a transformation ϕ from the group
H which maps x to y.

Proof. If β1, . . ., βn are endomorphisms of (Q; +), then (9) means that
θ belongs to H. Since all groups are non-empty, then by Theorem 13,
Aut(Q; f) is transitive i� for each c ∈ Q there are transformations θ
and ψ from H such that ψa = θ−1γc, i.e.

δa = γc, (12)

where δ = θψ. Hence, Aut(Q; f) is transitive i� for every c ∈ Q there
exists a transformation δ from H such that (12) holds, i.e, i� Imγ is a
subset of the set of all images of a under the action of all transforma-
tions from H. We prove the equivalence of the two conditions of our
corollary criterion. Let Im γ be a subset of the set of all images of a
under the action of all transformations from the group H. Then for
all x, y ∈ Imγ there exist transformations ϕ1 and ϕ2 from H such that
ϕ1a = x, ϕ2a = y. Thus ϕ2ϕ

−1
1 x = y. Hence, the second condition

follows from the �rst one. Let now the second condition holds. Since
γ maps the neutral element of (Q; +) to a, then a belongs to Im γ.
Hence, for every y ∈ Im γ there exists ϕ ∈ H, for which ϕx = y. And
this is the �rst of the two conditions of the corollary criterion.

Corollary 15. If transformations β1, . . ., βn are endomorphisms of
a group (Q; +) and the group H is transitive on the set Im γ, then the
automorphism group of a group isotope (Q; f) is transitive.
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Corollary 16. If βn = ε, transformations β1, . . ., βn−1 are endo-
morphisms of a group (Q; +), and a is central in this group, then the
automorphism group of the group isotope (Q; f) is transitive.

Proof. Im γ has only one element, which under the action of the trans-
formation ε is mapped to itself. Hence, by Corollary 14, the group
Aut(Q; f) is transitive.

Corollary 17. The automorphism group of an idempotent group iso-
tope (Q; f), where β1, . . ., βn are endomorphisms of the group (Q; +),
is transitive.

Corollary 18. The automorphism group of an idempotent group iso-
tope (Q; f) is transitive i� for every element c ∈ Q there exists an
automorphism θ of the group (Q; +) such that (9) holds.

Proof. Idempotency of the isotope (Q; f) gives βn = ε and a = 0.
Therefore Im γ contains only the neutral element of (Q; +). Since the
identical transformation commutes with all mappings, then Theorem
13 completes our proof.

Example. Let (Q; +) be a cyclic group Z6, and

n = 3, a = 0, α1 = ε,

α2 =

(
0 1 2 3 4 5
0 1 4 5 2 3

)
, α3 =

(
0 1 2 3 4 5
0 5 2 1 4 3

)
.

Then the group isotope (Q; f) is idempotent. The map:

β2 =

(
0 1 2 3 4 5
0 2 0 2 0 2

)
,

is not an endomorphism of the group (Q : +) because

β2(1 + 1) = β22 = 0 6= 4 = 2 + 2 = β21 + β21.

But the group Aut(Q; +) is transitive. Indeed, by Corollary 18, for
verifying of transitivity of this group it is enough to show that for
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every c ∈ Q there exists an automorphism θ of (Q; +) satisfying (9).
In the group Z6 there are two automorphisms: ε and −ε. When i = 1
and when i = 3, both of them satisfy (9). For i = 2 (9) has the form

(∀x ∈ Q) θβ2x + β2c = β2(θx + c).

If c ∈ {0; 2; 4}, then θ = ε and:
β2(θx + c) = β2(x + c) = β2x = β2x + β2c = θβ2x + β2c.

If c ∈ {1; 3; 5}, then θ = −ε and:
β2(θx + c) = β2(−x + c) = β2(x + c) = 2− β2x

= β2c− β2x = −β2x + β2c = θβ2x + β2c.

This proves that Aut(Q; f) is transitive.

Theorem 19. A transitive automorphism group of a group isotope
(Q; f) with |Q| > 2 is double-transitive i� (Q; f) is idempotent, the
group H is transitive on the set of all non-neutral elements of the
group (Q; +).

Proof. While proving Lemma 4 in the both directions, we can consider
that (Q; f) is idempotent. Then, by Corollary 18, for every c ∈ Q there
exists an automorphism θ of (Q; +) satisfying (9). Since βn = ε, and
a = 0 (because (Q; f) is idempotent), then for every c and for every
automorphism θ of (Q; +) (8) holds. Hence, by Theorem 12 the map-
ping α is an automorphism of the group isotope (Q; f) i� α = Rcθ
for some c and some automorphism θ of (Q; +) satisfying (9). Let
Aut(Q; f) be double-transitive, then for all non-neutral x, y ∈ Q there
exist c and an automorphism θ of (Q; +) such that (9) holds and also

Rcθ0 = 0, Rcθx = y.

From the �rst of these equalities we obtain that c = 0, and hence,
θx = y. From (9) follows that θ belongs to the group H. It is also
obvious that θ maps all non-neutral elements of (Q; +) to non-neutral,
and in the consequence, the group H is transitive on Q\{0}. Let now
x, y, c ∈ Q and x 6= 0, y 6= c. By the above, there exists an automor-
phism θ of (Q; +) satisfying (9). Since the group H is transitive on
Q\{0}, then there exists ψ ∈ H, for which ψx = θ−1(y− c). Then we
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have (11) and α0 = c, αx = y, where the mapping α = Rcθψ is an
automorphism of the group isotope (Q; f). If now we take arbitrary
di�erent elements z, t ∈ Q, then, analogously as in previous case, we
obtain the existence of an automorphism β of the group isotope (Q; f),
for which β0 = z, βx = t. Then for the automorphism βα−1 of the
group isotope (Q; f) we have

βα−1c = β0 = z, βα−1y = βx = t.

Hence, the group Aut(Q; f) is double-transitive.

Theorem 20. The automorphism group of a group isotope (Q; f),
where |Q| > 3, is triple-transitive i� n is odd, (Q; f) is derived from
(Q; +) and (Q; +) is an abelian group of period 2 whose automorphism
group is double-transitive on the set of all non-neutral elements of the
group (Q; +).

Proof. Assume that Aut(Q; +) is triple-transitive. By Lemmas 4 and
8 the number n is odd, the group isotope is idempotent, and

f( 0, . . . , 0,︸ ︷︷ ︸
(i−1)−times

x, 0, . . . , 0) = x for all i = 1, . . . , n,

f(x, x, 0, . . . , 0) = 0.

Thus αi = ε and 2x = 0, because from idepotency of (Q; f) we have
that a = 0. This means that (Q; +) is abelian. Then by Theorem 12 all
automorphisms of the group isotope (Q; f) are transformations of the
form Rcθ, where c ∈ Q, and θ is an automorphism of (Q; +). If the
automorphism group of the group isotope (Q; f) is triple-transitive,
then for x1, x2, y1, y2 ∈ Q such that |{0; x1; x2}| = |{0; y1; y2}| = 3
there exist c and an automorphism θ of (Q; +), for which

Rcθ0 = 0, Rcθx1 = y1, Rcθx2 = y2.

From the �rst equality we obtain c = 0, and hence, θx1 = y1, θx2 =
y2, which means that Aut(Q; +) is double-transitive on Q\{0}. A
contrary, let Aut(Q; +) be double-transitive on Q\{0}, and x1, x2, x3,
y1, y2, y3 ∈ Q be such that |{x1; x2; x3}| = |{y1; y2; y3}| = 3. Then
there exists an automorphism θ of (Q; +), for which

θ(x2 − x1) = y2 − y1, θ(x3 − x1) = y3 − y1.
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This for c = y1 − θx1 gives the automorphism Rcθ of group isotope
(Q; f) such that

Rcθx1 = θx1 + (y1 − θx1) = y1,
Rcθx2 = θ(x2 − x1) + Rcθx1 = (y2 − y1) + y1 = y2,
Rcθx3 = θ(x3 − x1) + Rcθx1 = (y3 − y1) + y1 = y3.

This proves that the group Aut(Q; +) is triple-transitive.

Theorem 21. The automorphism group of a non-unary quasigroup
(Q; f) with |Q| > 4 is not quadruple-transitive.

Proof. If it is not quadruple-transitive, then by Lemmas 4 and 8, for
arbitrary a, b, c ∈ Q we have

f(a, c, . . . , c) = a,
f(a, a, c, . . . , c) = c,
f(c, b, c, c, . . . , c) = b.

Thus f(a, b, c, . . . , c) /∈ {a; b; c}, which is impossible by Lemma 4.

Note. It is easy to see that every automorphism of an operation f is
an automorphism of an arbitrary diagonal operation induced by f , i.e.
the operation of the arity k de�ned by the term f(xγ1 , . . . , xγn), where
γ is a permutation of {1,. . . ,n} on the set consisting of k indexes.
Whence, the k-transitivity of the automorphism group of (G; f) im-
plies the k-transitivity of the automorphism group of each diagonal
operation induced by f .
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