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On the intersection ideal graph of semigroups

Barkha Baloda and Jitender Kumar

Abstract. The intersection ideal graph Γ(S) of a semigroup S is a simple undirected
graph whose vertices are all nontrivial left ideals of S and two distinct left ideals I, J are
adjacent if and only if their intersection is nontrivial. In this paper, we investigate the
connectedness of Γ(S). We show that if Γ(S) is connected, then the diameter of Γ(S) is
at most two. Further, we classify the semigroups S in terms of their ideals such that the
diameter of Γ(S) is two. We obtain the domination number, independence number, girth
and the strong metric dimension of Γ(S). We have also investigated the completeness,
planarity and perfectness of Γ(S). We show that if S is a completely simple semigroup,
then Γ(S) is weakly perfect. Moreover, in this article, we give an upper bound of the
chromatic number of Γ(S). Finally, if S is the union of n minimal left ideals, then we
obtain the metric dimension and the automorphism group of Γ(S).

1. Introduction

Literature is abound with numerous remarkable results concerning a number
of constructions of graphs from rings, semigroups or groups and their ap-
plications, including automata theory, see for instance [1, 11, 19, 28, 29, 30,
31, 36, 43, 45] and references therein. The intersection graph of a semigroup
was introduced by Bosák [10] in 1964. The intersection subsemigroup graph
Γ(S) of S is a simple undirected graph whose vertex set is the collection
of proper subsemigroups of S and two distinct vertices A,B are adjacent if
and only if A ∩B 6= ∅. In [10], it was shown that if S is a nondenumerable
semigroup or a periodic semigroup with more than two elements, then the
graph Γ(S) is connected. Bosák then raised the following open problem:
Does there exists a semigroup with more than two elements whose graph
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is disconnected? Y. F. Lin [33], answered the problem posed by Bosák, in
a negative manner and proved that every semigroup with more than two
elements has a connected graph. Also, B. Ponděliček [37] proved that the
diameter of a semigroup with more than two elements does not exceed three.

Inspired by the work of J. Bosák , Csákány and Pollák [16] studied the
intersection graphs of groups and showed that there is an edge between
two proper subgroups if they have at least two elements common. Further,
Zelinka [46], continued the work for finite abelian groups. R. Shen [40],
characterized all finite groups whose intersection graphs are disconnected.
This solves the problem posed in [16]. The groups whose intersection graphs
of normal subgroups are connected, complete, forests or bipartite are clas-
sified in [21]. Tamizh et al. [41], continued the seminal paper of Csákány
and Pollák to introduce the subgroup intersection graph of a finite group G.
Further, in [34], it was shown that the diameter of the intersection graph of
a finite non-abelian simple group has an upper bound 28. Shahsavari et al.
[39] have studied the structure of the automorphism group of this graph.
The intersection graph on cyclic subgroups of a group has been studied in
[18]. Further, Kayacan et al. [27] studied the conjecture given in [46], that
two (noncyclic) finite abelian groups with isomorphic intersection graphs are
isomorphic. In [25], finite solvable groups whose intersection graphs are not
2-connected and finite nilpotent groups whose intersection graphs are not
3-connected are classified. Further, the dominating sets of the intersection
graph of finite groups have been investigated in [26].

Recently, Chakrabarty et al. [12] introduced the notion of intersection
ideal graph of rings. The intersection ideal graph Γ(R) of a ring R is an
undirected simple graph whose vertex set is the collection of nontrivial left
ideals of R and two distinct vertices I, J are adjacent if and only if I ∩ J 6=
{0}. They characterized the rings R for which the graph Γ(R) is connected
and obtained several necessary and sufficient conditions on a ring R such
that Γ(R) is complete. Jafari et al. [20] studied planarity of the intersection
ideal graphs Γ(R) of a commutative ring R with unity. The domination
number of Γ(R) has been obtained in [22]. Akbari et al. [5] classified
all rings whose intersection graphs of ideals are not connected and also
determined all rings whose clique number is finite. The intersection graphs
of ideals of the direct product of rings have been discussed in [24]. Pucanović
et al. [38] classified all graphs of genus two that are intersection graphs of
ideals of some commutative rings and obtained some lower bounds for the
genus of the intersection graph of ideals of a non local commutative ring.
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Das [17] characterized the positive integer n for which the intersection graph
of ideals of Zn is perfect. The intersection graph of submodules of a module
has been studied in [6, 7, 44]. Moreover, we refer the reader to [8] and
references therein for the graded case. The intersection graph on algebraic
structures has also been studied in [2, 3, 4, 23, 32, 43].

It is pertinent as well as interesting to associate graphs to ideals of a
semigroup as ideals gives a lot of information about the structure of semi-
groups. Motivated with the work of [5, 12], in this paper, we consider the
intersection ideal graph associated with semigroups. The intersection ideal
graph Γ(S) of a semigroup S is an undirected simple graph whose vertex
set is nontrivial left ideals of S and two distinct nontrivial left ideals I, J
are adjacent if and only if their intersection is nontrivial. The paper is ar-
ranged as follows. In Section 2, we state necessary fundamental notions and
recall some necessary results. Section 3 comprises the results concerning the
connectedness of the intersection ideal graph of an arbitrary semigroup. In
Section 4, we study various graph invariants of Γ(S) viz. girth, dominance
number, independence number and clique number etc. Further, if S is the
union of n minimal left ideals then the automorphism group of Γ(S) is
obtained.

2. Preliminaries

In this section, first we recall necessary definitions and results of semigroup
theory from [15]. A semigroup S is a non-empty set together with an as-
sociative binary operation on S. The Green’s L-relation on a semigroup S
defined as x L y ⇐⇒ S1x = S1y where S1x = Sx ∪ {x}. The L-class of an
element a ∈ S is denoted by La. A non-empty subset I of S is said to be a
left [right] ideal if SI ⊆ I[IS ⊆ I] and an ideal of S if SIS ⊆ I. Union of
two left [right] ideals of S is again a left [right] ideal of S. A left ideal I is
maximal if it does not contained in any nontrivial left ideal of S. If S has
a unique maximal left ideal then it contains every nontrivial left ideal of S.
A left ideal I of S is minimal if it does not properly contain any left ideal
of S. It is well known that every non-zero element of a minimal left ideal
of S is in same L-class. If S has a minimal left ideal then every nontrivial
left ideal contains at least one minimal left ideal. If A is any left ideal of S
other than I, then either I ⊂ A or I ∩ A = ∅. Thus we have the following
remark.
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Remark 2.1. Any two different minimal left ideals of a semigroup S are
disjoint.

Remark 2.2. Let S be the union of n minimal left ideals. Then each
nontrivial left ideal is the union of these minimal left ideals.

The following lemma is useful in the sequel and we shall use this without
referring to it explicitly.

Lemma 2.3 ([9, Lemma 2.2]). A left ideal K of S is maximal if and only
if S \K is an L-class.

A semigroup S is said to be simple if it has no proper ideal. Let E be
the set of idempotents of a semigroup S. If e, f ∈ E , we define e 6 f to
mean ef = fe = e. Recall that a semigroup S is called completely simple if
S is simple and contains a primitive idempotent. By primitive idempotent
we mean an idempotent which is minimal within the set of all idempotents
under the relation 6.

Lemma 2.4 ([15, Corollary 2.49]). A completely simple semigroup is the
union of its minimal left (right) ideals.

We also require the following graph theoretic notions [42]. A graph Γ is a
pair Γ = (V,E), where V = V (Γ) and E = E(Γ) are the set of vertices and
edges of Γ, respectively. We say that two different vertices u, v are adjacent ,
denoted by u ∼ v or (u, v), if there is an edge between u and v. We write
u � v, if there is no edge between u and v. The distance between two
vertices u, v in Γ is the number of edges in a shortest path connecting them
and it is denoted by d(u, v). If there is no path between u and v, we say
that the distance between u and v is infinity and we write as d(u, v) =∞.
The diameter diam(Γ) of Γ is the greatest distance between any pair of
vertices. The degree of the vertex v in Γ is the number of edges incident
to v and it is denoted by deg(v). A cycle is a closed walk with distinct
vertices except for the initial and end vertex, which is equal and a cycle of
length n is denoted by Cn. The girth of Γ is the length of its shortest cycle
and is denoted by g(Γ). A subset X of V (Γ) is said to be independent if
no two vertices of X are adjacent. The independence number of Γ is the
cardinality of the largest independent set and it is denoted by α(Γ). A
graph Γ is bipartite if V (Γ) is the union of two disjoint independent set. It
is well known that a graph is bipartite if and only if it has no odd cycle [42,
Theorem 1.2.18]. A connected graph Γ is Eulerian if and only if the degree
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of every vertex is even [42, Theorem 1.2.26]. A subgraph of Γ is a graph Γ′

such that V (Γ′) ⊆ V (Γ) and E(Γ′) ⊆ E(Γ). A subgraph Γ′ of Γ is called
an induced subgraph by the elements of V (Γ′) ⊆ V (Γ) if for u, v ∈ V (Γ′),
we have u ∼ v in Γ′ if and only if u ∼ v in Γ. The chromatic number of
Γ, denoted by χ(Γ), is the smallest number of colors needed to color the
vertices of Γ so that no two adjacent vertices share the same color. A clique
in Γ is a set of pairwise adjacent vertices. The clique number of Γ is the
size of the maximum clique in Γ and it is denoted by ω(Γ). It is well known
that ω(Γ) 6 χ(Γ) (see [42]). A graph Γ is weakly perfect if ω(Γ) = χ(Γ).
A graph Γ is perfect if ω(Γ′) = χ(Γ′) for every induced subgraph Γ′ of Γ.
Recall that the complement Γ of Γ is a graph with the same vertex set as
Γ and distinct vertices u, v are adjacent in Γ if they are not adjacent in Γ.
A subgraph Γ′ of Γ is called a hole if Γ′ is a cycle as an induced subgraph,
and Γ′ is called an antihole of Γ if Γ′ is a hole in Γ.

Theorem 2.5. [14] A finite graph Γ is perfect if and only if it does not
contain a hole or antihole of odd length at least 5.

A subset D of V (Γ) is said to be a dominating set if any vertex
in V (Γ) \ D is adjacent to at least one vertex in D. If D contains only
one vertex, then that vertex is called dominating vertex. The domination
number γ(Γ) of Γ is the minimum size of a dominating set in Γ. A graph
Γ is said to be planar if it can be drawn on a plane without any crossing
of its edges. In Γ, a vertex z resolves a pair of distinct vertices x and y
if d(x, z) 6= d(y, z). A resolving set of Γ is a subset R ⊆ V (Γ) such that
every pair of distinct vertices of Γ is resolved by some vertex in R. The
metric dimension of Γ, denoted by β(Γ), is the minimum cardinality of a
resolving set of Γ. For vertices u and v in a graph Γ, we say that z strongly
resolves u and v if there exists a shortest path from z to u containing v, or
a shortest path from z to v containing u. A subset U of V (Γ) is a strong
resolving set of Γ if every pair of vertices of Γ is strongly resolved by some
vertex of U . The least cardinality of a strong resolving set of Γ is called
the strong metric dimension of Γ and is denoted by sdim(Γ). For vertices
u and v in a graph Γ, we write u ≡ v if N [u] = N [v]. Notice that that ≡ is
an equivalence relation on V (Γ). We denote by v̂ the ≡-class containing a
vertex v of Γ. Consider a graph Γ̂ whose vertex set is the set of all ≡-classes,
and vertices û and v̂ are adjacent if u and v are adjacent in Γ. This graph
is well-defined because in Γ, w ∼ v for all w ∈ û if and only if u ∼ v. We
observe that Γ̂ is isomorphic to the subgraph RΓ of Γ induced by a set of
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vertices consisting of exactly one element from each ≡-class. Subsequently,
we have the following result of [35] with ω(RΓ) replaced by ω(Γ̂).

Theorem 2.6 ([35, Theorem 2.2]). For any graph Γ with diameter 2,
sdim(Γ) = |V (Γ)| − ω(Γ̂).

3. Connectivity of the intersection ideal graph Γ(S)

In this section, we investigate the connectedness of Γ(S). We show that
diam(Γ(S)) 6 2 if it is connected. Also, we classify the semigroups, in
terms of their left ideals, such that the diameter of Γ(S) is two.

Theorem 3.1. The intersection ideal graph Γ(S) is disconnected if and
only if S contains at least two minimal left ideals and every nontrivial left
ideal of S is minimal as well as maximal.

Proof. First suppose that Γ(S) is not connected. Then S has at least two
nontrivial left ideals I1 and I2. Without loss of generality, assume that
I1 ∈ C1 and I2 ∈ C2, where C1 and C2 are distinct components of Γ(S).
If I1 is not minimal then there exists at least one nontrivial left ideal Ik
of S such that Ik ⊂ I1 so that their intersection is nontrivial. Therefore,
I1 ∼ Ik. Now if the intersection of I2 and Ik is nontrivial then I1 ∼ Ik ∼ I2, a
contradiction. Therefore the intersection of I2 and Ik is trivial. If I2∪Ik 6= S
then I1 ∼ I2 ∪ Ik ∼ I2, a contradiction. Thus, Ik ∪ I2 = S. It follows that
I1 ∼ I2, again a contradiction. Thus I1 is minimal. Similarly, we get I2 is
minimal.

Further assume that I1 is not maximal. Then there exists a nontrivial
left ideal Ik of S such that I1 ⊂ Ik so that I1 ∼ Ik. If I1 ∪ I2 6= S then
I1 ∼ I1 ∪ I2 ∼ I2, a contradiction to the fact that Γ(S) is disconnected. It
follows that I1 ∪ I2 = S so that the intersection of Ik and I2 is nontrivial.
Thus we have I1 ∼ Ik ∼ I2, a contradiction. Hence I1 is maximal. Similarly,
we observe that I2 is maximal. The converse follows from the Remark
2.1.

Corollary 3.2. If the graph Γ(S) is disconnected then it is a null graph
(i.e. it has no edge).

Theorem 3.3. The intersection ideal graph Γ(S) is disconnected if and
only if S is the union of exactly two minimal left ideals.
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Proof. First note that the inclusion ideal graph In(S) (see [9]) is a spanning
subgraph of Γ(S). Thus, the result follows from Lemma 3.3, Theorem 3.4
of [9] and Theorem 3.1.

Theorem 3.4. If the intersection ideal graph Γ(S) is connected then we
have diam(Γ(S)) 6 2.

Proof. Let I1, I2 be two nontrivial left ideals of S. If I1 ∼ I2 then d(I1, I2)
= 1. If I1 � I2 i.e. I1∩ I2 is trivial then in the following cases we show that
d(I1, I2)6 2.
Case 1. I1 ∪ I2 6= S. Then I1 ∼ (I1 ∪ I2) ∼ I2 so that d(I1, I2) = 2.
Case 2. I1 ∪ I2 = S. Since Γ(S) is a connected graph, there exists a
nontrivial left ideal Ik of S such that either I1 ∩ Ik is nontrivial or I2 ∩ Ik
is nontrivial. Now we have the following subcases.

Subcase 1. I1 6⊂ Ik and Ik 6⊂ I1. Since I1 6⊂ Ik it follows that there
exists x ∈ Ik but x /∈ I1 so that x ∈ I2. Consequently, I2 ∩ Ik is nontrivial.
Therefore, we get a path I1 ∼ Ik ∼ I2 of length two. Thus, d(I1, I2) = 2.

Subcase 2. Ik ⊂ I1. There exists x ∈ I1 but x /∈ Ik. If I2∪Ik = S then
x ∈ I2. Thus, we get I1 ∩ I2 is nontrivial, a contradiction. Consequently,
I2∪ Ik 6= S. Further, we get a path I1 ∼ (I2∪ Ik) ∼ I2 of length two. Thus,
d(I1, I2) = 2.

Subcase 3. I1 ⊂ Ik. Since I1 ∪ I2 = S we get Ik ∪ I2 = S. Further,
the intersection of Ik and I2 is nontrivial. Consequently, I1 ∼ Ik ∼ I2

gives a path of length two between I1 and I2. Thus, d(I1, I2) = 2. Hence,
diam(Γ(S)) 6 2.

Lemma 3.5. Let S be a semigroup having minimal left ideals. Then Γ(S)
is complete if and only if S has a unique minimal left ideal.

Proof. Suppose that S contains a unique minimal left ideal I1. Note that
every nontrivial left ideal of S contains at least one minimal left ideal. Since
I1 is unique then it must contained in every nontrivial left ideals of S. Thus,
the graph Γ(S) is complete.

Conversely, suppose that Γ(S) is a complete graph. On the contrary, if
S has at least two minimal left ideals I1 and I2, then I1 � I2 by Remark
2.1, a contradiction to the fact that Γ(S) is complete. Thus S has a unique
minimal left ideal.

Lemma 3.6. The graph Γ(S) is regular if and only if either Γ(S) is null
or a complete graph.
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Proof. First suppose that Γ(S) is not a null graph. Suppose S has at least
two minimal left ideals I1 and I2. Since Γ(S) is not a null graph, we get I1

and I1 ∪ I2 form nontrivial left ideals of S and I1 ∼ (I1 ∪ I2). If J is any
nontrivial left ideal of S such that J ∼ I1, then J ∼ (I1∪I2). It follows that
every nontrivial left ideal of S which is adjacent with I1 is also adjacent with
(I1 ∪ I2) and I2 ∼ I1 ∪ I2 but I2 � I1 implies that deg(I1) < deg(I1 ∪ I2), a
contradiction. Therefore, Γ(S) is a complete graph.

Next we classify the semigroups such that the diameter of intersection
ideal graph Γ(S) is two.

Theorem 3.7. Let S be a semigroup having minimal left ideals. Then for
a connected graph Γ(S), we have diam(Γ(S)) = 2 if and only if S has at
least two minimal left ideals.

Proof. Suppose that diam(Γ(S)) = 2. Assume that I1 is the only minimal
left ideal of S. Since I1 is a unique minimal left ideal, we have I1 ⊂ K, for
any nontrivial left ideal K of S. Therefore, for any nontrivial left ideals J
and K, we have I1 ⊂ (J ∩K). Consequently, d(J,K) = 1 for any J,K ∈
V (Γ(S)). Therefore S has at least two minimal left ideals. Conversely,
suppose that S has at least two minimal left ideals I1 and I2. Then by
Remark 2.1, we have I1 � I2. Consequently, by Theorem 3.4, d(I1, I2) = 2.
Thus, diam(Γ(S)) = 2.

4. Invariants of Γ(S)

In this section, first we obtain the girth of Γ(S). Then we discuss planarity
and perfectness of Γ(S). Also we classify the semigroup S such that Γ(S)
is bipartite, star graph and tree, respectively. Further, we investigate the
other graph invariants viz. clique number, independence number and strong
metric dimension of Γ(S).

Theorem 4.1. Let S be a semigroup such that Γ(S) contains a cycle. Then
g(Γ(S)) = 3.

Proof. If Γ(S) is disconnected or a tree, then clearly g(Γ(S)) =∞. Suppose
that the semigroup S has n minimal left ideals. Now we prove the result
by observing the following cases.
Case 1. n = 0. If S has no nontrivial left ideals then there is nothing to
prove. Otherwise, there exists a chain of nontrivial left ideals of S such that
I1 ⊃ I2 ⊃ · · · ⊃ Ik ⊃ · · · . Thus, g(Γ(S)) = 3.
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Case 2. n = 1. Suppose that I1 is the only minimal left ideal of S. Since
I1 is a unique minimal left ideal, we obtain I1 ⊂ K, for any nontrivial
left ideal K of S. Therefore, for any nontrivial left ideals I and J , we
get I1 ⊂ I ∩ J 6= ∅. If S has at least three nontrivial left ideals, then
g(Γ(S)) = 3. Otherwise, g(Γ(S)) =∞.
Case 3. n = 2. Let I1, I2 be two minimal left ideals of S. If I1 ∪ I2 = S
then by Theorem 3.3 and Corollary 3.2, g(Γ(S)) =∞. If I1 ∪ I2 6= S, then
J = I1 ∪ I2 is a nontrivial left ideal of S. Suppose I1, I2 and J are the
only nontrivial left ideals of S. Then I1 ∼ J ∼ I2 and so g(Γ(S)) = ∞.
Further, assume that S has a nontrivial left ideal K other than I1, I2 and J .
Since I1, I2 are minimal left ideals of S, we have either I1 ⊂ K or I2 ⊂ K.
Without loss of generality, assume that I1 ⊂ K. Then I1 ∼ K ∼ J ∼ I1. It
follows that g(Γ(S)) = 3.
Case 4. n > 3. Let I1, I2, I3 be the minimal left ideals of S. Then we
have a cycle (I1 ∪ I2) ∼ (I2 ∪ I3) ∼ (I1 ∪ I3) ∼ (I1 ∪ I2) of length 3. Thus,
g(Γ(S)) = 3.

Let Min(S) (Max(S)) be the set of all minimal (maximal) left ideals of
S. By a nontrivial left ideal Ii1i2···ik , we mean Ii1 ∪ Ii2 ∪ · · · ∪ Iik , where
Ii1 , Ii2 , · · · , Iik ∈ Min(S).

Theorem 4.2. Let Γ(S) be the intersection ideal graph of S. Then the
following statements hold:

(i) If Γ(S) is planar then |Min(S)| 6 3.

(ii) Let S be a semigroup such that it is a union of n minimal left ideals.
Then Γ(S) is planar if and only if n 6 3.

Proof. (i) Suppose that |Min(S)| = 4 with Min(S) = {I1, I2, I3, I4}. Then
note that the subgraph induced by the vertices I1, I12, I123, I14 and I124 is
isomorphic to K5. Thus, Γ(S) is nonplanar.

(ii) The proof for Γ(S) is nonplanar for n > 4 follows from part (i). If
n = 2 then by Corollary 3.2 and Theorem 3.3, Γ(S) is planar. For n = 3,
Γ(S) is planar as shown in Figure 1.

Theorem 4.3. Let Γ(S) be the intersection ideal graph of S. Then the
following statements hold:

(i) If Γ(S) is a perfect graph then |Min(S)| 6 4.
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I1 I2

I3

I12

I13
I23

Figure 1: Planar drawing of Γ(S) for S = I123.

(ii) Let S be the union of n minimal left ideals. Then Γ(S) is perfect if
and only if n 6 4.

Proof. (i) Suppose that |Min(S)| = 5 with Min(S) = {I1, I2, I3, I4, I5}.
Note that I12 ∼ I23 ∼ I34 ∼ I45 ∼ I15 ∼ I12 induces a cycle of length 5.
Then by Theorem 2.5, Γ(S) is not perfect.

(ii) The proof for Γ(S) is not a perfect graph for n > 5 follows from part
(i). If n = 2 then by Corollary 3.2 and Theorem 3.1, Γ(S) is disconnected.
Thus, being a null graph, Γ(S) is perfect. For n ∈ {3, 4}, we show that
Γ(S) does not contain a hole or an antihole of odd length at least five (cf.
Theorem 2.5). If n = 3, Γ(S) is perfect as shown in Figure 1. If n = 4 then
from Figure 2, note that Γ(S) does not contain a hole or an antihole of odd
length at least five.

Theorem 4.4. Let S be a semigroup having minimal left ideals such that
V (Γ(S)) > 1. Then the following conditions are equivalent:

(i) Γ(S) is a star graph.

(ii) Γ(S) is a tree.

(iii) Γ(S) is bipartite.

(iv) Either S has exactly three nontrivial left ideals I1, I2 and I12 such that
I1 and I2 are minimal or S has two nontrivial left ideals I1, I2 such
that I1 ⊂ I2.

Proof. We prove (ii), (iii) ⇒ (iv). The proof of remaining parts is straight-
forward. Suppose Γ(S) is a tree. Then clearly |Min(S)| 6 2. Otherwise,
for minimal left ideals I1, I2, I3 we have I12 ∼ I13 ∼ I23 ∼ I12 a cycle, a
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I1

I2
I3

I4

I12

I13

I14

I23

I24

I34

I123

I234

I124

I134

Figure 2: The intersection graph Γ(S) for S = I1234.

contradiction. Suppose that |Min(S)| = 1. Let I1 be the unique minimal
left ideal of S. Consequently, I1 is contained in all the other nontrivial left
ideals of S. If S has at least three nontrivial left ideals then we get a cycle,
a contradiction. Thus |V (Γ(S))| = 2. Now we assume that |Min(S)| = 2.
Let I1, I2 be two minimal left ideals of S. Let S = I12. Then by Corollary
3.2 and Theorem 3.3, Γ(S) is disconnected so is not a tree. Thus S 6= I12.
Then J = I12 is a nontrivial left ideal of S. Suppose S has a nontrivial left
ideal K other than I1, I2 and J . Without loss of generality, assume that
I1 ⊂ K then we get a cycle I1 ∼ I12 ∼ K ∼ I1, a contradiction. Thus, for
S 6= I12, we have V (Γ(S)) = {I1, I2, I12}.

(iii) ⇒ (iv). If Γ(S) is bipartite then we have |Min(S)| 6 2. In the
similar lines of the work discussed above, (iv) holds.

Theorem 4.5. If S is the union of n minimal left ideals, then γ(Γ(S)) = 2.
Otherwise, γ(Γ(S)) = 1.

Proof. Suppose that S is the union of n minimal left ideals, that is, S =
I12···n. Note that there is no dominating vertex in Γ(S) so that γ(Γ(S)) > 2.
Now we show that D = {I1, I23···n} is a dominating set. Since S is the
union of n minimal left ideals so any nontrivial left ideal of S is the union
of these minimal left ideals (cf. Remark 2.2). Let J ∈ V (Γ(S)) \ D be
any nontrivial left ideal of S. Then J is a union of k minimal left ideals
of S, where 1 6 k 6 n − 1. If I1 ⊂ J , then we are done. Otherwise, J



12 B. Baloda and J. Kumar

must be the union of I2, I3, . . . , In. It follows that the intersection of J and
I23···n is nontrivial. Consequently, J ∼ I23···n. Thus D is a dominating set.
Further, suppose that S 6= I12···n. It follows that J = I12···n is a nontrivial
left ideal of S. It is well known that every nontrivial left ideal of S contains
at least one minimal left ideal. Consequently, for any nontrivial left ideal K
of S, we have J ∩K is nontrivial. Thus, J is a dominating vertex. Hence,
γ(Γ(S)) = 1. This completes the proof.

Theorem 4.6. Let S be a semigroup with n minimal left ideals. Then the
independence number of Γ(S) is n.

Proof. Let Min(S) = {Ii1 : i1 ∈ [n]} be the set of all minimal left ideals of
S. Then, by Remark 2.1, Min(S) is an independent set of Γ(S). It follows
that α(Γ(S)) > n. Now we prove that for any arbitrary independent set U ,
we have |U | 6 n. Assume that I ∈ V (Γ(S)) such that I ∈ U . Since every
nontrivial left ideal contains at least one minimal left ideal. Without loss
of generality, assume that Ii1i2···ik ⊆ I for some i1, i2, · · · , ik ∈ [n]. Then
note that |U | 6 n−k+ 1. Otherwise, there exist at least two nontrivial left
ideals which are adjacent, a contradiction. Consequently, we have |U | 6 n.
Thus, α(Γ(S)) = n.

Lemma 4.7. Let S be a semigroup with n (> 3) minimal left ideals. Then
there exists a clique in Γ(S) of size n.

Proof. Let I1, I2, . . . , In be n minimal left ideals. Consider C = {Ii1i2···in−1 :
i1, i2, . . . , in−1 ∈ [n]}. Clearly, |C| = n. Notice that for any J,K ∈ C, we
have J ∩K is nontrivial so that J ∼ K. Thus, C becomes a clique of size
n.

Theorem 4.8. Let S be a semigroup with n(> 1) minimal left ideals. Then
ω(Γ(S)) = n if and only if one of the following holds:

(i) S is the union of exactly three minimal left ideals.

(ii) S has only two minimal left ideals I1 and I2 and a unique maximal
left ideal I12.

Proof. First suppose that ω(Γ(S)) = n. Assume that S has n(> 4) minimal
left ideals, namely I1, I2, . . . , In. Then C = {Ii1i2···in−1 , Ii1i2 : i1, i2, . . . , in ∈
[n]} forms a clique of size greater than n of Γ(S). It follows that ω(Γ(S)) >
n. If n = 3, assume that S 6= I123. Then C = {I12, I13, I23, I123} forms a
clique of size four of Γ(S). It follows that S = I123. For n = 2, we have
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either S = I12 or S 6= I12. For S = I12, by Corollary 3.2 and by Theorem
3.3, Γ(S) is disconnected. Thus, ω(Γ(S)) < n. Thus S 6= I12. If S has
a nontrivial left ideal K /∈ {I1, I2, I12} then we get a clique of size three.
Therefore, I12 is a unique maximal left ideal. Converse follows trivially.

Lemma 4.9. If Γ(S) is connected then Max(S) forms a clique of Γ(S).

Proof. We prove the result by showing that if J,K ∈ Max(S) then J ∼ K.
Let J � K. The maximality of J and K follows that J∪K = S. By Lemma
2.3, S \ J and S \K are L−classes of S. It follows that J and K are only
nontrivial left ideals of S. Thus, being a null graph Γ(S) is disconnected, a
contradiction.

Theorem 4.10. If K is a maximal left ideal of S such that deg(K) is finite,
then χ(Γ(S)) <∞.

Proof. Let J be an arbitrary nontrivial left ideal of S such that J � K. Note
that J is the minimal left ideal of S. On the contrary, suppose that J is not
a minimal left ideal of S. Then there exists a nontrivial left ideal J ′ of S
such that J ′ ⊂ J . Since K is the maximal left ideal of S, we get J ′∪K = S.
It follows that the intersection of J and K is nontrivial, a contradiction.
By Remark 2.1, we can color all the vertices which are not adjacent with
K with one color. Since deg(K) is finite, we have χ(Γ(S)) <∞.

Proposition 4.11. If S is the union of n minimal left ideals, then ω(Γ(S))
= χ(Γ(S)) = 2n−1 − 1. Moreover, Γ(S) is weakly perfect.

Proof. First note that S has 2n−2 nontrivial left ideals and every nontrivial
left ideal of S is of the form Ii1i2···ik and 1 6 k 6 n − 1 (cf. Remark 2.2).
If n is odd then consider C = {Ij1j2···jt : dn2 e 6 t 6 n − 1}. Note that
C forms a clique of size 2n−1 − 1. We may now suppose that n is even.
Consider C1 = {Ij1j2···jt : n2 + 1 6 t 6 n− 1}. Notice that C1 forms a clique.
Further, observe that C′ = {Ii1i2···in

2
: i1, i2, . . . , in

2
∈ [n]} do not form a

clique because for j1, j2, . . . , jn
2
∈ [n] \ {i1, i2, . . . , in

2
}, Ii1i2···in

2
� Ij1j2···jn

2
.

However, C′′ = {Ii1i2···in
2
∈ C′ \ {Ij1j2···jn

2
} : j1, j2, . . . , jn

2
/∈ {i1, i2, . . . , in

2
}}

forms a clique of size |C
′ |

2 . Further note that the set C1 ∪ C
′′ also forms a

clique of size 2n−1−1. Thus, ω(Γ(S)) > 2n−1−1. To complete the proof, we
show that χ(Γ(S)) 6 2n−1 − 1. For I = Ii1i2···ik and J = Ij1j2···jn−k

, where
i1, i2, . . . , ik ∈ [n] \ {j1, j2, . . . , jn−k} we have I ∩ J is trivial. Consequently,
we can color these vertices with same color so that we can cover all the
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vertices with 2n−1 − 1 colors. Thus χ(Γ(S)) 6 2n−1 − 1. Hence ω(Γ(S)) =
χ(Γ(S)) = 2n−1 − 1.

Corollary 4.12. Let S be a completely simple semigroup. Then the graph
Γ(S) is weakly perfect.

In order to find the upper bound of the chromatic number of Γ(S), where
S is an arbitrary semigroup, first we define

X1 = {I ∈ V (Γ(S)) : Ii1i2···in ⊆ I},
X2 = {I ∈ V (Γ(S)) : I ⊂ Ii1i2···in and I 6= Ii1i2···in},
X3 = V (Γ(S)) \ (X1 ∪X2).

Let M̃in(I) be the set of all minimal left ideals contained in I . Further
define a relation ρ on X3 such that

J ρ K ⇐⇒ M̃in(J) = M̃in(K).

Note that ρ is an equivalence relation.

Theorem 4.13. Let S be a semigroup with n minimal left ideals and χ(Γ(S))
<∞. Then

χ(Γ(S)) 6 |X1|+ (2n−1 − 1) + (2n−1 − 1)m,

where m = max{|C(I)| : C(I) is an equivalence class of ρ}.

Proof. Note that for any I, J ∈ X1, we have I ∼ J . Since every nontrivial
left ideal contains at least one minimal left ideal, consequently each element
of X1 is a dominating vertex of Γ(S). Therefore, we need at least |X1|
colors in any coloring of Γ(S). By proof of Proposition 4.11, we can color
all the vertices of X2 with at least 2n−1 − 1 colors so that we need at least
2n−1 − 1 + |X1| colors to color X1 ∪X2.

To prove our result we need to show that the vertices of X3 can be
colored by using (2n−1−1)m colors. Now let J,K ∈ X3 such that Ii1i2···ik ⊂
J and Ij1j2···jt ⊂ K. Note that J ∩K is nontrivial if and only if Ii1i2···ik ∩
Ij1j2···jt is nontrivial. It follows that J ∼ K in Γ(S) if and only if either
Ii1i2···ik = Ij1j2···jt or Ii1i2···ik ∼ Ij1j2···jt .

Note that the equivalence class of I ∈ X3 under ρ is C(I) = {J ∈ X3 :

M̃in(I) = M̃in(J)}. Since χ(Γ(S)) <∞ we get |C(I)| <∞. Consequently,
|C(I)| 6 m. Observe that C(I) forms a clique, we require maximum m
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colors to color each class under ρ. Note that J ∈ C(J) and K ∈ C(K) such
that J ∼ K if and only if Ii1i2···ik ∼ Ij1j2···jt in Γ(S). Consequently, we can
color the vertices in X3 by using (2n−1 − 1)m colors.

Theorem 4.14. Let S be a semigroup with n minimal left ideals. Then

sdim(Γ(S)) =

{
2n−1 − 1 if S is a union of n minimal left ideals;
|X1|+ |X3|+ 2n−1 − 2 otherwise.

Proof. Let I, J ∈ V (Γ(S)) such that Ii1i2···ik ⊆ I and Ij1j2···jt ⊆ J . Then
I ∼ J if and only if either Ii1i2···ik = Ij1j2···jt or Ii1i2···ik ∼ Ij1j2···jt . Define
a relation ρ1 on V (Γ(S)) such that I ρ1 J if and only if M̃in(I) = M̃in(J).
Clearly, ρ1 is an equivalence relation on V (Γ(S)). Let N [Ii1i2···ik ] = {I ∈
V (Γ(S)) : M̃in(I) = Ii1i2···ik} be equivalence class containing Ii1i2···ik . If S 6=
Ii1i2···in , then by Theorem 2.6, we have RΓ(S) whose vertex set V (RΓ(S)) =
{Ii1i2···ik : i1, i2, · · · , ik ∈ [n] and 1 6 k 6 n}. By using Proposition 4.11,
note that ω(RΓ(S)) = 2n−1. Then sdim(Γ(S)) = |X1| + |X3| + 2n−1 − 2.
Next, if S = Ii1i2···in , then V (RΓ(S)) = {Ii1i2···ik : i1, i2, · · · , ik ∈ [n] and 1 6
k 6 n − 1}. By using Proposition 4.11, note that ω(RΓ(S)) = 2n−1 − 1.
Then sdim(Γ(S)) = 2n−1 − 1.

In the rest of the section, we consider a class of those semigroups which
are the union of nminimal left ideals. In particular, completely simple semi-
groups belongs to this class. In what follows, the semigroup S is assumed to
be the union of n minimal left ideals Ii1 , Ii2 , . . . , Iin i.e. S = Ii1i2···in . The
following lemma gives the lower bound of the metric dimension of Γ(S).

Lemma 4.15 ([13, Theorem 1]). For positive integers d and m with d < m,
define f(m, d) as the least positive integer k such that k+dk > m. Then for
a connected graph Γ of order m > 2 and diameter d, the metric dimension
β(Γ) > f(m, d).

Theorem 4.16. If S is the union of n minimal left ideals, then the metric
dimension of Γ(S) is given below:

β(Γ(S)) =

{
2 if n = 3;

n if n > 4.

Proof. For n = 3, it is easy to observe that {Ii1 , Ii2} forms a minimum
resolving set. If n > 4 then by Remark 2.2, we have |V (Γ(S))| = 2n− 2. In
view of Lemma 4.15, we get
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n = f(2n − 2, 2) 6 β(Γ(S)).

It is easy to observe that for k = n−1, 2k+k 6> 2n−2. Therefore, the least
positive integer k is n for which k + 2k > 2n − 2. Thus n 6 β(Γ(S)). To
obtain upper bound of β(Γ(S)), let J = Ii1i2···ik andK = Ij1j2···jt be distinct
arbitrary vertices Γ(S). Since J 6= K, there exists at least Iis ∈ Min(S)
such that Iis ∼ J and Iis � K. It follows that d(J, Iis) 6= d(K, Iis). Thus
Min(S) = {Ii1 : i1 ∈ [n]} forms a resolving set for Γ(S) of size n. It follows
that β(Γ(S)) 6 n. This completes our proof.

An automorphism of a graph Γ is a permutation f on V (Γ) with the
property that, for any vertices u and v, we have uf ∼ vf if and only if
u ∼ v. The set Aut(Γ) of all graph automorphisms of a graph Γ forms
a group with respect to composition of mappings. The symmetric group
of degree n is denoted by Sn. Now we obtain the automorphism group of
Γ(S), when S is the union of n minimal left ideal.

Lemma 4.17. Let S be the union of n minimal left ideals and let K =
Ii1i2···ik be a nontrivial left ideal of S. Then deg(K) = (2k − 2) + (2n−k −
2) + (2n−k − 1)(2k − 2).

Proof. Let J be a nontrivial left ideal of S such that J ∼ K. Clearly, J ∩K
is a nontrivial left ideal. We have the following cases:
Case 1. J 6⊂ K and K 6⊂ J . Since J ∼ K and K = Ii1i2···ik , we obtain the
number of nontrivial left ideals such that J 6⊂ K and K 6⊂ J is

=

(
n−k∑
i=1

(
n− k
i

))(k−1∑
i=1

(
k

i

))
= (2n−k − 1)(2k − 2).

Case 2. J ⊂ K. The number of nontrivial left ideals of S which are
properly contained in K is 2k − 2 (see proof of [9, Lemma 4.3]).
Case 3. K ⊂ J . The number of nontrivial left ideals of S properly con-
taining K is 2n−k − 2 (see proof of [9, Lemma 4.3]). Thus, from the above
cases we have the result.

Corollary 4.18. If S is the union of n minimal left ideals, then the graph
Γ(S) is Eulerian for n > 3.

Lemma 4.19. For σ ∈ Sn, let φσ : V (Γ(S)) → V (Γ(S)) defined by
φσ(Ii1i2···ik) = Iσ(i1)σ(i2)···σ(ik). Then φσ ∈ Aut(Γ(S)).
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Proof. It is easy to verify that φσ is a permutation on V (Γ(S)). Now we
show that the map φσ preserves adjacency. Let Ii1i2···it and Ij1j2···jk be
arbitrary vertices of Γ(S) such that Ii1i2···it ∼ Ij1j2···jk . Then Ii1i2···it ∩
Ij1j2···jk 6= ∅. Now

Ii1i2···it ∼ Ij1j2···jk ⇐⇒ Iσ(i1)σ(i2)···σ(it) ∼ Iσ(j1)σ(j2)···σ(jk)

⇐⇒ φσ(Ii1i2···it) ∼ φσ(Ij1j2···jk).

Thus, φσ ∈ Aut(Γ(S)).

Proposition 4.20. For each f ∈ Aut(Γ(S)), we have f = φσ for some
σ ∈ Sn.

Proof. In view of Lemma 4.17 and Lemma 4.19, suppose that f(Ii1) = Ij1 ,
f(Ii2) = Ij2 , . . ., f(Iin) = Ijn . Consider σ ∈ Sn such that σ(i1) =
j1, σ(i2) = j2, . . . , σ(in) = jn. Then φσ(Ii1i2···ik) = Iσ(i1)σ(i2)···σ(ik) =
Ij1j2···jk (cf. Lemma 4.19). Clearly, Ii1 ∼ Ii1i2···ik , Ii2 ∼ Ii1i2···ik , . . ., Iik ∼
Ii1i2···ik . Also note that Iit ∩ Ii1i2···ik is trivial for it ∈ {ik+1, ik+2, . . . , in}
where ik+1, ik+2, . . . , in ∈ [n]\{i1, i2, . . . , ik}. It follows that Iik+1

� Ii1i2···ik ,
Iik+2

� Ii1i2···ik , . . ., Iin � Ii1i2···ik . Thus, f(Ii1) ∼ f(Ii1i2···ik), f(Ii2) ∼
f(Ii1i2···ik), . . ., f(Iik) ∼ f(Ii1i2···ik) and f(Iik+1

) � f(Ii1i2···ik), f(Iik+2
) �

f(Ii1i2···ik), . . ., f(Iin) � f(Ii1i2···ik). Consequently, Ij1 ⊂ f(Ii1i2···ik), Ij2 ⊂
f(Ii1i2···ik), . . ., Ijk ⊂ f(Ii1i2···ik) and Ijk+1

6⊂ f(Ii1i2···ik), Ijk+2
6⊂ f(Ii1i2···ik),

. . ., Ijn 6⊂ f(Ii1i2···ik). It follows that f(Ii1i2···ik) = Ij1j2···jk = φσ(Ii1i2···ik).
Thus, f = φσ.

Theorem 4.21. Let S be the union of n minimal left ideals. Then for
n > 2, we have Aut(Γ(S)) ∼= Sn. Moreover, |Aut(Γ(S))| = n!.

Proof. In view of Lemma 4.19 and by Proposition 4.20, note that the under-
lying set of the automorphism group of Γ(S) is Aut(Γ(S)) = {φσ : σ ∈ Sn},
where Sn is a symmetric group of degree n. The groups Aut(Γ(S)) and Sn
are isomorphic under the assignment φσ 7→ σ. Since all the elements in
Aut(Γ(S)) are distinct, we have |Aut(Γ(S))| = n!.
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