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A note on comaximal graph and maximal topology
on multiplication le-modules

Sachin Ballal, Sadashiv Puranik and Vilas Kharat

Abstract. In this article, the co-maximal graph Γ(M) on le-modules M has been in-
troduced and studied. The graph Γ(M) consists of vertices as elements of RM and two
distinct elements n,m of Γ(M) are adjacent if and only if Rn + Rm = e. We have
established a connection between the co-maximal graph and the maximal topology on
Max(M) in the case of multiplication le-modules. Also, the Beck’s conjecture is settled
for Γ(M) which does not contain an infinite clique.

1. Introduction

An algebraic structure known as a le-module was introduced and explored
by A.K. Bhuniya and M. Kumbhakar [3, 4, 5]. They were inspired to study
abstract submodule theory, in particular le-module by the study of abstract
ideal theory, particularly multiplicative lattices and lattice modules.

Sharma and Bhatwadekar [10] introduced a graph on elements of com-
mutative ring R with unity by taking vertices as elements of R with two
distinct vertices x and y are adjacent if and only if the addition of ideals
generated by x and y is the whole ring R. They have shown that a commu-
tative ring R is finite if and only if the graph associated with it is finitely
colorable. Also, it is proved that the chromatic number of the graph is the
sum of the number of maximal ideals and the number of units of R.

H.R. Maimani and others [6] studied a subgraph of a graph introduced
in [10]. They studied the connectedness and diameter of the subgraph.

K. Samai [9] studied a subgraph Γ2(R) of Γ(R) introduced in [10] with
non-unit elements of R as a vertex set and obtained ring, graph as well
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as the topological properties. Also, investigated the diameter, girth, cycles
and dominating sets of a subgraph Γ2(R).

In [8], Puranik and others studied an associated graph Γ(M) of a le-
module RM with all non-zero proper submodule elements of M as vertices.
Any two distinct vertices n and m are adjacent if and only if their sum is
equal to e, the largest element of RM . Also, the Beck’s conjecture for Γ(M)
is established for coatomic le-modules.

In Section 1 we have recalled the definition of le-module and many con-
cepts from le-modules as well as graph theory. In Section 2, we have settled
Beck’s conjecture for Γ(M) which does not contain an infinite clique. Char-
acterized the subgraph Γ3(M) to be complete bipartite if the number of
maximal elements is exactly 2 and shown that it is n-partite if the num-
ber of maximal elements of M is exactly n. Also, prove that the subgraph
Γ3(M) of Γ(M) is connected with diameter is at most 3. In Section 3, we
have proven that the existence of disjoint closed sets in the maximal spec-
trum ensures the existence of adjacent elements in the co-maximal graph
and vice-versa. Also, it is shown that if the maximal spectrum of multipli-
cation le-modules is Hausdorff, then the diameter of the subgraphs Γ2(M)
and Γ3(M) are at least 3.

Definition 1.1. An le-semigroup (M,+,6, e) is a commutative monoid
with the zero element 0M and is a complete lattice with the greatest element
e, that satisfies m + (∨i∈Imi) = ∨i∈I(m + mi). Then M is called an le-
module over a commutative ring R with unity 1R if there is a mapping
: R×M →M satisfying:

1. r(m1 +m2) = rm1 + rm2

2. (r1 + r2)m 6 r1m+ r2m

3. (r1r2)m = r1(r2m)

4. 1Rm = m ; 0Rm = r0M = 0M

5. r(∨i∈Imi) = ∨i∈I(rmi) holds for all r, ri ∈ R, m,mi ∈ M and i ∈ I
(I is an indexed set).

An element n ∈M is said to be a submodule element if n+n, rn 6 n for
all r ∈ R. The set of all submodule elements of M is denoted by Sub(M).

Observe that if n,m ∈ Sub(M) then n + m ∈ Sub(M), rn ∈ Sub(M),
n ∧ m ∈ Sub(M) and n + n = n. Let M be an le-module, n ∈ M and
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I be an ideal in R. Then In = ∨{
∑k

i=0 rin : k ∈ N; ri ∈ I}. If for each
n ∈ Sub(M), n = Ie for some ideal I of R, then the le-module M is
known as a multiplication le-module. An element m ∈ Sub(M) is said to
be maximal if m < n for some n ∈ Sub(M) implies n = e. The set of
all maximal elements of M is denoted by Max(M). If l ∈ Sub(M) and
n ∈M , then (l : n) = {r ∈ R : rn 6 l} is an ideal in R. If t ∈ Sub(M) then
Ann(t) = {r ∈ R : rt = 0}. Note that Ann(t) is an ideal in R. We define
radical of an le-module M as Rad(M) = ∧m∈Max(M)m.

A graph G is the pair (V (G);E(G)), where V (G) is the vertex set and
E(G) is the edge set. The degree of a vertex n is denoted by deg(n) and
is equal to the number of edges incident on n. In G, the distance between
two distinct vertices n and m, denoted by d(n;m) is the length of the
shortest path between n and m. The diameter of a graph G is given by
diam(G) = sup{d(n;m)|n,m ∈ V (G)}. Graph G is called connected, if
there is a path between any two vertices of G. The length of the shortest
cycle in G is called the girth of G. A graph is called complete if each pair
of vertices in G is adjacent. A complete r − partite graph is one in which
each vertex is joined to every other vertex not in the same subset. A clique
of a graph is its maximal complete subgraph and the number of vertices
in the largest clique of a graph G, denoted by ω(G), is called the clique
number of G. The minimum n for which a graph G is n-colorable is called
the chromatic number of G, and is denoted by χ(G).

Proposition 1.2. (cf. [5]) Let M be an le-module and I be an ideal of
R. Then In ∈ Sub(M) for all n ∈ M and Rn is the smallest element of
Sub(M) covering n i.e. if l ∈ Sub(M) and n 6 l, then n 6 Rn 6 l.

In particular, Rn = n for all n ∈ Sub(M).

Proposition 1.3. Let M be a multiplication le-module. If m ∈ Max(M)
and n1, n2, . . . , nm ∈ Sub(M) such that (∧λnλ) 6 m, then there exist some
λ such that nλ 6 m.

2. Comaximal graph of multiplication le-modules

LetM be an le-module and let Γ(M) consist of vertices as elements ofM and
two distinct elements n,m of Γ(M) are adjacent if and only if Rn+Rm = e.
We denote U(M) = {n ∈M |Rn = e}.

The following theorem shows that the Beck’s conjecture is true for Γ(M)
which does not contain infinite clique.
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Theorem 2.4. Let M be an le-module. If Γ(M) does not contain infinite
clique, then χ(Γ(M)) = ω(Γ(M)) = t + s, where t = |U(M)| and s =
|Max(M)|.

Proof. Note that |U(M)| and |Max(M)| are finite, otherwise Γ(M) contains
infinite clique. Suppose that U(M) = {n1, n2, . . . , nt} and Max(M) =
{m1,m2, . . . ,ms}. Then C = U(M) ∪Max(M) is a clique in Γ(M). Then
χ(Γ(M)) ≥ t + s. Let V1 = {m ∈ M |m 6 m1} and for i = 1, 2, . . . , s;Vi =
{m ∈ M |m 6 mi but m 
 mj for j = 1, 2, . . . , i − 1}. Then M = U(M) ∪
V1∪V2∪ . . .∪Vs is a disjoint union of sets. Define f : M → {1, 2, . . . , t+ s}
as f(ni) = i where ni ∈ U(M) and f(vj) = t + j where vj ∈ Vj for j =
1, 2, . . . , s. If k1, k2 ∈ M with k1 6= k2 and Rk1 + Rk2 = e implies f(k1) 6=
f(k2). Thus the map f gives colouring implies χ(Γ(M)) = t+ s.

In [10] Sharma and Bhatwadekar have shown that, every ring without
infinite clique is finite. But the following example illustrates that even an
infinite le-module can have a finite clique.

Example 2.5. Let M = {ai|i ∈ N} ∪ {bi|i ∈ N} ∪ {0, e} is a le-module
over Z2 with + as ai + aj = a1, bi + bj = b1 and ai + bj = e and scalar
multiplication is 0x = 0 and 1x = x for all x ∈ M. By Proposition 1.2,
each ai is adjacent to each bj , because Rai +Rbj = a1 + b1 = e.
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Figure 1 : Lattice of M.
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Figure 2 : Γ(M)− Comaximal graph of M.

Here Sub(M) = {a1, b1} and we have only 2 vertices clique because ai
is not adjacent to aj and bi is not adjacent to bj for any i, j ∈ N.

We consider subgraph Γ2(M) with the vertex set {n ∈M |n /∈ U(M)}.

Theorem 2.6. The graph with the vertex set U(M) is complete. Moreover,
m 6 Rad(M) if and only if degΓ2(m) = 0, where degΓ2(m) is a degree of
M in a subgraph Γ2(M).
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Proof. 1. Letm1,m2 ∈ U(M). Then Rm1 = e and Rm2 = e. Consequently,
Rm1 +Rm2 = e and hence every pair of elements of U(M) are adjacent.
2. Let m 6 Rad(M), which implies m 6 mi for all mi ∈ Max(M). If
degΓ2(m) 6= 0, then there exists n ∈ Γ2(M) such that Rn+Rm = e. Now,
there exists mj ∈ Max(M) such that n 6 mj . Therefore by Proposition
1.2, we have Rn+Rm 6 Rmj+Rmj = mj+mj = mj 6= e, a contradiction.
Hence degΓ2(m) = 0.

Conversely, suppose that degΓ2(m) = 0. If m 
 Rad(M), then there
exists mj ∈Max(M) such that m 
 mj . Thus Rm+mj = Rm+Rmj = e,
a contradiction to degΓ2(m) = 0.

We consider subgraph Γ3(M) with the vertex set
{n ∈M |n /∈ U(M) and n 
 Rad(M)}.

Theorem 2.7. Let M be an le-module. Then Γ3(M) is a complete bipartite
if and only if |Max(M)| = 2.

Proof. Let Max(M) = {m1,m2}. Then the vertex set of Γ3(M) = V1 ∪ V2,
where

V1 = {m|m 6 m1 and m 
 m2} and V2 = {m|m 6 m2 and m 
 m1}.
Now for n1 ∈ V1 and n2 ∈ V2 we have Rn1 
 m2 and Rn2 
 m1. Hence
Rni 6 Rn1 + Rn2 
 mi for i = 1, 2. But Rn1 + Rn2 ∈ Sub(M) and which
implies Rn1 +Rn2 = e. Therefore Γ3(M) is a complete bipartite.

Conversely, suppose that Γ3(M) is a complete bipartite with V1 and V2

are two parts. Let m1 = ∨{vi1 |vi1 ∈ V1} and m2 = ∨{vi2 |vi2 ∈ V2}. We
first prove that m1 ∈ V1. Otherwise, we have following two cases: Let
vi1 , vj1 ∈ V1.

1. If vi1∨vj1 ∈ U(M), then R(vi1∨vj1) = e. Now vi1∨vj1 6 vi1 +vj1 implies
R(vi1 ∨ vj1) 6 R(vi1 + vj1) = R(vi1) + R(vj1). Therefore R(vi1 ∨ vj1) = e
implies R(vi1) +R(vj1) = e, a contradiction.
2. If vi1 ∨ vj1 ∈ V2, then R(vi1) + R(vi1 ∨ vj1) = e. Now vi1 ∨ vj1 6
vi1 + vj1 implies R(vi1 ∨ vj1) 6 R(vi1 + vj1) = R(vi1) + R(vj1). Therefore
R(vi1) + R(vi1 ∨ vj1) = e implies R(vi1) + R(vi1) + R(vj1) = e. Therefore,
R(vi1) +R(vj1) = e, a contradiction.

Hence m1 ∈ V1 and similarly we have m2 ∈ V2. Since m1 ∈ V1, we have
Rm1 6= e and also Rm1 + Rvi1 = Rm1 6= e implies Rm1 /∈ V2. Similarly
we have Rm2 /∈ V1. If n ∈ Max(M) then n 6 m1 or n 6 m2. Otherwise
Rn+Rm1 = e and Rn+Rm2 = e, which is a contradiction to Γ3(M) is a
complete bipartite.
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Proposition 2.8. Let M be an le-module and n > 1.

1. If |Max(M)| = n <∞, then Γ3(M) is an n-partite.

2. If Γ3(M) is an n-partite, then |Max(M)| 6 n and if Γ3(M) is not an
(n− 1)-partite, then |Max(M)| = n.

Proof. 1. Let Max(M) = {m1,m2, . . . ,mn}. Take V1 = {m ∈ Γ3(M)|m 6
m1} and Vi = {m ∈ Γ3(M)|m 6 mi and m 
 mj for j = 1, 2, . . . , i − 1}
for i = 2, 3, . . . , n. If mi1 ,mi2 ∈ Vi, then Rmi1 + Rmi2 6 Rmi + Rmi =
mi + mi = mi < e. Thus mi1 and mi2 are not adjacent. Similarly no two
elements of V1 are adjacent. Therefore, Γ3(M) is n-partite.

2. Suppose that Γ3(M) is n−partite graph. Let V1, V2, . . . , Vn be the n parts
of vertices of Γ3(M). Suppose that |Max(M)| > n. Let {m1,m2, . . . ,mn+1}
⊆ Max(M). Let ti 6 mi but ti 
 mj for i 6= j. Note that Rti + Rtj >
ti, tj . If Rti + Rtj 6= e then Rti + Rtj 6 mk for some mk ∈ Max(M).
Therefore ti, tj 6 mk, a contradiction. Hence Rti + Rtj = e. Therefore
{t1, t2, . . . , tn+1} is a clique in Γ3(M). As we have V1, V2, . . . Vn are n parts
of vertices of Γ3(M) and {t1, t2, . . . , tn+1} is a clique in Γ3(M), by the
Pigeonhole principle two ti ∈ Vi for some i, a contradiction. Therefore
|Max(M)| 6 n.

Now, if Γ3(M) is not (n− 1)-partite and if |Max(M)| = s < n, then by
part (1), Γ3(M) is s-partite, a contradiction. Hence |Max(M)| = n.

Theorem 2.9. Let M be a multiplication le-module and |Max(M)| > 2. If
Γ3(M) is a complete n-partite, then n = 2.

Proof. Suppose that Γ3(M) is a complete n-partite. Form1,m2 ∈Max(M),
let V1 = {m ∈ Γ3(M)|m 6 m1 and m 
 m2} and V2 = {m ∈ Γ3(M)|m 6
m2 and m 
 m1}. Observe that the elements of Vi are not adjacent
for i = 1, 2 and every element of V1 is adjacent to each element of V2.
Since Γ3(M) is a complete n-partite graph implies V1 and V2 are two
parts of Γ3(M). Now, we claim that Rad(M) = m1 ∧ m2. Suppose that
Rad(M) < m 6 m1 ∧m2 for some m ∈M . This implies m is not adjacent
to any element of V1 and of V2. This is contradiction to Γ3(M) is complete
n-partite. Therefore Rad(M) = m1 ∧m2 and for any m3 ∈ Max(M), we
have m1 ∧m2 ∧m3 = m1 ∧m2. Which implies m1 ∧m2 6 m3. Then by
Propostion 1.3, we have m1 6 m3 or m2 6 m3. As m1,m2,m3 ∈Max(M),
implies m1 = m3 or m2 = m3 and therefore |Max(M)| = 2. Hence by
Theorem 2.7, Γ3(M) is a complete bipartite.
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Theorem 2.10. If M is a multiplication le-module, then Γ3(M) is con-
nected and diam(Γ3(M)) 6 3.

Proof. Let n, l ∈ Γ3(M). Then we consider the following two cases:

1. Suppose that n ∧ l 
 Rad(M). Then n ∧ l 
 m for some m ∈Max(M).
Hence, R(n∧l)+Rm = e and which implies Rn+Rm = e and Rl+Rm = e.
Therefore n−m− l is a path and so d(n,m) 6 2.

2. Suppose that n∧l 6 Rad(M). Let Sn = {m ∈Max(M)|n 6 m} and Sl =
{m ∈ Max(M)|l 6 m} implies Max(M) = Sn ∪ Sl. Because if there exist
m0 ∈ Max(M) such that m0 /∈ Sm and m0 /∈ Sn, then n ∧ l 6 m0 implies
Rn∧Rl 6 m0. Suppose n is adjacent to t in Γ2(M). Then t 
 Rad(M). If
n 6 m1, then t 
 m1 and so t 6 m2 for some m2 ∈ Sl − Sn. If Rt ∧ Rl 6
Rad(M) then by Proposition 1.3, Rt 6 Rad(M) or Rl 6 Rad(M). But l 

m for some m ∈ Sn implies Rl 
 m for some m ∈ Sn and thereforeRl 

Rad(M). Similarly Rt 
 Rad(M). Hence Rt ∧ Rl 
 Rad(M). Therefore
by Case(i), there exists a path between Rt and Rl and d(Rt,Rl) 6 2.
Suppose Rt−m−Rl is a path for some m ∈M and hence n−Rt−m− l
is a path between n and l. Consequently, d(n, l) 6 3.

3. Maximal spectrum and comaximal graph

In [5], Kumbhakar and Bhuniya, studied the Zariski topology on le-modules.
They have defined V (n) = {p ∈ Spec(M)|n 6 p} and V ∗(n) = {p ∈
Spec(M)|(p : e) ⊆ (n : e)} for n ∈ Sub(M). If M is a multiplication
le-module, then {V (n)|n ∈ Sub(M)} forms the Zarisky topology of closed
sets on the prime spectrum Spec(M).

Throughout this section, M denotes a multiplication le-module unless
otherwise stated.

Here, we consider Max(M) = {m ∈ Sub(M)|m is maximal element} as
a subset of Spec(M) = {p ∈ Sub(M)|p is prime element} with the subspace
topology.

Thus, if M(t) = {m ∈Max(M)|t 6 m}, then T = {M(t)|t ∈ Sub(M)}
forms a basis of closed subsets on Max(M).

Lemma 3.11. LetM be a multiplication le-module. If A and B are disjoint
closed subsets of Max(M), then there exist t1, t2 ∈ Sub(M) such that A =
M(t1), B = M(t2) and Rt1 +Rt2 = e. Also if A is closed and open set, then
there exist t1, t2 ∈ Sub(M) such that Rt1 +Rt2 = e and t1 ∧ t2 6 Rad(M).
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Proof. If A and B are closed sets implies there exist t1, t2 ∈ Sub(M) such
that A = M(t1), B = M(t2). We have t1 6 Rt1, t2 6 Rt2 and therefore
t1 6 Rt1 +Rt2 and t2 6 Rt1 +Rt2. If Rt1 +Rt2 6= e, then such that Rt1 +
Rt2 6 m for some m ∈ Max(M). But t1, t2 6 Rt1 + Rt2 6 m and
this implies m ∈ M(t1) ∩M(t2) = A ∩ B, a contradiction. Consequently
Rt1 +Rt2 = e.

Now, if A is both closed and open, then A and Ac are closed sets.
Therefore by above argument there exist t1, t2 ∈ Sub(M) such that A =
M(t1), Ac = M(t2) and Rt1+Rt2 = e. Now we have t1 6 m1 for all m1 ∈ A
and t2 6 m2 for all m2 ∈ Ac. This implies t1 ∧ t2 6 m1 for all m1 ∈ A and
t1 ∧ t2 6 m2 for all m2 ∈ Ac. Therefore t1 ∧ t2 6 m for all m ∈ Max(M).
This implies t1 ∧ t2 6 Rad(M).

Remark 3.12. The existence of disjoint closed subsets in the maximal
spectrum gives the existence of adjacent elements in the comaximal graph.

Proposition 3.13. Let n1, n2, n3 ∈ Γ3(M) be distinct elements and let
D(t) = Max(M)/M(t). Then

(1) n1 is adjacent to n2 and n3 if and only if M(Rn1) ⊆ D(Rn2∧Rn3).

(2) d(n1, n2) = 1 if and only if M(Rn1) ∩M(Rn2) = ∅.
(3) d(n1, n2) = 2 if and only if M(Rn1)∩M(Rn2) 6= ∅ and Rn1∧Rn2 


Rad(M).

(4) d(n1, n2) = 3 if and only if M(Rn1)∩M(Rn2) 6= ∅ and Rn1∧Rn2 6
Rad(M).

Proof. (1). Suppose that M(Rn1) ⊆ D(Rn2 ∧ Rn3). This implies Rn1 +
(Rn2 ∧Rn3) = e. Therefore, Rn1 +Rn2 = e and Rn1 +Rn3 = e. Thus n1

is adjacent to both n2 and n3.

Conversely, suppose that n1 is adjacent to both n2 and n3. Therefore
Rn1 +Rn2 = e and Rn1 +Rn3 = e, which implies M(Rn1) ∩M(Rn2) = ∅
and M(Rn1) ∩M(Rn3) = ∅. On contrary, if there exist m ∈ M(Rn1) and
m /∈ D(Rn2 ∧Rn3), then Rn2 ∧Rn3 6 m, and by Proposition 1.3, we have
Rn2 6 m or Rn3 6 m. Hence we have m ∈ M(Rn2) or m ∈ M(Rn3) and
consequently m /∈M(Rn1), a contradiction.

(2). d(n1, n2) = 1 if and only if Rn1 +Rn2 = e if and only if M(Rn1)∩
M(Rn2) = ∅.

(3). Suppose that,d(n1, n2) = 2.Which implies Rn1 +Rt = e and Rn2 +
Rt = e for some t ∈M . Note that t is adjacent to both n1 and n2 and hence
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by (i) above we have M(Rt) ⊆ D(Rn1 ∧ Rn2). Thus m ∈ M(Rt) implies
m /∈ M(Rn1 ∧ Rn2). Hence Rn1 ∧ Rn2 
 Rad(M). Conversely, suppose
that M(Rn1) ∩M(Rn2) 6= ∅ and Rn1 ∧Rn2 
 Rad(M). Thus there exists
m ∈Max(M) such that Rn1 ∧Rn2 
 m implies Rn1 +m = Rn1 +Rm =
e and Rn2 +m = Rn2 +Rm = e. Therefore n1 −m− n2 is a shortest path
and which implies d(n1, n2) = 2.

(4) Follows from (2), (3) and Theorem 2.10.

Theorem 3.14. Let M be a multiplication le-module with Max(M) is
Hausdorff. Then diam(Γ3(M)) = min{|Max(M)|, 3}. If |Max(M)| = 2,
then gr(Γ3(M)) = 4 or ∞ otherwise gr(Γ3(M)) = 3.

Proof. First we prove that |Max(M)| > 3 if and only if diam(Γ3(M)) = 3.
Suppose that |Max(M)| > 3 and m1,m2,m3 are distinct maximal elements
in M . Since Max(M) is Hausdorff, there are ti ∈ Sub(M) such that mi ∈
D(ti) and D(ti) ∩D(tj) = ∅ for i 6= j. Thus D(ti) ⊆ M(tj) for i 6= j. Now
D(ti)∪M(ti) = Max(M) impliesM(ti)∪M(tj) = Max(M). Hence ti∧tj 6
m for all m ∈Max(M) implies ti∧tj 6 Rad(M). Nowm3 ∈M(t1)∩M(t2)
implies M(t1)∩M(t2) 6= ∅. Therefore by the Proposition 3.13, d(t1, t2) = 3
implies diam(Γ3(M)) = 3.

Conversely, suppose that diam(Γ3(M)) = 3.On contrary if |Max(M)| <
3, then either |Max(M)| = 1 or 2. The case |Max(M)| = 1 is not pos-
sible, because then Γ3(M) will contain only one vertex, a contradiction to
diam(Γ3(M)) = 3. Now suppose that Max(M) = {m1,m2} and for ver-
tices n1, n2 we have d(n1, n2) = 3. Hence there are vertices t1, t2 such that
n1 − t1 − t2 − n2 is a shortest path between n1 and n2. If n1 6 m1 then
t1 6 m2 implies t2 6 m1 and hence n2 6 m2. This gives a contradiction,
because n1 and n2 are not adjacent. Similarly n2 6 m2 is not possible.
Therefore |Max(M)| > 3.

Now let |Max(M)| = 2. Then Max(M) = {m1,m2} and Max(M)
is Hausdorff implies there exist t1, t2 ∈ Sub(M) with M(t1) = {m1} and
M(t2) = {m2}. Therefore, we have t1 + t2 = Rt1 +Rt2 = m1 +m2 = e and
we have shortest cycle of length 4 namely t1−t2−m1−m2−t1. If t1, t2, t3 ∈
Γ3(M), then by the Pigeonhole Principle at least two of them 6 m1 or m2.
Therefore there is no triangle in Γ3(M). If |Mm1 | = 2 or |Mm2 | = 2 then
t 6 m1 implies t = 0 or t = m1 for |Mm1 | = 2. Hence in this case we have
no cycle implies gr(Γ3(M)) =∞.

Corollary 3.15. Let M be a multiplication le-module with Max(M) is
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Hausdorff. Then diam(Γ2(M)) = min{|Max(M)|, 3}. If |Max(M)| = 2,
then gr(Γ2(M)) = 4 or ∞ otherwise gr(Γ2(M)) = 3.
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