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Quasigroups generated by shift registers
and Feistel networks

Sucheta Chakrabarti, Alexei V. Galatenko, Valentin A. Nosov,
Anton E. Pankratiev and Sharwan K. Tiwari

Abstract. Formula-based specification of large quasigroups with the use of complete
mappings over Abelian groups is investigated. Complete mappings specified by gener-
alized feedback registers and generalized Feistel networks are considered. In both cases
criteria for the mapping completeness are established. A procedure for uniform sampling
of quasigroups induced by complete mappings under study is suggested. The classes of
quasigroups generated by generalized feedback shift registers or generalized Feistel net-
works and by the permutation construction applied to proper families of functions are
shown to be disjoint.

1. Introduction

Finite quasigroups are a promising platform for the implementation of var-
ious cryptographic primitives [9, 18]. In particular, quasigroup-based algo-
rithms regularly take part in NIST contest, e.g., hash functions NaSHA [10]
and EDON-R′ [8] participated in SHA-3 contest, and GAGE and InGAGE
suite [7] was a candidate for Lightweight Cryptography Standard.

Of special interest is the apparatus of binary networks proposed by
Cherednik [2, 3]. The networks are parameterized by either a quasigroup
operation or a left (or right) quasigroup operation. It turned out to be
possible to construct networks such that the transform implemented for
any sufficiently large domain size is transitive or even multiply transitive.

NaSHA hash function uses quasigroups of the order 264; tabular specifi-
cation of such a large quasigroup is impossible due to memory limitations.
A possible way around is to switch to some sort of a formula-based spec-
ification. The solution used in NaSHA is based on a recursive application
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of extended Feistel networks introduced by Markovski and Mileva in [11].
The idea behind extended Feistel networks is the connection between com-
plete mappings of Abelian groups and quasigroups noticed by Sade [17]:
if σ is a complete mapping of an Abelian group G = (Q,+), i.e., both σ(x)
and σ(x) − x are bijective, then (Q, σ(x − y) + y) is a quasigroup. Later
Markovski and Mileva proposed other generalizations of Feistel networks
and established sufficient conditions for completeness of the corresponding
mappings [12, 13].

In our paper we consider generalized feedback shift registers (GFSR)
over Abelian groups, a model that, on the one hand, is a straightforward
extension of classic feedback registers, and, on the other hand, covers the
major part of generalizations proposed by Markovski and Mileva. We prove
a completeness criterion for the mapping specified by generalized feedback
shift registers and use this criterion to obtain the cardinality of the set
of quasigroups generated by GFSRs. We also describe a procedure for
uniform sampling of quasigroups generated by GFSRs. If a quasigroup is
used as a key of a cryptographic transform, then the cardinality of the set
generated determines the strength against brute force attacks; a set of a
high cardinality can also be viewed as an approximation of Cherednik’s
model. Random objects often possess a number of beneficial properties (in
particular, random quasigroups are polynomially complete, i.e. simple and
non-affine [1], and even not isotopic to quasigroups that are polynomially
incomplete [5]), so selection of a quasigroup at random may be a good
idea. Properties of “random” quasigroups generated by generalized feedback
registers are the subject of future research.

The generalized Feistel network is another generalization of extended
Feistel networks from [11]. In this case, we increase the number of non-linear
feedback loops. Similarly to the case of GFSR, we establish a completeness
criterion, evaluate the cardinality of the set of quasigroups generated and
provide a procedure for uniform sampling.

Proper families of functions over Abelian groups and permutation con-
struction applied to proper families over Abelian groups are another way to
specify big families of large quasigroups in a memory-efficient way [14, 15].
Interestingly, this method is “orthogonal” to generalized feedback shift reg-
isters and generalized Feistel networks in a sense that the classes of quasi-
groups generated by generalized feedback shift registers or generalized Feis-
tel networks and by the permutation construction applied to proper families
of functions turn out to be disjoint.
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The rest of the paper is organized as follows. Section 2 contains basic
definitions. Section 3 is devoted to generalized feedback registers. Section 4
covers generalized Feiltel networks. Section 5 is the conclusion.

2. Main definitions

A finite quasigroup is a pair (Q, f), where Q is a finite set and f is a binary
operation on Q invertible in each variable, i.e. for any a, b ∈ Q the equations
f(x, a) = b and f(a, y) = b are uniquely solvable. All objects considered
in our paper are finite, so for the sake of brevity the word “finite” will be
omitted.

Obviously (Q, f) is a quasigroup if and only if the Cayley table of f is a
Latin square, i.e., the elements comprising any row or column are distinct.

Let (Q,+) be a finite Abelian group, σ be a bijective mapping (i.e., a
permutation) on Q. The mapping σ is complete with respect to the group
(Q,+) if the mapping σ′ specified by the rule σ′(x) = σ(x) − x is also
bijective. In this case the mapping σ′ is called the ortomorphism associated
with σ.

Complete mappings can be used to specify quasigroups. Namely, in [17]
it is shown that if σ is complete with respect to an Abelian group (Q,+)
and

f(x, y) = σ(x− y) + y, (1)

then (Q, f) is a quasigroup. It can be easily shown that the assertion also
holds for

f(x, y) = σ(x+ y)− y. (2)

Indeed, the equation

f(a, y) = σ(a+ y)− y = b

has a unique solution y = (σ′)−1 (b− a)− a, and the equation

f(x, a) = σ(x+ a)− a = b

has a unique solution x = σ−1(b+a)−a. If (Q,+) is an elementary Abelian
2-group (i.e., isomorphic to Zm2 for some m ∈ N), then σ(x − y) + y =
σ(x+ y)− y = σ(x+ y) + y.

Assume that |Q| = kn for some k, n ∈ N, k > 2. Then the elements
q0, q1, . . . , qkn−1 of Q can be naturally represented by n-tuples correspond-
ing to the k-ary notation of the element indices. For example, q0 is rep-
resented by the n-tuple (0, . . . 0) and qkn−1 is represented by the n-tuple
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(k− 1, . . . , k− 1). Denote the set {0, 1, . . . , k− 1} by Ek. Denote the set of
all t-ary functions on Ek by P tk. Without loss of generality one can assume
that Q = Enk and write the equality z = f(x, y) in the form

z1 = f1(x1, . . . , xn, y1, . . . , yn)
z2 = f2(x1, . . . , xn, y1, . . . , yn)
...
zn = fn(x1, . . . , xn, y1, . . . , yn),

(3)

where fi ∈ P 2n
k . The relations (3) are referred to as a multivariate repre-

sentation of the operation f .
Assume that k ∈ N, k > 2, G = (Ek,+) is an Abelian group, 0 is the

neutral element of G, n ∈ N, n > 2, G = Gn. We will use the same notation
for operations on G and G; the domain of the operation will be clear from
the context.

A multivariate mapping σ=(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) :E
n
k →

Enk specified by the relations

f1 = x2
f2 = x3
...
fn−1 = xn
fn = x1 + g(x2, . . . , xn),

(4)

where g is some function from En−1k to Ek, is referred to as a feedback shift
register. Obviously the mapping σ is a permutation on Enk . In Section 3 we
will establish a criterion for σ(x) being a complete mapping.

A Feistel network is defined for the case n = 2 by the multivariate
mapping (f1 = x2, f2 = x1 + g(x2)), where g is a mapping on Ek. On the
one hand, it is a special case of a feedback shift register; on the other hand,
it is well known that a Feistel network is a complete mapping if and only if
g is a bijection.

In [11, 12, 13] the authors analyzed a number of generalizations of Feistel
networks. A Parametrized Feistel Network (PFN) is defined for n = 2 and
is specified by the relations f1 = x2 + c1, f2 = x1 + c2 + g(x2), where
g ∈ P 1

k , c1, c2 ∈ Ek. If g is a bijection, then the mapping specified by
PFN is complete [12, Theorem 3.3]. Other generalizations are defined for
arbitrary n. A type-1 Parameterized Extended Feistel Network (PEFN) is
specified by the relations f1 = x2 + g(x1) + c1, f2 = x3 + c2, f3 = x4 + c3,
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. . ., fn−1 = xn + cn−1, fn = x1 + cn, where g ∈ P 1
k , c1, . . . , cn ∈ Ek.

A consistent renumbering of functions and variables makes these relations
take the form f1 = x2 + c1, f2 = x3 + c2, . . ., fn−1 = xn + cn−1, fn =
x1 + g(xn) + cn. Similarly to the case of PFN, if g is a bijection, then
the mapping is complete [12, Theorem 3.4]. A Parameterized Generalized
Feistel Non Linear Feedback Shift Register (PGF-NLFSR) is specified by
the relations f1 = x2 + c1, f2 = x3 + c2, . . ., fn−1 = xn + cn−1, fn =
x2 + x3 + . . . + xn + cn + g(x1) with g ∈ P 1

k and c1, . . . , cn ∈ Ek. If
the group G is isomorphic to Zm2 for some m ∈ N, n is even and g is
a bijection, then the mapping specified by PGF-NLFSR is complete [12,
Theorem 3.5]. Finally, a type-4 Parameterized Extended Feistel Network
(PEFN) is defined by the relations f1 = x2 + c1, f2 = x3 + c2, . . . , fn−1 =
xn + cn−1, fn = x1 + cn + g(x2 + x3 . . . + xn), where c1, . . . , cn are some
constants from Ek, g ∈ P 1

k . Similarly to the case of PGF-NLFSR, if the
group G is isomorphic to Zm2 for some m ∈ N, n is even and g is a bijection,
then the mapping is complete [13, Theorem 5].

Similarly to the constructions from [11, 12, 13] we generalize the defi-
nition of a feedback shift register by adding linear summands to the rela-
tions (4). A multivariate mapping

σ = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) : E
n
k → Enk

specified by the relations

f1 = x2 + c1
f2 = x3 + c2
...
fn−1 = xn + cn−1
fn = x1 + g(x2, . . . , xn) + cn,

(5)

where g is some function from En−1k to Ek, c1, . . . , cn ∈ Ek, is referred to
as a generalized feedback shift register. Identically to the case of “regular”
feedback shift registers, the mapping σ is obviously a permutation on Enk .
Note that PFN, type-1 PEFN (after renumbering) and type-4 PEFN are
generalized feedback shift registers.

Consider another way of generalization of a Feistel network. A general-
ized Feistel network is defined for the case n = 2 by the relations

f1 = s(x2)
f2 = x1 + p(x2),

(6)

where s, p are some functions from Ek to Ek. In Section 4 we will estab-
lish a criterion of mapping completeness for the case of generalized Feistel
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networks.
Proper families of functions over Abelian groups is another way of

a formula-based specification of large families of quasigroups. A family
(g1, . . . , gn), gi ∈ Pnk , i = 1, . . . , n, is proper, if for any α, α′ ∈ Enk , α =
(a1, . . . , an), α′ = (a′1, . . . , a

′
n), α 6= α′, there exists an index i, 1 6 i 6 n,

such that ai 6= a′i and gi(α) = gi(α
′).

Suppose that f ∈ Pnk is some function, 1 6 i 6 n. The variable
xi is said to be dummy (or inessential) for the function f , if for any
a1, . . . , ai−1, ai+1, . . . , an ∈ Ek the function

f ′(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an)

is a constant. In other words, the function f does not depend on the value
of the ith variable. Obviously if a family (g1, . . . , gn) is proper, then for
i = 1, . . . , n the variable xi is dummy for gi.

Let

fi(x1, . . . , xn, y1, . . . , yn) = xi + yi + gi(p1(x1, y1), . . . , pn(xn, yn)), (7)

where p1, . . . , pn are arbitrary functions from P 2
k . If the family (g1, . . . , gn)

is proper, then (f1, . . . , fn) is a multivariate representation of a quasigroup
operation [14, Theorem 1]. Thus a single proper family generates

(
kk

2
)n

quasigroups, though some of these quasigroups may coincide. It is known [6,
Theorem 8] that all quasigroups specified by proper families over Abelian
groups contain a unique subquasigroup of the order 1 (i.e., a “fixed point”
α such that f(α, α) = α). A possible way to overcome this problem is to
use the permutation construction proposed by Piven [15]. The construction
consists in applying permutations β, γ, δ ∈ Sn to the indices of the vari-
ables x, y and functions in the representation (7), respectively, so that the
relations (7) take the form

fδ(i) = xβ(i) + yγ(i) + gi(p1(xβ(1), yγ(1)), . . . , pn(xβ(n), yγ(n))). (8)

If the family (g1, . . . , gn) is proper, then the relations (8) define a quasigroup
operation for any choice of the internal functions p1, . . . , pn and permuta-
tions β, γ, δ [15, Theorem 2]. On the one hand, the permutations can be
stored using O(n log2 n) bytes which is negligible in comparison with the
quasigroup order kn. On the other hand, utilizing permutation construction
allows one to increase the cardinality of the set of quasigroups generated and
to improve some of important properties, e.g., to get rid of subquasigroups
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or affinity. Without loss of generality one can assume that δ is the identical
permutation, since applying a non-trivial δ can be reduced to applying ad-
ditional permutations β and γ and possibly changing the proper family [16,
Theorem 1]. The assertions obtained by Piven are formally established for
the case k = 2, G = (E2,⊕), but the proofs do hold for the general case.

We will show that the set of quasigroups specified by permutation con-
struction applied to proper families of functions does not intersect with
the set of quasigroups specified by generalized feedback shift registers and
generalized Feistel networks.

3. Quasigroups generated by feedback shift registers

Theorem 3.1. A generalized feedback shift register is a complete mapping
if and only if any non-trivial shift changes the value of the function g, i.e.,
for any tuple (a2, . . . , an) ∈ En−1k and any a ∈ Ek, a 6= 0, it holds that
g(a2, . . . , an) 6= g(a2 + a, . . . , an + a).

Proof. Assume that a function g does not satisfy the hypothesis, i.e., there
exist a tuple (a2, . . . , an) ∈ En−1k and a constant a 6= 0 such that g(a2, . . . , an)
= g(a2 + a, . . . , an + a). Show that in this case the mapping σ(x) − x
is not injective. Arbitrarily select the value of the variable x1 and de-
note the selected value by a1. Consider the tuples α = (a1, . . . , an) and
α′ = (a1 + a, . . . , an + a). If 1 6 i 6 n − 1, then the ith component of
σ(α)−α and σ(α′)−α′ equals ai+1+ci−ai. The nth component of σ(α)−α
equals a1+g(a2, . . . , an)+ cn−an. The nth component of σ(α′)−α′ equals
a1+a+g(a2+a, . . . , an+a)+cn−an−a = a1+g(a2, . . . , an)+cn−an+cn,
thus injectivity is violated.

Conversely, assume that a function g satisfies the hypothesis. Assume
that bijectivity of the mapping σ(x) − x is violated. Since the set Enk
is finite, it means that the mapping σ(x) − x is not injective. Assume
that α = (a1, . . . , an) and α′ = (a′1, . . . , a

′
n) are distinct tuples such that

σ(α)− α = σ(α′)− α′. Thus it holds that

a2 + c1 − a1 = a′2 + c1 − a′1
a3 + c2 − a2 = a′3 + c2 − a′2
...
an + cn−1 − an−1 = a′n + cn−1 − a′n−1
a1 + g(a2, . . . , an) + cn − an = a′1 + g(a′2, . . . , a

′
n) + cn − a′n.

(9)
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Note that if a1 = a′1, then the first equality of the system (9) implies that
a2 = a′2, the second equality implies that a3 = a′3, and so on. Hence the
tuples are equal, which contradicts the assumption. Thus, a1 = a′1 + a for
some a ∈ Ek, a 6= 0. The first n − 1 equalities of the system (9) yield the
equalities ai = a′i + a, i = 2, . . . , n. Substitute these relations into the nth
equality of (9):

a1+g(a2, . . . , an)+cn−an = a′1+a+g(a
′
2+a, . . . , a

′
n+a)+cn−a′n−a =

a′1 + g(a′2 + a, . . . , a′n + a) + cn − a′n = a′1 + g(a′2, . . . , a
′
n) + cn − a′n.

As a result, we obtain the equality g(a′2 + a, . . . , a′n + a) = g(a′2, . . . , a
′
n)

which contradicts the assumption.

Corollary 3.2. A feedback shift register is a complete mapping if and only
if any non-trivial shift changes the value of the function g, i.e., for any tuple
(a2, . . . , an) ∈ En−1k and any a ∈ Ek, a 6= 0, it holds that g(a2, . . . , an) 6=
g(a2 + a, . . . , an + a).

Theorem 3.1 can be directly applied to the cases of PFN, type-1 PEFN
(after renumbering) and type-4 PEFN. In the first two cases the function g
is unary, so the condition on g in Theorem 3.1 is equivalent to bijectivity.

Corollary 3.3. A mapping specified by PFN or by type-1 PEFN after
renumbering is complete if and only if the function g is a bijection.

Corollary 3.3 shows that sufficient completeness conditions established
in [12] are actually necessary and sufficient.

If type-4 PEFN is rewritten as a generalized feedback shift register, then
the function g takes the form h(x2+ . . .+xn), where h is a unary function.
If h is not a bijection, i.e., some value b ∈ Ek does not belong to the image
of h, by Dirichlet box principle for any (n − 1)-tuple (a2, . . . , an) the set
{h(a2 + a + . . . + an + a) | a ∈ Ek} contains equal elements. Now assume
that h is a bijection. Then the hypothesis of Theorem 3.1 holds if the
equality x2 + x3 + . . .+ xn = (x2 + a) + (x3 + a)+ . . .+(xn+ a) is satisfied
only for a = 0, or, equivalently, the equation

a+ a+ . . .+ a︸ ︷︷ ︸
n−1

= 0 (10)

has a unique solution a = 0. By Lagrange’s theorem there are no non-
zero solutions if and only if n − 1 and k are coprime. In paricular, if G
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is isomorphic to Zm2 for some m ∈ N, then the equation (10) has a unique
solution a = 0 if and only if n − 1 is odd and thus n is even. Thus the
following assertion holds.

Corollary 3.4. A mapping specified by type-4 PEFN is complete if and
only if the function g is a bijection and (n− 1) and k are coprime.

Corollary 3.4 extends sufficient conditions obtained in [13] for the case
of elementary Abelian 2-groups to necessary and sufficient conditions for
arbitrary Abelian groups.

PGF-NLFSR can be considered in a similar way after another model
generalization (i.e., replacing x1 in the last line of (5) with s(x1), s ∈ P 1

k ;
if s is not a bijection, then, by the cardinality argument, σ is also non-
bijective, otherwise Theorem 3.1 and Corollary 3.4 hold for the generalized
construction).

Generalized feedback shift registers that satisfy the hypothesis of The-
orem 3.1 specify quasigroup operations of the form

z1 = x2 ± y2 + c1 ∓ y1
z2 = x3 ± y3 + c2 ∓ y2
...
zn−1 = xn ± yn + cn−1 ∓ yn−1
zn = x1 ± y1 + g(x2 ± y2, . . . , xn ± yn) + cn ∓ yn.

(11)

It can be easily seen that changing the value of cn can be compensated
by shifting the value of the function g, thus without loss of generality one
can assume that cn = 0.

Remark 3.5. If k = 2, then the requirement imposed by Theorem 3.1
is equivalent to self-duality of the function g. Thus the construction (11)
generates 2n−1 · 22n−2 distinct quasigroup operations of the order 2n.

If k > 2, then the requirement imposed on the function g can be written
out in the following form. The set of input tuples is split into the union of
equivalence classes with respect to shifts ((a2, . . . , an) ∼ (a′2, . . . , a

′
n) if there

exists a constant a ∈ Ek such that ai = a′i+ a, i = 2, . . . , n). Obviously the
cardinality of any class equals k, so the number of classes is the number of
(n− 1)-tuples divided by k, i.e., kn−2. Different inputs from the same class
give different outputs, so inside a class the function g is a permutation. For
any class one can select the permutation arbitrarily (k! options), thus the
number of distinct quasigroups generated is kn−1 · (k!)kn−2 .
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The considerations presented above lead to the following procedure that
allows uniform sampling of quasigroups generated by generalized feedback
shift registers. In the Boolean case (k = 2) one just has to perform uniform
independent selection of the values of the function g on all tuples with x2 = 0
and to extend the function by self-duality. If k > 3, then it is sufficient to
select independent uniformly distributed permutations (e.g., with the help
of well-known Fisher–Yates shuffle, see [4, p. 26–27]) for all equivalence
classes. Constants c1, . . . , cn−1 are selected independently and uniformly
from the set Ek. Obviously, in both cases all results are equiprobable.

Now show that quasigroups specified by the relations (11) can not be
generated by proper families over the group G or by permutation construc-
tion applied to proper families over the group G. The first assertion follows
from the fact that the first variable is dummy for the first function of a
proper family, thus the identity

x2 ± y2 + c1 ∓ y1 = x1 + y1 + g1(p1(x1, y1), . . . , pn(xn, yn))

can not be satisfied for any proper family, since the left-hand side does not
contain x1, but the right-hand side does.

Prove the following assertion required to consider the case of permuta-
tion construction.

Lemma 3.6. Let (g1, . . . , gn) be a proper family, p1, . . . , pn ∈ P 2
k be arbi-

trary functions and
hi(x1, . . . , xn, y1, . . . , yn) = gi(p1(x1, y1), . . . , pn(xn, yn)), i = 1, . . . , n.

Then for any distinct 2n-tuples α = (a1, . . . , an, b1, . . . , bn) and α′ =
(a′1, . . . , a

′
n, b
′
1, . . . , b

′
n) from E2n

k there exists an index j, 1 6 j 6 n, such
that (aj , bj) 6= (a′j , b

′
j), but hj(α) = hj(α

′).

Proof. There are two possible cases. If p1(a1, b1) = p1(a
′
1, b
′
1), . . . , pn(an, bn)

= pn(a
′
n, b
′
n), then the assertion is trivial, since for any j such that (aj , bj) 6=

(a′j , b
′
j) it obviously holds that hj(α) = hj(α

′).
Now, if (p1(a1, b1), . . . , pn(an, bn)) and (p1(a

′
1, b
′
1), . . . , pn(a

′
n, b
′
n)) are dis-

tinct, then by definition of properness there exists an index j such that
pj(aj , bj) 6= pj(a

′
j , b
′
j) (and thus (aj , bj) 6= (a′j , b

′
j)) and gj(p1(a1, b1), . . . ,

pn(an, bn)) = gj(p1(a
′
1, b
′
1), . . . , pn(a

′
n, b
′
n)).

Theorem 3.7. The classes of quasigroups generated by generalized feedback
shift registers using relation (1) or (2) and by permutation construction
applied to proper families over the group G are disjoint.
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Proof. We will conduct the proof for the case of the relation (1). The case
of the relation (2) can be considered in a similar way. Assume that there
exists a generalized feedback shift register that satisfies the hypothesis of
Theorem 3.1, a proper family (g1, . . . , gn), functions p1, . . . , pn ∈ P 2

k and
permutations β and γ (as it was noticed, without loss of generality one may
assume that the permutation δ is identical) such that the corresponding
quasigroup operations coincide, i.e. it holds that

xi+1− yi+1 + ci+ yi = xβ(i) + yγ(i) + gi(p1(xβ(1), yγ(1)), . . . , pn(xβ(n), yγ(n)))
(12)

for i = 1, . . . , n− 1 and
x1 − y1 + g(x2 − y2, . . . , xn − yn) + yn =

= xβ(n) + yγ(n) + gn(p1(xβ(1), yγ(1)), . . . , pn(xβ(n), yγ(n))). (13)

Since the ith variable is dummy for gi, the identities (12) yield the equalities
β(i) = i + 1, γ(i) = i, i = 1, . . . , n − 1. Since β and γ are permutations,
β(n) = 1, γ(n) = n. Cancel equal terms on the left-hand and on the right-
hand side of the identities (12), (13) and impose inverse permutations on
variable indices to obtain the relations

g1(p1(x1, y1), . . . , pn(xn, yn)) = −y2 + c1
g2(p1(x1, y1), . . . , pn(xn, yn)) = −y3 + c2
...
gn−1(p1(x1, y1), . . . , pn(xn, yn)) = −yn + cn−1
gn(p1(x1, y1), . . . , pn(xn, yn)) = −y1 + g(x1 − y2, . . . , xn−1 − yn).

Substitute the values x1 = . . . = xn = y1 = . . . = yn = 0 and x1 = . . . =
xn = y1 = . . . = yn = 1 in these relations. Note that the inputs of the
function g for these substitutions coincide, and the subtracted values yi
are different. Thus there is no index j such that the values of gj coincide
for the substitutions considered, which contradicts Lemma 3.6. Thus the
family (g1, . . . , gn) is not proper.

4. Quasigroups and generalized Feistel networks

Theorem 4.8. A generalized Feistel network specifies a complete mapping
if and only if the mappings s(x) and s(x) + p(x) + x are bijective.

Proof. First note that the relations (6) specify a permutation on E2
k if and

only if s is a bijection. Indeed, if s is not bijective, then the cardinality
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of the image of a generalized Feistel network is less than the cardinality of
the preimage. Conversely, if s is a bijection, then obviously the inverse of
the transform (6) is the mapping (f1 = x2 − p

(
s−1(x1)

)
, f2 = s−1(x1)).

Further in the course of the proof we assume that s is a bijection.
Assume that s(x) + p(x) − x is a bijection. Suppose that there exist

pairs (x1, x2) and (y1, y2) such that

s(x2)− x1 = s(y2)− y1
x1 + p(x2)− x2 = y1 + p(y2)− y2

(14)

Sum these equalities up to obtain the relation

s(x2) + p(x2)− x2 = s(y2) + p(y2)− y2,

thus by the assumption x2 = y2 and so s(x2) = s(y2). The latter equality
and the first equality of (14) directly imply the relation x1 = y1. Hence the
mapping is complete.

Conversely, assume that there exist x2 6= y2 such that s(x2) + p(x2) −
x2 = s(y2) + p(y2)− y2. Let x1 = s(x2), y1 = s(y2) and note that the pairs
(x1, x2) and (y1, y2) satisfy the relations (14). Thus, the mapping is not
complete.

By Theorem 4.8 the number of quasigroups specified by generalized
Feistel networks via the relation (1) or (2) equals (k!)2. Indeed, s(x) and
s′(x) = s(x) + p(x) − x can be set equal to arbitrary permutations on Ek,
and the function p can be easily recovered from s and s′. Uniform and
independent selection of the permutations allows one to perform uniform
sampling on the set of quasigroups generated.

Generalized Feistel networks specify quasigroup operations

f1 = s(x2 ∓ y2)± y1
f2 = x1 ∓ y1 + p(x2 ∓ y2)± y2

It can be easily shown that these operations can not be generated by proper
families over the group G or by permutation construction applied to proper
families over G. Indeed, any transformation of the functions f1, f2 to the
form xi+ yj + g(p(xi′ , yj′)) is such that the third summand is not constant.
On the other hand, all proper families of the size 2 must contain a constant
function [6, Assertion 1].
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5. Conclusion

We considered complete mappings specified by generalized feedback regis-
ters and generalized Feistel networks. In both cases, criteria for the mapping
completeness have been established. A procedure for uniform sampling of
quasigroups induced by complete mappings under study has been suggested.
The classes of quasigroups generated by generalized feedback shift registers
or generalized Feistel networks and by the permutation construction applied
to proper families over the group G are shown to be disjoint.
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