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On central digraphs constructed

from left loops and loops
Raja Rawat

Abstract. Let A, be the set of n X n zero-one matrices satisfying the matrix equation
A? = J,, where J, is n x n matrices of all ones. In this article, it is proved that the
number of non-isomorphic left loops of order k gives the lower bound to the size of A,
for n = k2. Mainly we have established that any matrix in .A,, corresponding to loop has

rank 2k — 2, where n = k2, for some positive integer k.

1. Introduction

A central groupoid is an algebraic system with one binary operation, satis-
fying the identity

(z.y)-(y-2) =y (1)

for all z,y and z. In a directed graph D, if there is a unique path of length
two between any two vertices, then it has Property C. That is for vertices
x,y € D, there exists unique vertex z € D, such that,

r—z—y (2)

Such a graph is also called central digraph. Equivalently, the corresponding
adjacency matrix A(T) satisfies the matrix equation A2 = J. In [4], the au-
thor shows the size of the vertex set V(D) of D is n = k2, (k is some positive
integer), where each vertex has both indegree and outdegree k. Then such
a digraph is called k-central. Throughout the article, we will denote A,, as
the set of n x n zero-one matrices satisfying A% = J,, for all A € A,,, where
Jy, is the n x n matrices of all ones and n = k? for some positive integer
k. Due to very rich and peculiar algebraic and combinatorial structures,
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central groupoid and central digraph have attracted the attention of many
researchers, see [3, 4, 5, 6].

A groupoid (S, 0) is called a left quasigroup if the equation a 0 X = b
has a unique solution in S for all a,b € S. A left quasigroup with identity is
called a left loop. A left loop (S, 0) is called a loop if the equation X oa = b
has a unique solution in S for all a,b € S. The problem of finding all the
matrices in A,, is very difficult. However, this article gives a lower bound
to the size of A, through left loops.

In [3], Hoffman posed the problem of determining the number of solu-
tions of the matrix equation A% = .J,,, where A € A,. In [4], it has been
shown that Hoffman’s problem is equivalent to an algebraic problem and
also equivalent to a graph-theoretic problem. In [5], the existence of the
solution of A2 = J,, of all ranks r, where k < r < [(k22+1)] (n = k?), is
proven.

The rest of the paper is organized as follows. In Section 2, we mention
the necessary results and definitions for the sake of completeness of the
article. In Section 3, we give a lower bound to the size of A, through the
left loop. In Section 4, we show that the matrix in A,, corresponding to the
loops of order k has rank 2k — 2, n = k2.

2. Preliminaries

Suppose that D is a directed graph with Property C having a vertex set
denoted as V(D). Define a binary operation “.” on V(D) as z.y = z,
where z,y,z € V(D) and z is the vertex through which there is a unique
path of length two from z to y. By [4, Lemma 1], (V(D),.) is a central
groupoid. Also, given any central groupoid (C,.), define a directed graph
whose vertices are elements of C', and there is an edge from vertex x to z
if z = z.y for some y € C. By |4, Lemma 2|, this directed graph satisfies
Property C. Suppose (.S, 0) is a left quasigroup such that for some element
0e S, x00=0 for all x € S. Define a directed graph Dg on the vertices
S x S having an edge defined by the rule; (z1,22) — (y1,y2) if and only if
[x2 = y1 and yo # 0] or [z oxy = y; and yo = 0]. By [4, Theorem 2|, Dg is
a directed graph with Property C'; that is, Dg is a central groupoid, and the
corresponding central groupoid has the multiplication rule (consequence of
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Theorem 2 of [4, p. 378])

(2,11), ifypr=0andys #0
(r1,22) - (Y1,92) = { (x2,22), ifxgxzo=y1 #0and y2 =0
(z1 % 22,0),if y1 =0

where x1, x2, Y1, Y2, 22 € S Further, the following theorem gives more insight
into this construction.

Theorem 2.1. [4, Theorem 7, p. 388| Let S be a finite set on which two
binary operations o and * are defined, such that, for all a and b, 0 0 b =
0xb=10b,a00=ax0=0, and the equations aox = b, a*xy = b have
unique solution (x,y). Let Dy be the directed graph on the vertices S x S
defined by the rule (x1,x2) — (y1,y2) if and only if [xo = y1 and ya # 0] or
[z1 029 = y1 and yo2 = 0]; and let Do be the directed graph defined similarly
with * replacing o. Then Dy and Do are isomorphic if and only if the binary
operations o and * are isomorphic.

Theorem 2.2. [1, Theorem 2.1, p. 37| Let n be a positive integer. Then
An # 0 if and only if n = k% for some positive integer k. Furthermore, if
n=k%and A € A,, then

(a)
(b) A has eigenvalues k.0, ... .0,
9)

(

Theorem 2.3. [1, Theorem 2.2, p. 38| The Jordan forms of the matrices
in A, are precisely:

[Vn]&@B®&B&®..® B®0, 9,1, VyR—1<p< 2L and B = (O 1>,

all row sums and column sums of A =k,

A has exactly k 1’s on its main diagonal.

0 0

P
Consequently, if A € Ay, then /n < rank(A) < 242

3. Left loop as directed graph with Property C

In this section we will show that for each left loop of order k, there is a
unique (upto isomorphism) central groupoid of order k2, that is a directed
graph on vertex V(D) of size k? with property C. Now onwards, by S we
mean the set {0,1,2,...,k—1}. Suppose (5, ) is a left quasigroup with left
identity 0 and x x0 = 0 for all x € S. We call (S, %) as left quasigroup with
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left identity and right zero. By [4], for each (S, *) there exists a unique (upto
isomorphism) directed graph with property C' on S x S. So to establish a
correspondence between left loop and central groupoid, it is sufficient to
show a correspondence between left loop and left quasigroup with identity
and right zero.

Proposition 3.1. Let (S,*) be left quasigroup such that © x0 = 0 and

[y

Oxx=ux forallz € S. Consider Tg = S. Define a binary operation “o” on
Ts as follows: 0oi=4i00=14; for alli € S and i,j # 0,

o ix] SANE A
1o0] = . .
0 jExJ = 1.
Then (Ts,0) is a left quasigroup with identity 0.
Proof. Clearly 0 is the identity element of (S,0). Consider the equation
ioX =j. (3)

If ix X # 14, then i0 X = j = % X, which has a unique solution. Suppose
i* X =i. Since i # 0 then for i * X = ¢ implies X # 0. Since (S, %) is left
quasigroup, ¢ * X = i has unique solution ¢ (say). That is 10 X = 0 has a
unique solution, t. This completes the proof. O

We call (T, 0) the left loop corresponding to (.S, *).

Proposition 3.2. Let S = {0,1,2,....k—1} = Tg be a set such that (Ts, o)
18 a left quasigroup with identity 0. Let x be the binary operation on S
defined by the rule; x+0 =0, 0xx =z for allz €S and

o i ;107 =0,
tx] =9, . .
10 ;1045 # 0.

Then v * X = j has unique solution in S whenever i,j € S.

Proof. Consider, i x X = j. Now i0 X # 0 implies i 0 X = j = ¢* X, which
has a unique solution. Suppose i o X = 0 then i % X =14. For i # 0, X #£ 0.
Since (Tg,0) is a left quasigroup, i o X = 0 has a unique non-zero solution
t (say). Therefore i * X = i have a unique solution, ¢. This completes the
proof. O
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Let A be the set of all left quasigroups with left identity and right zero
structure on .S and B be the set of all left quasigroup structures on S. Define
amap ¢ : A — Bby ¢(S) =Ts. Then by Proposition. 3.1 and Proposition
3.2, ¢ is bijective.

Proposition 3.3. Let (S1,%1),(S2,%2) be two right quasigroup with left
identity and right zero such that S1 = So = {0,1,2,....k—1}. Let (Ts,,01),
(T’s,,02) be the corresponding quasigroup structures. Then S = So if and
only if Ts, = Tg,.

Proof. Let f: S — Sz be an isomorphism. Let us define a map ¢ : T, —
Ts, such that ¢f(i) = f(i). Since, f is bijective implies ¢ is bijective.
Now,

¢f(i01j):{¢f(i*1j) v # i

0 ,Z*lj:Z
We have, ¢ (i) o2 ¢¢(j) = logk for f(i) =l and f(j) = k. Then we get,
Lo I — l*9 k ilxo k #£
0 Ny

Now,

Lxat =1 f(i) %2 f(§) = f(i) & f(ix)) = f(1) & ixj=i

(f is one-to-one).
Similarly, we get,

Lot # 1o f(i) x2 f(4) # f(i) & f(ix1g) # f(i) & ixj 7.
Therefore ¢¢(io1 j) = ¢5(i) 02 ¢5(j). The converse is easy to verify. [

Remark 3.4. It is clear from above Proposition that if T is a loop then
each column of multiplication table of (S, ) (except first column) has ex-
actly two entries repeated (see example 4.2).

Following theorem is the immediate consequence of Theorem 2.1, Propo-
sition 3.1, Proposition 3.2 and Proposition 3.3.

Theorem 3.5. | A, | > number of non-isomorphic left loops of order k where
n=Fk.
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4. Rank of the matrix in A,

Theorem 4.1. Let (T,0) be a left loop of order k and (S, *) denote a left
quasigroup with left identity and right zero such that T =T. Let Dg be the

associated directed graph with Property C and A(T) be the adjacency matriz
of Dg. Then rank of A(T) is 2k — 2.

Proof. As argued in Section 2, we define directed graph Dg on the vertex
set S'x .S by the rule: (I1,l2) — (mq, mg) if and only if [l = m; and my # 0]
or [l; xlo = my and mg = 0] and its corresponding central groupoid has the
multiplication rule

(la,mq1), if my =0 and mg # 0,
(ll,l2) . (ml,mg) = (lg,ng) N if lg *Ng = My 75 0 and mo = 0,
(ll * lz, 0) y if mp = 0.

Then using this multiplication rule the adjacency matrix A(T') of the di-
rected graph Dg so obtained can be viewed as blocks of a column of size
k (see Figure 1 below). Label the blocks of column as 0,1,2,...,k — 1. We
represent any row vector of A(T') by [x,y], which would denote (k — 1) 1’s
in the 2 block and single 1 in the y” block for « # y. Infact it has single
1 in the position (I * m,0), for [,m # 0. We denote standard row vectors
by [z, ] (all 1’s in 2" block). Therefore first k& rows of A(T) will be rep-
resented by [0,0],[1,1],...,[k — 1,k — 1] which are in standard form, hence
linearly independent. So rank of A(T) is atleast k. By our construction,
every row vector different from standard row vector contains (k — 1) 1's in
one block and a single 1 in another block. The following relation gives the
addition and subtraction of any two row vector of A(T);

(21, 1] + [z2, 2] = [(71, 22), (Y1, y2)]

Hence rank of A(T) is atmost 2k — 2 where [(x1,x2), (y1,y2)] denote a row
with (k — 1) 1’s in 21 and x2 blocks and 1 in y; and ys blocks. Consider
the set of following row vectors {[1,2],[1, 3], ..., [1, k —1]}. Clearly, these can
be reduced to echelon form and so linearly independent. Now we show that
the set M :={[0,0],[1,1],....,[k—1,k—1],[1,2],[1,3],...,[1, k—1]} of 2k — 2
vectors is linearly independent. But if it is not, then a vector, say [1, x| can
be written as a sum and difference of the other row vectors in the set, with
at least one of them being [1,y], for y # 2. To obtain single 1 in the 2"
block, we need to add or subtract with the vector that ends with «, the only
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choice is [z, z], and again we need to add or subtract with the row vector
that starts with . The only choice for this also [z, z]. Hence this addition
and subtraction cannot be done. And so, [1,z] is not a linear combination
of other vectors of the set M. Therefore, it is linearly independent. Also,
any row vector [x,y] which is not in M is a linear combination of vectors
in M, which is clear from the following relation:

[z,9] = [, y] + [, 2] = 1, 2].

Now we show that if (Ts, o) is the loop corresponding to (S, %), all the row
vectors from the set M are in A(T). It is clear that 2x 1 = 3 would give the
row vector [1,3] (see Figure 1, 12! row). By Remark 3.4 there is exactly
k — 2 solutions of the equation y * 1 = x for all 2 < z < k — 1. This would
correspond to k — 2 row vectors [1,z], 2 < < k — 1. Hence, the matrix
A(T) has rank exactly equal to k + (k — 2) = 2k — 2. This completes the
proof. O

Following illustration gives more insight to the above Theorem.

Example 4.2. Consider the following multiplication table of loop structure

(Ts,o0):
o 0O 1 2 3 4
0 0o 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Then corresponding left quasigroup with left identity and right zero
(S, %) is given by

*x 0 1 2 3 4
0of o1 2 3 4
11 0 2 3 4 1
2] 0 3 4 2 1
3] 0 4 3 1 2
4, 0 4 1 2 3

Here k = 5. Following is the adjacency matrix A(T) (Figure 1) formed
by using the rule mentioned in the above Theorem. The first five row
represents the standard row vectors [0,0],[1,1], [2,2],[3,3],[4,4]. So the



R. Rawat

132

rank of A(T) > 5. Clearly, the 7" row has 4 1’s in block 1 and lone 1

in block 2, representing the row vector [1,2]. Similarly, the 12" and 17"

rows represent the vectors [1,3] and [1, 4], respectively. Therefor the set of
vectors M := {[0,0],[1,1],[2,2],[3,3],[4,4],[1,2],[1,3],[1,4]} are in A(T).

By above theorem rank of A(T)

2k —2=8.

11111 228808 000G 0O0OBD BOBGBL
6eBeEE 11111 60BB0G GOQEBD BOOGGL
eeBBEE PREREE 11111 e6e0R BBBGL
fBPBOOOG OOBBOEG GOBBOE 11111 666G
BBBB0E PPOOO 00BGBE @GR 11111

11111 @288 6© 06006060 DOODOD BOBGGL
ee8aee 21111 1eeee 000 86660
6BBBE BBBBE 01111 16000 66666
PP EE OOBEE 0OBBLG 61111 106668
6eeBEE 12000 000GBLE GOORR 81111

[1,2]

11111 22900 00000 0CQCQRD BOBGGL
eeeee 81111 eeeee 16000 6660
6BBoBOOEO BBBBE 1111 6060BE 10666680
peBAEE PRPREE 10000 1111 66668
6BBBOE 128080 0O00GBLG BOBBB 81111

[1,3]

11111 eeeee eeeeee 00000 BBBGL
6eBBOG 61111 60BB0G BOOOE 1066066080
6BB60E BEEEE 1111 1eeep 6eaeae8
eeBEE 168080 06GBGBE 81111 B66GGL
PO OO 0OBBEG 1006060 6OEBE 81111

[1,4]

11111 228808 000G 0O0OBD BOBGBL
6eBAEE 1111 060BB0G GOQEBE 1066060080
eeBEe 1600 01111 6000 BBBGL
6PpBOOOG OBOBBEG 10606080 61111 B6O6OGGL
BBBB0E PPPOO @0BBE 10608080 81111

Figure 1: Adjacency matrix A(T).
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Remark 4.3. However, the converse need not be true. Consider the fol-

lowing multiplication table of (T, o);

0 2 3 4

1

Then it has following adjacency matrix (Figure 2) of rank 8.

11111 00000 0DBOOO DBOBO ©O0OBO
000006 11111 00000 00000 00000
00000 00000 11111 00000 00000
00000 0POOO 0POOO 11111 0600600280
B POOOD PPOOOD PPBOE POBOBE 11111

11111 00000 00000 0DOOOO 00006806
6PBBO 11111 00000 POBOB ODOBOOOB
00000 090000 11111 00000 00000
00000 00000 PO0OLEO 11111 00000
00000 0POOO OPOOO PRPBOOO 11111

11111 900000 00000 00000 P0O0OO0O
00000 01111 10000 00000 00000
000OOO 10000 01111 00000 000080
0P PO0O0D POOOO POOOO 11111 0600006
Q0000 POO0O0O POOOO POOOO 11111

11111 00000 00000 0DOOOO 00006806
6P0BO 81111 00B0OE 100006 0DBOOOG
00000 090000 11111 00000 00000
00000 10000 00000 01111 00000
00000 0POOO OPOOO PRPBOOO 11111

11111 900000 00000 00000 P0O0OO0O
00000 01111 00000 00000 10000
000OOO POOOO 11111 00000 000080
0P PO0O0D POOOO POOOO 11111 0600006
Q0000 10000 00000 POOOO 1111

Figure 2.
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Corollary 4.4. If there are m number of non-isomorphic loops of order k,
then there exists at least m non-permutationally similar matrices in A, of
rank 2k — 2.

Remark 4.5. It is clear that the minimal polynomial of any matrix in A,
is 22(x — k) and so the maximum size of the block in Jordan form is 2.
Then any matrix in A4,, corresponding to the loop (7, 0) will have Jordan
canonical form, [\/n]® B® B ® ... ® B®0,_2,_1, where p = 2k — 3.

p
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