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IK-loops

Alexander S. Basarab

Abstract

A loop Q(·) is called a K-loop, if the identities:
(x · yIx) · xz = x · yz , (y · x) · (I−1xz · x) = yz · x
( Ix = x−1 , I−1x = −1x , I−1x · z = −1x · z )

hold. A K-loop is called an IK-loop if the substitution I is an automorphism of
the loop. It is proved that: a K-loop generated by one element is solvable; in a IK-
loop the center Z(Q) and the nucleus N coincide and every IK-loop is nilpotent.
Examples of K-loops, generated by one element are given.

In [1] and [2] the following result is obtained: in a K-loop Q(·) the
nucleus N is a nontrivial (N 6= {e} ) normal subloop and the quotient
loop Q/N (·) is an abelian group. If a K-loop Q(·) is not a group, then
the nucleus N of this loop has a nontrivial center Z(N ).

Proposition 1. If a loop Q(·) has a nontrivial nucleus N , which is
a normal subloop of Q(·) and (x, y, z) is the associator of elements
x, y, z ∈ Q, then (x, y, z)n = n(x, y, z) , where n ∈ N .

Proof. For every x, y, z ∈ Q and n ∈ N we have

xy · zn = (xy · z) · n = (x · yz) · (x, y, z)n . (1)

Since N is a normal subloop of Q(·), then for every x ∈ Q and n ∈ Q
there exist n′, n′′ ∈ N such that

xn = n′x , nx = xn′′ . (2)
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Applying (2) to xy · zn , we get
xy · zn = xy · n1z = xyn1 · z = (x · n2y) · z = (xn2 · y) · z =

(n3x · y) · z = n3(xy · z) = (xn2 · yz) · (x, y, z) = (x · n2yz) · (x, y, z) =

= (x · yn1z) · (x, y, z) = (x · yz)n · (x, y, z) = (x · yz) · n(x, y, z)

that is
xy · zn = (x · yz) · n(x, y, z) . (3)

If follows from (1) and (3) that (x, y, z)n = n(x, y, z) , which was to
be proved.

Corollary 1. If a (nongroup) loop Q(·) has a nontrivial nucleus N
which is a normal subloop of Q(·) and the associator of any three ele-
ments of Q belongs to N , then N has a nontrivial center Z(N ).

In [2] it is proved that in a K-loop Q(·) the nucleus N contains the
associator of any three elements of Q.

Corollary 2. (Theorem 3 from [1]) If a K-loop Q(·) is not a group,
then the nucleus N of Q(·) has a nontrivial center.

Proposition 2. The center Z(N ) of the nucleus N of a K-loop Q(·)
is a normal subloop of Q(·).

Proof. In a K-loop Q(·) the nucleus N is a normal subloop of Q(·),
therefore, L−1

x Rxc ∈ N for every c ∈ N and every x ∈ Q .
If z ∈ Z(N ) , then

z · L−1
x Rxc = L−1

x Rxc · z . (4)

From the de�nition of a K-loop we have the autotopy

T = (R−1
x Lx , Lx , Lx) . (5)

Applying (5) to the equality (4), we get
R−1

x Lxz · LxL
−1
x Rxc = Lx(L

−1
x Rxc · z)
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or
(R−1

x Lxz · c) = (LxL
−1
x (cz · x)Ix)

or
R−1

x Lxz · c = c · (x · zIx) ,
hence R−1

x Lxz · c = c ·LxRIxz . Every K-loop is an Osborn loop where
RIx = L−1

x R−1
x Lx and then
R−1

x Lxz · c = c · LxL
−1
x R−1

x Lxz
or

R−1
x Lxz · c = c ·R−1

x Lxz ,
which proves that R−1

x Lxz ∈ Z(N ).

Proposition 3. If a K-loop Q(·) is not a group, the quotient loop
Q/Z(N ) is a group.

Proof. From Proposition 2 it follows that Z(N ) is a normal subloop
of Q(·), hence there exists the quotient loop Q/Z(N ) , in which

aZ(N ) · (bZ(N ) · cZ(N )) =

= aZ(N ) = (ab · c)Z(N ) = (ab · c) · (a, b, c)ZN ) .

As (a, b, c) ∈ Z(N ) , we have
(ab · c) · (a, b, c)Z(N ) = (ab · c)Z(N ) = abZ(N ) · cZN ) =

= (aZ(N ) · bZ(N )) · cZ(N ) .

Thus,
aZ(N ) · (bZ(N ) · cZ(N )) = (aZ(N ) · bZ(N ) · cZ(N )) ,

so the operation (·) on Q/Z(N ) is associative.

De�nition 1. The loop Q(·) is called solvable if it has a series of the
form

Q = Q0 ⊇ Q1 ⊇ Q2 ⊇ ... ⊇ Qm = E ,
where Qi is a normal subloop of Qi−1 and the quotient loop Qi−1/Qi

is an abelian group.

Theorem 1. A K-loop generated by one element is solvable.
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Proof. Let an element a ∈ Q generates the K-loop Q(·) . From Propo-
sition 3 we obtain that Q/Z(N ) is a group. If ϕ is a homomorphism
of Q(·) on Q/Z(N ) , then the group Q/Z(N ) is also generated by
an element, namely by ϕ(a). But a group generated by an element is
cyclic and since Z(N ) is an abelian group, the loop Q(N ) is solv-
able.

Corollary. Every subloop of a K-loop generated by one element is
solvable.

Example 1. ([3], p.193). Let F be a �eld, F ′ be the set of nonzero
elements of F . De�ne on the set Q = F ′ × F the operation (·) as
follows:

(a, x) · (b, y) = (a · b , (a−1 − 1) · (b−1 − 1) + b−1x + y) .

Then Q(·) is a K-loop. The nucleus N of this loop consists of pairs
(1, x), x ∈ F . The operation (·) is commutative on N . Indeed,

(1, x) · (1, y) = (1 , x + y) = (1 , y + x) = (1, y) · (1, x)

hence, N is an abelian group. But then the loop Q(·) from this ex-
ample is solvable (for any �eld F).

For F = Z3 we get a K-loop consisting of six elements:

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 1 6 4 5
3 3 1 2 5 6 4
4 4 5 6 2 3 1
5 5 6 4 1 2 3
6 6 4 5 3 1 2

This loop is generated by any of elements 4, 5, 6, so by Theorem 1 it
is solvable.

Example 2. Let R be a commutative ring (which is not Z2 and the
zero ring). De�ne on Q = R×R the operation (·)



IK-loops 5

(a, x) · (b, y) = (a + b , x + y + ab2 )

for any (a, x), (b, y) ∈ Q. Then Q(·) is a K-loop. If R = Z3, we get a
loop of 9 elements:

• 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 3 1 5 6 4 8 9 7
3 3 1 2 6 4 5 9 7 8
4 4 5 6 8 9 7 3 1 2
5 5 6 4 9 7 8 1 2 3
6 6 4 5 7 8 9 2 3 1
7 7 8 9 2 3 1 6 4 5
8 8 9 7 3 1 2 4 5 6
9 9 7 8 1 2 3 5 6 4

This loop is one generated by each of the elements 4, 5, 6, 7, 8, 9. By
Theorem 1 it is solvable.

Note that in this example the permutation I ( Ix = x−1 ) is an
automorphism of Q(·).

De�nition 2. A K-loop is called an IK-loop if the permutation I is
an automorphism of Q(·), i.e. I(x · y) = Ix · Iy for every x, y ∈ Q.

Proposition 4. If N is the nucleus of the loop Q(·), then for any
x ∈ Q and c ∈ N the equalities

I(c · x) = Ix · Ic , I(x · c) = Ic · Ix (6)

hold up.

Proof. Directly from the equality cx · I(c · x) = 1 it follows that
x · I(c ·x) = x−1 or I(c ·x) = L−1

x Ic or I(c ·x) = LIxL
−1
Ix L−1

x Ic. But
LxLIxc = x · Ixc = (x · Ix) · c = c .

Hence, L−1
Ix L−1

x Ic = Ic and then I(c · x) = LIxIc = Ix · Ic. The
second equality can be proved similarly.
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Proposition 5. The center Z(Q) and the nucleus N of an IK-loop
Q(·) coincide.

Proof. Let Q(·) be an IK-loop. Then the permutation I is an au-
tomorphism of Q(·) and I(x · y) = Ix · Iy for any x, y ∈ Q. In
particular, if x ∈ Q and c ∈ N , then

I(c · x) = Ic · Ix . (7)

From (6) and (7) it follows that

Ix · Ic = Ic · Ix . (8)

From (8) and c ∈ N we obtain c ∈ Z(Q), therefore

N ⊆ Z(Q) . (9)

But from the de�nition of the center of a loop it follows that

Z(Q) ⊆ N . (10)

Thus, from (9) and (10) we get Z(Q) = N .

De�nition 3. A loop Q(·) is nilpotent if it has a �nite invariant series
Q = Q0 ⊇ Q1 ⊇ Q2 ⊇ ... ⊇ Qk = E ,

where every quotient loop Qi−1/Qi is contained in the center of the
loop Q/Qi (i = 1, 2, ..., k).

Theorem 2. Every IK-loop Q(·) is nilpotent.

Proof. Let Q(·) be a nongroup IK-loop, then Q(·) has a nontrivial
nucleus N , which by Proposition 5 coincides with the center of Q(·),
i.e. N = Z(Q). Hence, for the loop Q(·) there is a series of normal
subloops

Q = Q0 ⊇ Q1 ⊇ Q2 = E ,
satisfying the condition: Qi−1/Qi ⊆ Z(Q/Qi) , i = 1, 2 , and this
means that Q(·) is nilpotent.
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