IK-loops

Alexander S. Basarab

Abstract

A loop $\mathcal{Q}(\cdot)$ is called a K-loop, if the identities:

$$\begin{aligned} &(x \cdot yIx) \cdot xz = x \cdot yz \,, \qquad (y \cdot x) \cdot (I^{-1}xz \cdot x) = yz \cdot x \\ &(Ix = x^{-1} \,, \quad I^{-1}x = \,^{-1}x \,, \quad I^{-1}x \cdot z = \,^{-1}x \cdot z \,) \end{aligned}$$

hold. A K-loop is called an IK-loop if the substitution I is an automorphism of the loop. It is proved that: a K-loop generated by one element is solvable; in a IK-loop the center $\mathcal{Z}(\mathcal{Q})$ and the nucleus \mathcal{N} coincide and every IK-loop is nilpotent. Examples of K-loops, generated by one element are given.

In [1] and [2] the following result is obtained: in a K-loop $\mathcal{Q}(\cdot)$ the nucleus \mathcal{N} is a nontrivial ($\mathcal{N} \neq \{e\}$) normal subloop and the quotient loop $\mathcal{Q}/\mathcal{N}(\cdot)$ is an abelian group. If a K-loop $\mathcal{Q}(\cdot)$ is not a group, then the nucleus \mathcal{N} of this loop has a nontrivial center $\mathcal{Z}(\mathcal{N})$.

Proposition 1. If a loop $\mathcal{Q}(\cdot)$ has a nontrivial nucleus \mathcal{N} , which is a normal subloop of $\mathcal{Q}(\cdot)$ and (x, y, z) is the associator of elements $x, y, z \in \mathcal{Q}$, then (x, y, z)n = n(x, y, z), where $n \in \mathcal{N}$.

Proof. For every $x, y, z \in \mathcal{Q}$ and $n \in \mathcal{N}$ we have

$$xy \cdot zn = (xy \cdot z) \cdot n = (x \cdot yz) \cdot (x, y, z)n.$$
(1)

Since \mathcal{N} is a normal subloop of $\mathcal{Q}(\cdot)$, then for every $x \in \mathcal{Q}$ and $n \in \mathcal{Q}$ there exist $n', n'' \in \mathcal{N}$ such that

$$xn = n'x, \quad nx = xn''. \tag{2}$$

¹⁹⁹¹ Mathematics Subject Classification: 20N05 Keywords: loop, K-loop, nucleus, associator

Applying (2) to $xy \cdot zn$, we get $xy \cdot zn = xy \cdot n_1 z = xyn_1 \cdot z = (x \cdot n_2 y) \cdot z = (xn_2 \cdot y) \cdot z =$ $(n_3x \cdot y) \cdot z = n_3(xy \cdot z) = (xn_2 \cdot yz) \cdot (x, y, z) = (x \cdot n_2 yz) \cdot (x, y, z) =$ $= (x \cdot yn_1 z) \cdot (x, y, z) = (x \cdot yz)n \cdot (x, y, z) = (x \cdot yz) \cdot n(x, y, z)$

that is

$$xy \cdot zn = (x \cdot yz) \cdot n(x, y, z).$$
(3)

If follows from (1) and (3) that (x, y, z)n = n(x, y, z), which was to be proved.

Corollary 1. If a (nongroup) loop $\mathcal{Q}(\cdot)$ has a nontrivial nucleus \mathcal{N} which is a normal subloop of $\mathcal{Q}(\cdot)$ and the associator of any three elements of \mathcal{Q} belongs to \mathcal{N} , then \mathcal{N} has a nontrivial center $\mathcal{Z}(\mathcal{N})$. \Box

In [2] it is proved that in a K-loop $\mathcal{Q}(\cdot)$ the nucleus \mathcal{N} contains the associator of any three elements of \mathcal{Q} .

Corollary 2. (Theorem 3 from [1]) If a K-loop $\mathcal{Q}(\cdot)$ is not a group, then the nucleus \mathcal{N} of $\mathcal{Q}(\cdot)$ has a nontrivial center.

Proposition 2. The center $\mathcal{Z}(\mathcal{N})$ of the nucleus \mathcal{N} of a K-loop $\mathcal{Q}(\cdot)$ is a normal subloop of $\mathcal{Q}(\cdot)$.

Proof. In a K-loop $\mathcal{Q}(\cdot)$ the nucleus \mathcal{N} is a normal subloop of $\mathcal{Q}(\cdot)$, therefore, $L_x^{-1}R_x c \in \mathcal{N}$ for every $c \in \mathcal{N}$ and every $x \in \mathcal{Q}$. If $z \in \mathcal{Z}(\mathcal{N})$, then

$$z \cdot L_x^{-1} R_x c = L_x^{-1} R_x c \cdot z \,. \tag{4}$$

From the definition of a K-loop we have the autotopy

$$T = (R_x^{-1}L_x, L_x, L_x).$$
(5)

Applying (5) to the equality (4), we get

 $R_x^{-1}L_xz \cdot L_xL_x^{-1}R_xc = L_x(L_x^{-1}R_xc \cdot z)$

or

or

$$(R_x^{-1}L_xz \cdot c) = (L_xL_x^{-1}(cz \cdot x)Ix)$$

$$R_x^{-1}L_xz \cdot c = c \cdot (x \cdot zI_x),$$

hence $R_x^{-1}L_xz \cdot c = c \cdot L_x R_{Ix}z$. Every K-loop is an Osborn loop where $R_{Ix} = L_x^{-1}R_x^{-1}L_x$ and then

$$R_x^{-1}L_xz \cdot c = c \cdot L_x L_x^{-1} R_x^{-1} L_x z$$

or

$$R_x^{-1}L_xz \cdot c = c \cdot R_x^{-1}L_xz \,,$$

which proves that $R_x^{-1}L_xz \in \mathcal{Z}(\mathcal{N}).$

Proposition 3. If a K-loop $\mathcal{Q}(\cdot)$ is not a group, the quotient loop $\mathcal{Q}/\mathcal{Z}(\mathcal{N})$ is a group.

Proof. From Proposition 2 it follows that $\mathcal{Z}(\mathcal{N})$ is a normal subloop of $\mathcal{Q}(\cdot)$, hence there exists the quotient loop $\mathcal{Q}/\mathcal{Z}(\mathcal{N})$, in which

$$a\mathcal{Z}(\mathcal{N}) \cdot (b\mathcal{Z}(\mathcal{N}) \cdot c\mathcal{Z}(\mathcal{N})) =$$

= $a\mathcal{Z}(\mathcal{N}) = (ab \cdot c)\mathcal{Z}(\mathcal{N}) = (ab \cdot c) \cdot (a, b, c)\mathcal{Z}\mathcal{N}).$

As $(a, b, c) \in \mathcal{Z}(\mathcal{N})$, we have

$$(ab \cdot c) \cdot (a, b, c) \mathcal{Z}(\mathcal{N}) = (ab \cdot c) \mathcal{Z}(\mathcal{N}) = ab \mathcal{Z}(\mathcal{N}) \cdot c \mathcal{Z}\mathcal{N}) = = (a \mathcal{Z}(\mathcal{N}) \cdot b \mathcal{Z}(\mathcal{N})) \cdot c \mathcal{Z}(\mathcal{N}).$$

Thus,

$$a\mathcal{Z}(\mathcal{N}) \cdot (b\mathcal{Z}(\mathcal{N}) \cdot c\mathcal{Z}(\mathcal{N})) = (a\mathcal{Z}(\mathcal{N}) \cdot b\mathcal{Z}(\mathcal{N}) \cdot c\mathcal{Z}(\mathcal{N})),$$

so the operation (·) on $\mathcal{Q}/\mathcal{Z}(\mathcal{N})$ is associative.

Definition 1. The loop $\mathcal{Q}(\cdot)$ is called *solvable* if it has a series of the form

$$\mathcal{Q} = \mathcal{Q}_0 \supseteq \mathcal{Q}_1 \supseteq \mathcal{Q}_2 \supseteq ... \supseteq \mathcal{Q}_m = E$$
,

where Q_i is a normal subloop of Q_{i-1} and the quotient loop Q_{i-1}/Q_i is an abelian group.

Theorem 1. A K-loop generated by one element is solvable.

Proof. Let an element $a \in \mathcal{Q}$ generates the K-loop $\mathcal{Q}(\cdot)$. From Proposition 3 we obtain that $\mathcal{Q}/\mathcal{Z}(\mathcal{N})$ is a group. If φ is a homomorphism of $\mathcal{Q}(\cdot)$ on $\mathcal{Q}/\mathcal{Z}(\mathcal{N})$, then the group $\mathcal{Q}/\mathcal{Z}(\mathcal{N})$ is also generated by an element, namely by $\varphi(a)$. But a group generated by an element is cyclic and since $\mathcal{Z}(\mathcal{N})$ is an abelian group, the loop $\mathcal{Q}(\mathcal{N})$ is solvable.

Corollary. Every subloop of a K-loop generated by one element is solvable. \Box

Example 1. ([3], p.193). Let \mathcal{F} be a field, \mathcal{F}' be the set of nonzero elements of \mathcal{F} . Define on the set $\mathcal{Q} = \mathcal{F}' \times \mathcal{F}$ the operation (\cdot) as follows:

$$(a, x) \cdot (b, y) = (a \cdot b, (a^{-1} - 1) \cdot (b^{-1} - 1) + b^{-1}x + y)$$

Then $\mathcal{Q}(\cdot)$ is a K-loop. The nucleus \mathcal{N} of this loop consists of pairs $(1, x), x \in \mathcal{F}$. The operation (\cdot) is commutative on \mathcal{N} . Indeed,

$$(1,x) \cdot (1,y) = (1, x+y) = (1, y+x) = (1,y) \cdot (1,x)$$

hence, \mathcal{N} is an abelian group. But then the loop $\mathcal{Q}(\cdot)$ from this example is solvable (for any field \mathcal{F}).

For $\mathcal{F} = \mathcal{Z}_3$ we get a K-loop consisting of six elements:

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	3	1	6	4	5
3	3	1	2	5	6	4
4	4	5	6	2	3	1
5	5	6	4	1	2	3
6	6	4	5		1	2

This loop is generated by any of elements 4, 5, 6, so by Theorem 1 it is solvable. $\hfill \Box$

Example 2. Let \mathcal{R} be a commutative ring (which is not \mathcal{Z}_2 and the zero ring). Define on $\mathcal{Q} = \mathcal{R} \times \mathcal{R}$ the operation (.)

$$(a, x) \cdot (b, y) = (a + b, x + y + ab^2)$$

for any $(a, x), (b, y) \in \mathcal{Q}$. Then $\mathcal{Q}(\cdot)$ is a K-loop. If $\mathcal{R} = \mathcal{Z}_3$, we get a loop of 9 elements:

•	1			4	5	6	7	8	9
1	1	2	3	4	5		7	8	9
2	2	3	1	5	6	4	8		7
3	3	1	2	6	4	5	9	7	8
4	4	5	6	8	9	7	3	1	
5	5	6	4	9	7	8	1		3
6	6	4	5		8	9		3	1
7		8		2		1	6	4	5
8	8	9	7	3	1	2	4	5	6
9	9	7	8	1	2	3	5	6	4

This loop is one generated by each of the elements 4, 5, 6, 7, 8, 9. By Theorem 1 it is solvable.

Note that in this example the permutation $I(Ix = x^{-1})$ is an automorphism of $\mathcal{Q}(\cdot)$.

Definition 2. A K-loop is called an IK-loop if the permutation I is an automorphism of $\mathcal{Q}(\cdot)$, i.e. $I(x \cdot y) = Ix \cdot Iy$ for every $x, y \in \mathcal{Q}$.

Proposition 4. If \mathcal{N} is the nucleus of the loop $\mathcal{Q}(\cdot)$, then for any $x \in \mathcal{Q}$ and $c \in \mathcal{N}$ the equalities

$$I(c \cdot x) = Ix \cdot Ic, \quad I(x \cdot c) = Ic \cdot Ix \tag{6}$$

hold up.

Proof. Directly from the equality $cx \cdot I(c \cdot x) = 1$ it follows that $x \cdot I(c \cdot x) = x^{-1}$ or $I(c \cdot x) = L_x^{-1}Ic$ or $I(c \cdot x) = L_{Ix}L_{Ix}^{-1}L_x^{-1}Ic$. But $L_x L_{Ix} c = x \cdot Ix c = (x \cdot Ix) \cdot c = c.$

Hence,
$$L_{Ix}^{-1}L_x^{-1}Ic = Ic$$
 and then $I(c \cdot x) = L_{Ix}Ic = Ix \cdot Ic$. The second equality can be proved similarly.

Proposition 5. The center $\mathcal{Z}(\mathcal{Q})$ and the nucleus \mathcal{N} of an IK-loop $\mathcal{Q}(\cdot)$ coincide.

Proof. Let $\mathcal{Q}(\cdot)$ be an *IK*-loop. Then the permutation *I* is an automorphism of $\mathcal{Q}(\cdot)$ and $I(x \cdot y) = Ix \cdot Iy$ for any $x, y \in \mathcal{Q}$. In particular, if $x \in \mathcal{Q}$ and $c \in \mathcal{N}$, then

$$I(c \cdot x) = Ic \cdot Ix \,. \tag{7}$$

From (6) and (7) it follows that

$$Ix \cdot Ic = Ic \cdot Ix \,. \tag{8}$$

From (8) and $c \in \mathcal{N}$ we obtain $c \in \mathcal{Z}(\mathcal{Q})$, therefore

$$\mathcal{N} \subseteq \mathcal{Z}(\mathcal{Q}) \,. \tag{9}$$

But from the definition of the center of a loop it follows that

$$\mathcal{Z}(\mathcal{Q}) \subseteq \mathcal{N} \,. \tag{10}$$

Thus, from (9) and (10) we get $\mathcal{Z}(\mathcal{Q}) = \mathcal{N}$.

Definition 3. A loop $\mathcal{Q}(\cdot)$ is *nilpotent* if it has a finite invariant series

$$\mathcal{Q} = \mathcal{Q}_0 \supseteq \mathcal{Q}_1 \supseteq \mathcal{Q}_2 \supseteq ... \supseteq \mathcal{Q}_k = E$$

where every quotient loop $\mathcal{Q}_{i-1}/\mathcal{Q}_i$ is contained in the center of the loop $\mathcal{Q}/\mathcal{Q}_i$ (i = 1, 2, ..., k).

Theorem 2. Every IK-loop $\mathcal{Q}(\cdot)$ is nilpotent.

Proof. Let $\mathcal{Q}(\cdot)$ be a nongroup *IK*-loop, then $\mathcal{Q}(\cdot)$ has a nontrivial nucleus \mathcal{N} , which by Proposition 5 coincides with the center of $\mathcal{Q}(\cdot)$, i.e. $\mathcal{N} = \mathcal{Z}(\mathcal{Q})$. Hence, for the loop $\mathcal{Q}(\cdot)$ there is a series of normal subloops

$$\mathcal{Q} = \mathcal{Q}_0 \supseteq \mathcal{Q}_1 \supseteq \mathcal{Q}_2 = E_1$$

satisfying the condition: $Q_{i-1}/Q_i \subseteq Z(Q/Q_i)$, i = 1, 2, and this means that $Q(\cdot)$ is nilpotent.

References

- A. S. Basarab: Non-associative extensions of groups by means of abelian groups, Proc. Intern. Conf. on Group Theory, Timishoara 1992, 6-10.
- [2] A. S. Basarab: K-loops, (Russian), Buletinul AS Rep. Moldova, ser. Matematica 1(7) (1992), 28 - 33.
- [3] V. D. Belousov: Foundations of the Theory of Quasigroups and Loops, (Russian), "Nauka", Moscow, 1967.

Department of Physics and Mathematics, Tiraspol State University, 5 Iablocikin str., Kishinau, 277050 MOLDOVA Received August 20, 1995