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Injective and projective poset acts

Leila Shahbaz

Dedicated to my mother Malak

Abstract. In this paper, after recalling the category PosAct-S of all poset acts over
a pomonoid S; an S-act in the category Pos of all posets, with action preserving mono-
tone maps between them, some categorical properties of the category PosAct-S are
considered. In particular, we describe limits and colimits such as products, coproducts,
equalizers, coequalizers and etc. in this category. Also, several kinds of epimorphisms
and monomorphisms are characterized in PosAct-S. Finally, we study injectivity and
projectivity in PosAct-S with respect to (regular) monomorphisms and (regular) epi-
morphisms, respectively, and see that although there is no non-trivial injective poset act
with respect to monomorphisms, PosAct-S has enough regular injectives with respect to
regular monomorphisms. Also, it is proved that regular injective poset acts are exactly
retracts of cofree poset acts over complete posets.

1. Introduction

General ordered algebraic structures play an important role in mathemat-
ics and other mathematical areas such as analysis, logic, and theoretical
computer science. Combining the notions of a poset and an act, we get a
special kind of these structures, namely S-poset, poset on which the actions
of a pomonoid S preserve the order. Fakhruddin in the 1980s (see [10] and
[11]), has done the preliminary work on properties of S-posets and many
researchers continued in recent papers [4, 6, 7, 8, 13, 14, 15, 17, 18].

The category of poset acts with action preserving monotone maps be-
tween them, first has been introduced and studied by Skornyakov in [19],
[20] and continued by Shahbaz in [16], where congruences in this category
are introduced and characterized and adjoint relations between this cate-
gory and the categories Pos of posets, Act-S of S-acts, and Set of sets, are
discussed.
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The main objective of this paper, is to study some categorical ingredients
of the category of poset acts. In particular, limits and colimits such as
products and coproducts in this category are described. Several kinds of
epimorphisms and monomorphisms are characterized in PosAct-S. Also,
it is proved that regular injective poset acts are exactly retracts of cofree
poset acts over complete posets.

First note that the category of all partially ordered sets (posets) with
order preserving (monotone) maps between them is denoted by Pos. A
poset is said to be complete if each of its subsets has an infimum and a
supremum.

Let S be a monoid with 1 as its identity. A right S-act is a set A
equipped with an action λ : A×S → A, (λ(a, s) is denoted by as) such that
a1 = a and a(st) = (as)t, for all a ∈ A and s, t ∈ S. An S-map f : A→ B
between S-acts is an action preserving map, that is f(as) = f(a)s for each
a ∈ A, s ∈ S. The category of all S-acts and S-maps between them is
denoted by Act-S.

Recall that a monoid (semigroup) S is said to be a pomonoid (posemi-
group) if it is also a poset whose partial order 6 is compatible with its
binary operation (that is, s 6 t, s′ 6 t′ imply ss′ 6 tt′).

A right S-poset over a pomonoid S is a poset A which is also an S-act
whose action λ : A× S → A is order-preserving, where A× S is considered
as a poset with componentwise order. An S-poset map (or morphism) is
an action preserving monotone map between S -posets. Moreover, regular
monomorphisms (equalizers) are exactly order embeddings; that is, mor-
phisms f : A → B for which f(a) 6 f(a′) if and only if a 6 a′, for all
a, a′ ∈ A. The category of all S-posets and S-poset maps between them is
denoted by Pos-S.

A poset act over a pomonoid S is a poset A together with a mapping
A× S → A, (a, s) 7→ as such that

1. a(st) = (as)t,
2. a1 = a,
3. a 6 a′ implies as 6 a′s for every a, a′ ∈ A and s, t ∈ S.

This makes a poset act an ordered algebra in the sense of [3], where all
operations Rs are unary.

By a poset act map between poset acts, we mean an order preserving
map which is also an S-map.
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The category of all poset acts with action-preserving monotone maps
between them is denoted by PosAct-S. It is easily seen that the category
Pos-S is a full subcategory of PosAct-S.

Note that each S-poset is a poset act but the converse is not true gen-
erally. For example, let G = {0, 1}, 00 = 11 = 1, 01 = 10 = 0, 0 < 1 be
the two element pogroup and A = {a, b, c} with the order b < c be a poset.
Then with the action a0 = b0 = c0 = a, a1 = a, b1 = b, c1 = c, A becomes
a poset act which is not an S-poset. This example shows that even when S
is a pogroup the notions of S-poset and poset act are not the same.

If A is a poset act, a congruence θ on A is an equivalence relation on
A that is compatible with the S-action, and has the further property that
A/θ can be equipped with a partial order so that A/θ is a poset act and
the natural map A→ A/θ is a poset act morphism.

Recall that if θ is any binary relation on A, we write a 6θ a
′ if a so-called

θ-chain
a 6 a1θa

′
1 6 a2θa

′
2 6 · · · 6 θa′m 6 a′

from a to a′ exists in A. Congruences on poset acts are characterized the
same as congruences on S-posets.

We recall the following results from [16].

Theorem 1.1. The functor K ′ : PosAct − S −→ Pos − S, given by
K ′(A) = A(S) of all monotone maps from S to A, with pointwise order and
action given by (fs)(t) = f(st) for s, t ∈ S and f ∈ A(S), is a right adjoint
to the inclusion functor i : Pos− S −→ PosAct− S.

Proposition 1.2. The (free) functor F ′
1 : Pos −→ PosAct − S given by

F ′
1(P ) = P ×S is a left adjoint to the forgetful functor U ′

1 : PosAct−S −→
Pos.

Proposition 1.3. The (cofree) functor K ′
1 : Pos −→ PosAct − S, given

by K ′
1(P ) = PS, is the right adjoint to the forgetful functor U ′

1 : PosAct−
S −→ Pos.

Theorem 1.4. The functor H ′ : PosAct − S −→ Pos given by H ′(A) =
A/ν(W ) where ν(W ) is the poset congruence induced on the poset act A
by the set W = {(a, as) : a ∈ A, s ∈ S} is the left adjoint of the functor
G′ : Pos −→ PosAct− S (that equips a poset with the trivial action).
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2. Limits and colimits in PosAct-S

The category PosAct-S is complete and cocomplete. In fact, having the
adjunctions given in Section 1, and the fact that right adjoints preserve
limits and left adjoints preserve colimits, we get that limits and colimits such
as products, coproducts, (sub)equalizers, (sub)coequalizers, (sub)pullbacks,
and (sub)pushouts in PosAct-S exist and are computed the same as the
category of S-posets.

The product of a family of poset acts is their cartesian product, with
componentwise action and order. The coproduct is their disjoint union,
with natural action and componentwise order. In particular, the terminal
poset act is the singleton poset act, and the initial poset act is empty.

The equalizer of a pair f, g : A → B of poset act maps is given by
E = {a ∈ A : f(a) = g(a)} with action and order inherited from A. The
coequalizer of the pair above is the quotient of B by the congruence θ(H)
generated by H = {(f(a), g(a)) : a ∈ A}.

The pullback of poset act maps f : A → C and g : B → C is the sub
poset act P = {(a, b) : f(a) = g(b)} of A× B, together with the restricted
projection maps. The pushout of poset act maps f : A→ B and g : A→ C
is the quotient of the coproduct

B t C = ({1} ×B) ∪ ({2} × C)

by the congruence θ(H) generated by H = {((1, f(a)), (2, g(a))) : a ∈ A}.
By substituting “=” in the definition of the equalizer E above (pullback

P above) by “6”, the subequalizer (subpullback) of f and g is obtained.
(To ensure that all (sub)equalizers and (sub)pullbacks exist, it is assumed
that poset acts may be empty.) Also, by substituting “θ(H)” in the defini-
tion of coequalizer (pushout) by “ν(H)”, the subcoequalizer (subpushout)
is obtained.

3. Injectivity and regular injectivity in PosAct-S

In this section, we first study monomorphisms and regular monomorphisms
and show that monomorphisms inPosAct-S are exactly one-one morphisms
and regular monomorphisms in PosAct-S are exactly order embeddings.
Then recalling the fact that the category Pos does not have any non-trivial
(non-singleton) injective object with respect to monomorphisms, we see that
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PosAct-S has no non-trivial injective object, too. Then we study regular
injectivity, that is, injectivity with respect to regular monomorphisms.

3.1 Monomorphisms and regular monomorphisms

First, we show that the monomorphisms in PosAct-S are just the injective
poset act maps. Note that a monomorphism in PosAct-S is a morphism
that is left cancelable under composition.

Theorem 3.1. Monomorphisms in PosAct-S are exactly one-one mono-
tone S-maps.

Proof. Having the adjunction given in Proposition 1.2, and the fact that
right adjoints preserve limits, and in particular monomorphisms, we get
that monomorphisms in PosAct-S are exactly monotone S-maps which are
monomorphisms in Pos. Then the result follows by the fact that monomor-
phisms in Pos are exactly one-one morphisms by [5], Lemma 1.

Notice that poset act order embeddings are injective, but the converse
is not true. For example, the identity map from the discrete two element
set 1 t 1 = {0, 1} onto the two element chain 2 = {0, 1} with 0 < 1, both
considered as poset acts over a one-element pomonoid, is a monomorphism
but it is not an order embedding.

Recall (see [1] for example) that a monomorphism f is called regular if
it is the equalizer of a pair of morphisms, and f is extremal if, whenever
f = h ◦ g and g is an epimorphism, then g is an isomorphism. Also, a poset
act map f : A → B is called an order embedding if f(a) 6 f(a′) implies
a 6 a′, for all a, a′ ∈ A.

Similar to the case for S-posets, one can show that the classes of regular
and extremal monomorphisms coincide with each other, and in fact are
exactly poset act order embeddings (see [8]).

Theorem 3.2. For a monomorphism h : A→ B in PosAct-S, the follow-
ing are equivalent:

(i) h is regular,
(ii) h is extremal,
(iii) h is an order embedding.

Proof. (i) ⇒ (ii) This is a general category theoretic result.
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(ii) ⇒ (iii) Suppose h is extremal. Let A′ denote the sub poset act with
universe A, equipped with the order � given by

a� a′ ⇔ h(a) 6 h(a′).

The identity map idA : A→ A′, and the map h′ = h : A′ → B are poset act
maps and h = h′ ◦ idA. Since idA is an epimorphism and h is extremal, it
follows that idA is an isomorphism and therefore, h is an order embedding.

(iii) ⇒ (i) Since h is an order embedding, the image of h is a poset act
map isomorphic to A. So, it is enough to prove that in the case where h is the
inclusion map from a sub poset act A into B, h is a regular monomorphism.
Consider the amalgamated coproduct B tA B and the morphisms g1, g2 :
B → B tA B. Then h is obviously the equalizer of g1 and g2.

Definition 3.3. A poset act monomorphism is called subregular if it is the
subequalizer of a pair of poset act maps.

As in the case of equalizers, one can prove that a subequalizer is always
a monomorphism. Also, it is shown that in PosAct-S, not all monomor-
phisms are subregular. In fact, by showing that subregular monomorphisms
are exactly order embedding morphisms and then applying Theorem 3.2, it
is shown that, in PosAct-S, the regular monomorphisms coincide with the
subregular monomorphisms.

Theorem 3.4. A poset act monomorphism h : A→ B is subregular if and
only if it is an order embedding.

Proof. Let h be the subequalizer of f, g : B → C. Define a new order � on
A by

a� a′ ⇔ h(a) 6 h(a′).

One can show that � is a partial order on A, by using the fact that h is
injective. Denoting the corresponding poset act by A′, then h′ = h : A′ → B
is clearly a poset act map. Also, f ◦h′ 6 g◦h′. So, by the universal property
of subequalizers, there exists a unique poset act map k : A′ → A such that
h ◦ k = h′. Using the fact that h is injective, it is concluded that k is
the identity map on A. Then, k being monotone means that h is an order
embedding, as required.

Conversely, suppose that h is an order embedding. Without loss of
generality, assume that A is a sub poset act of B. Consider the poset act
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{x, y} ×B, with action on the right-hand component, and partial order �
given by

(i, b)� (j, b′)⇔ (i = j, b 6 b′) or (i < j, b 6 a 6 b′, for some a ∈ A),

where {x, y} is ordered so that x < y. Then, the natural injection maps
gx, gy : B → {x, y} ×B (gi(b) = (i, b)) are poset act maps, and the natural
embedding of A into B is their subequalizer: if gx(b)� gy(b), then (x, b)�
(y, b), and so there exists a ∈ A such that b 6 a 6 b, i.e. b belongs to A.

3.2 Injective and regular injective poset acts

First recall the following lemma from [9] which will be useful in the sequel.

Lemma 3.5. Let F : C → D and G : D → C be two functors such that
F a G. Also, letM,M′ be certain subclasses of morphisms of C,D, respec-
tively. If for all f ∈M, Ff ∈M′, then for anyM′-injective object D ∈ D,
GD is an M-injective object of C.

As a consequence of Proposition 1.2, Lemma 3.5, and the fact that the
free functor F ′

1 : Pos −→ PosAct − S preserves monomorphisms, we get
the following result.

Theorem 3.6. PosAct-S has no non-trivial injective object.

We now study regular injectivity of poset acts. Recall that a regular
injective object in Pos-S has zero bottom and top elements. As for poset
acts, we have

Proposition 3.7. Every non-trivial (non-singleton) regular injective poset
act A is bounded by two zero elements.

Theorem 3.8. If AS is a regular injective poset act then the S-poset A(S)

is regular injective.

Proof. Having the adjunction given in Theorem 1.1, Lemma 3.5, and the
fact that the inclusion functor i : Pos−S −→ PosAct−S preserves regular
monomorphisms, we get the result.

In the following we give answer to the question that does PosAct-S have
enough regular injectives? That is for any A ∈ PosAct−S, does there exist
a regular injective E ∈ PosAct−S with a regular monomorphisms A→ E?
First recall the following:
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Proposition 3.9 ([5]). Regular injective posets are exactly complete posets.

Now applying Lemma 3.5 to the adjoint pairs in Proposition 1.3, we
have the following two results.

Proposition 3.10. If A is regular injective in Pos then the cofree poset
act AS is regular injective in PosAct-S.

Theorem 3.11. Each poset act can be regularly embedded into a regular
injective poset act.

Proof. Let A be a poset act. Recall that A, as a poset, can be regularly
embedded into a complete poset A (see [5]). Also, by Propositions 3.9 and
3.10, AS is a regular injective poset act. Now, it is straightforward to see
that the map ϕ : A → A

S , given by a 7→ ϕa with ϕa : S → A defined by
ϕa(s) = ↓(as), is the required order embedding poset act map.

Theorem 3.12. A poset act A is regular injective if and only if every regular
embedding A→ B has a left inverse.

Proof. (⇐) Take a regular embedding h : B → C and a poset act map
f : B → A. By Theorem 3.11, A can be regularly embedded into the regular
injective poset act AS via ϕ. Then, since AS is regular injective, there exists
a morphism k : C → A

S such that kh = ϕf . Also, by hypothesis, there
exists a retraction l : A

S → A. Now, g = lk is a poset act map with
gh = lkh = lϕf = idAf = f . The other direction is clear.

As a corollary of Proposition 3.10 we give an explicit characterization
of regular injective poset acts.

Theorem 3.13. A poset act A is regular injective if and only if it is a
retract of a cofree poset act over a complete poset.

Proof. (⇒) Follows from Theorem 3.12.
(⇐) Note that, by Propositions 3.9 and 3.10, a cofree poset act over a

regular injective poset is regular injective. Also, it is straightforward that
a retract of a regular injective poset act is regular injective and so we get
the result.

The following proves the converse of Proposition 3.10. A poset act is
called complete if it is complete as a poset.
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Theorem 3.14. A poset act A is complete if and only if AS is a regular
injective poset act.

Proof. One part was proved in Proposition 3.10. To prove the only if part,
let AS be a regular injective poset act. But, A is a retract of AS . Now,
A being a retract of a regular injective poset act is clearly regular injective
and so it is complete.

4. Projectivity and regular projectivity in PosAct-S

First, we show that the epimorphisms in PosAct-S are just the surjective
poset act maps.

Theorem 4.1. Epimorphisms in PosAct-S are exactly surjective mono-
tone S-maps.

Proof. Having the adjunction given in Proposition 1.3, and the fact that
left adjoints preserve colimits, and in particular epimorphisms, we get that
epimorphisms in PosAct-S are exactly monotone S-maps which are epi-
morphisms in Pos. Then the result follows by the fact that epimorphisms
in Pos are exactly surjective morphisms by [5], Lemma 1.

Recall from [1] that a poset act epimorphism g is called regular if it is the
coequalizer of a pair of poset act maps, and it is called extremal if g = h◦f ,
where h, f are poset act maps and h is a monomorphism, implies that h is
an isomorphism. It is proved that not all epimorphisms in PosAct-S are
regular. By a similar proof for S-posets it can be shown that the classes of
regular and extremal epimorphisms coincide with each other.

Theorem 4.2. For an epimorphism g : A→ B in PosAct-S, the following
assertions are equivalent:

(i) g is regular,
(ii) g is extremal,
(iii) if b 6 b′ in B, then there exist a1, a′1, · · · , an, a′n ∈ A such that

b = g(a1) g(a′1) = g(a2) · · · g(a′n) = b′;

a1 6 a′1 a2 6 a′2 · · · an 6 a′n.

An object P in a category is called projective (regular projective) if given
any epimorphism (regular epimorphism) g : A → B and any morphism
f : P → B there exists a morphism h : P → A such that gh = f .
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Now, recall the following proposition from [8] which is needed in the
sequel.

Proposition 4.3. Let P be a poset. The following assertions are equivalent:
(i) P is projective,
(ii) P is regular projective,
(iii) P has discrete order.

Also, we recall the following fact from category theory (see [2], in which
the dual result appears).

Lemma 4.4. A left adjoint preserves (regular) projectivity if its right ad-
joint preserves (regular) epimorphisms.

Lemma 4.5. The functor K ′
1 : Pos −→ PosAct−S, given in Proposition

1.3, preserves (regular) epimorphisms.

Proof. Let f : P → Q be a regular epimorphism. It is clear that K ′
1(f) :

PS → QS given by f̄(h) = K ′
1(f)(h) = fh, h ∈ PS is a surjective monotone

map. Now, let h1 6 h2. Then for all s ∈ S, h1(s) 6 h2(s) ∈ Q. Since f is
a regular epimorphism, there exist a1s, a2s, · · · , ans, a′1s, · · · , a′ns ∈ A such
that

h1(s) = f(a1s) f(a′1s) = f(a2s) . . . f(a′ns) = h2(s);
a1s 6 a′1s a2s 6 a′2s . . . ans 6 a′ns.

Define the mappings gi : S → P by gi(s) = ais and g′i : S → P by g′i(s) = a′is
for i = 1, · · · , n. Then

h1(s) = fg1(s) fg′1(s) = fg′2(s) . . . fg′n(s) = h2(s);
g1(s) 6 g′1(s) g2(s) 6 g′2(s) . . . gn(s) 6 g′n(s),

and so one has the following,

h1 = f̄(g1) f̄(g′1) = f̄(g′2) . . . f̄(g′n) = h2;
g1 6 g′1 g2 6 g′2 . . . gn 6 g′n,

as required.

Now, applying the above lemmas to the adjoint pair U ′
1 a K ′

1 given in
Corollary 1.3, and using Proposition 4.3, we get the following.

Theorem 4.6. For a (regular) projective poset act A, A is (regular) pro-
jective as a poset, and so it has discrete order.
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Applying Lemma 4.4 and the fact that U ′
1 preserves (regular) epimor-

phisms, and using Proposition 4.3, we get the following.

Theorem 4.7. If P is a (regular) projective poset, then the free poset act
over a poset P , P × S, is (regular) projective, and it has discrete order.

Also, applying Lemma 4.4 to the adjoint pair H ′ a G′ given in Theorem
1.4, and using Proposition 4.3, we obtain:

Theorem 4.8. For a (regular) projective poset act A, the poset H ′(A) =
A/ν(W ) is a (regular) projective poset, and so has discrete order.

Corollary 4.9. If A is a projective poset act then, for every a 6 a′ in A,
there exist c1, . . . , cn, d1 . . . , dn ∈ A, s1, . . . , sn ∈ S such that

a′ 6 c1s1, d1s1 6 c2s2, d2s2 6 c3s3, . . . , dnsn 6 a,

where (ci, di) ∈W for i = 1, 2, . . . , n.

Proof. By the preceding theorem, for a projective poset act A the poset
A/ν(W ) has discrete order. If a 6 a′ then aν(W )a′ and then a′ 6W a which
means
c1, . . . , cn, d1 . . . , dn ∈ A, s1, . . . , sn ∈ S exist as required.
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