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Characterization of monoids by condition (PE)

Zohre Khaki, Hossein Mohammadzadeh Saany and Leila Nouri

Abstract. In this paper first we recall condition (PE) and then will give general properties and
a characterization of monoids for which all right acts satisfy this condition. Finally, we give a
characterization of monoids, by comparing this property of their acts with some others.

1. Introduction

For a monoid S, with 1 as its identity, a set A (we consider nonempty) is called
a right S-act, usually denoted by AS (or simply A), if S on A unitarian from
the right, that is, there exists a mapping A × S → A, (a, s) 7→ as, satisfying the
conditions a(st) = (as)t and a1 = a, for all a ∈ A and all s, t ∈ S. Let A, B be
two right S-acts. A mapping f : A→ B is called a homomorphism of right S-acts
or just an S-homomorphism if f(as) = f(a)s for a ∈ A, s ∈ S. The set of all
S-homomorphisms from A into B will be denoted by Hom(A,B). Also Act-S is
the category of right S-acts.

In [4], introduced condition (PE) and it is shown that this condition implies
weak flatness, but the converse is true when S is left PP and in [3] gave a classifi-
cation of monoid by this condition of (finitely generated, cyclic, monocyclic, Rees
factor) right acts.

In this paper, we recall condition (PE) and we continue the investigation of this
condition. At first we give general properties of this condition. Finally, we will
give a characterization of monoids S over which all right S-acts satisfy condition
(PE) and also a characterization of monoids S for which this condition of right
S-acts has some other properties and vice versa.

We refer the reader to [5, 6], for basic definitions and terminologies relating to
semigroups and acts over monoids and to [8], for definitions and results on flatness
which are used here.

2. General properties

In this section we recall condition (PE) and give some results of it.
Recall from [3] that a right S-act A satisfies condition (P ), if for all a, a′ ∈ A,

s, s′ ∈ S, as = a′s′ ⇒ (∃a′′ ∈ A)(∃u, v ∈ S)(a = a′′u, a′ = a′′v and us = vs′).
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It satisfies condition (PE), if for all a, a′ ∈ A, s, s′ ∈ S, as = a′s′ ⇒ (∃a′′ ∈
A)(∃u, v ∈ S)(∃e, f ∈ E(S)) (ae = a′′ue, a′f = a′′vf, es = s, fs′ = s′ and us =
vs′). It is clear that condition (P ) implies condition (PE).

We can easily seen that right S-act A satisfies condition (PE) if and only if
as = a′s′, for a, a′ ∈ A, s, s′ ∈ S, implies that there exist a′′ ∈ A, u, v ∈ S and
e, f ∈ E(S) such that ae = a′′u, a′f = a′′v, es = s, fs′ = s′ and us = vs′.

According to the equivalent definition for condition (PE) expressed above, the-
orem 2.5 of [3], can be written as follows.

For a right congruence ρ on a monoid S, S/ρ satisfies condition (PE) if and
only if (xs)ρ(yt), for x, y, s, t ∈ S, implies that there exist u, v ∈ S and e, f ∈ E(S)
such that (xe)ρu, (yf)ρv, es = s, ft = t and us = vt.

We recall from [6] that a monoid S is called right reversible if for every s, s′ ∈ S,
there exist u, v ∈ S such that us = vs′.

Theorem 2.1. Let S be a monoid and A be a right S-act. Then:

1. S satisfies condition (PE).

2. Θ satisfies condition (PE) if and only if S is right reversible.

3. Let I 6= ∅ and A =
∐
i∈I

Ai, where Ai, i ∈ I, are right S-acts. Then A satisfies

condition (PE) if and only if each Ai, i ∈ I, satisfies condition (PE).

4. Let {Bi|i ∈ I} be a nonempty chain of subacts of A. If every Bi, i ∈ I,
satisfies condition (PE), then

⋃
i∈I

Bi as a subact of A satisfies condition (PE).

5. If A satisfies condition (PE), then every retract of A satisfies condition (PE).

Proof. The proofs are straightforward.

3. Characterization by condition (PE) of right acts

In this section we give a characterization of monoids S by condition (PE) of right
S-acts. Also, we give a characterization of monoids, by comparing condition (PE)
of their acts with some others.

We recall [6] that a right ideal K of a monoid S satisfies condition (LU) if for
every k ∈ K, there exists l ∈ K such that lk = k.

Theorem 3.1. Let K be any proper right ideal of a monoid S. If the right S-act

S
K∐
S satisfies condition (PE), then K satisfies condition (LU).

Proof. All right S-acts satisfying condition (PE) are weakly flat, by [4, Theorem
2.3]. Thus K satisfies condition (LU), by [6, III, Proposition 12.19].
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Recall from [4, 6] that a monoid S is called a left PP monoid if every principal
left ideal of S is projective. Therefore, a monoid S is left PP if and only if for
every s ∈ S there exists an idempotent e of S such that es = s and kerρs 6 kerρe.
A right S-act A is called weakly flat (WF), if the functor A⊗S− preserves all
embeddings of left ideals into S.

Theorem 3.2. For a proper right ideal K of a monoid S, the following statements
are equivalent:

(1) All right S-acts of the form S
K∐
S satisfy condition (PE).

(2) S is regular.

Proof. (1) ⇒ (2). Suppose s ∈ S. If sS = S then it is obvious that s is regular.

Otherwise sS is a proper right ideal of monoid S and S
sS∐
S satisfies condition

(PE), by assumption. So by Theorem 3.1, sS satisfies condition (LU). Then there
exists l ∈ sS such that ls = s. Hence s is regular, and so, S is regular.

(2) ⇒ (1). Suppose K is any proper right ideal of the monoid S and k ∈ K.
By assumption there exists k′ ∈ S such that k = kk′k, that is, the ideal K satisfies

condition (LU). So by [6, III, Proposition 12.19], S
K∐
S is weakly flat. Since

S is regular, it is left PP . Then by [4, Theorem 2.5], S
K∐
S satisfies condition

(PE).

Recall from [6], [8], [10] and [2] that a right S-act A satisfies condition (E), if
for all a ∈ A, s, s′ ∈ S,

as = as′ ⇒ (∃a′ ∈ A)(∃u ∈ S)(a = a′u and us = us′).

A satisfies condition (E′), if for all a ∈ A, s, s′, z ∈ S,

(as = as′, sz = s′z)⇒ (∃a′ ∈ A)(∃u ∈ S)(a = a′u and us = us′).

A satisfies condition (EP ), if for all a ∈ A, s, s′ ∈ S,

as = as′ ⇒ (∃a′ ∈ A)(∃u, u′ ∈ S)(a = a′u = a′u′ and us = u′s′).

A satisfies condition (E′P ), if for all a ∈ A, s, s′, z ∈ S,

(as = as′, sz = s′z)⇒ (∃a′ ∈ A)(∃u, u′ ∈ S)(a = a′u = a′u′ and us = u′s′).

Theorem 3.3. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfying condition (E′P ) satisfy condition (PE).
(2) All right S-acts satisfying condition (E′) satisfy condition (PE).
(3) All right S-acts satisfying condition (EP ) satisfy condition (PE).
(4) All right S-acts satisfying condition (E) satisfy condition (PE).
(5) S is regular.



94 Z. Khaki, H. Mohammadzadeh Saany and L. Nouri

Proof. Since (E) ⇒ (EP ) ⇒ (E′P ) and (E) ⇒ (E′) ⇒ (E′P ), implications
(1)⇒ (3)⇒ (4) and (1)⇒ (2)⇒ (4) are obvious.

(4)⇒ (5). If s ∈ S, and sS = S then s is regular. Now let sS 6= S Then

A = S
sS∐
S =

{
(l, x)|l ∈ S \ sS

}
∪̇ sS ∪̇

{
(t, y)|t ∈ S \ sS

}
is a right S-act and

B =
{

(l, x)|l ∈ S \ sS
}
∪̇ sS ∼= S ∼=

{
(t, y)|t ∈ S \ sS

}
∪̇ sS = C.

Since A = B ∪ C is generated by exactly two elements (1, x) and (1, y) and S
satisfies condition (E), subacts B and C of A satisfy condition (E), so A satisfies
condition (E). Then by assumption A satisfies condition (PE). Thus the equality
(1, x)s = (1, y)s, implies that there exist a ∈ A, u, v ∈ S and e, f ∈ E(S), such
that (1, x)e = au, (1, y)f = av, us = vs and es = s = fs. Now (1, x)e = au and
(1, y)f = av imply that at least one of elements e or f is belong to sS. If e ∈ sS
then there exists s′ ∈ S such that e = ss′, and so, s = es = ss′s, that is, s is
regular. Similarly, we can show that s is regular, if f ∈ sS. Therefore S is regular.

(5) ⇒ (1). Since S is regular, by [2, Theorem 2.8] all right S-acts satisfying
condition (E′P ) are weakly flat. Also every regular monoid is left PP , and so, by
[4, Theorem 2.5] condition (PE) and weakly flat are equivalent. Hence all right
S-acts satisfying condition (E′P ) satisfy condition (PE).

By the proof of Theorem 3.3, we conclude that the above theorem is true
for finitely generated right S-acts and also right S-acts generated by at most
(exactly) two elements. Moreover, by [4, Theorem 2.5], if in Theorem 3.3, we
replace condition (PE) by weakly flat, then theorem is still true. In addition this
theorem is true for finitely generated right S-acts, and also, right S-acts generated
by at most (exactly) two elements.

Recall from [6] that a right S-act A is called principally weakly flat (PWF )
if the functor A⊗S−, preserves all embeddings of principal left ideals into S. An
act AS is called torsion free (TF ) if for any a, b ∈ A and for any right cancellable
element u ∈ S, the equality au = bu implies a = b.

Also we recall from [10] that a right S-act A is called R-torsion free (R-TF) if
for any a, b ∈ A and u ∈ S, u right cancellable, au = bu and a R b (R is Green’s
equivalence) imply that a = b.

Theorem 3.4. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfy condition (PE).

(2) All R-torsion free right S-acts satisfy condition (PE).

(3) S is regular and satisfies condition

(R) : for any elements s, t ∈ S there exists w ∈ Ss ∩ St such that wρ(s, t)s.
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Proof. Implication (1)⇒ (2) is obvious.
(2)⇒ (3). By [10, Proposition 1.2] all right S-acts satisfying condition (E) are

R-torsion free. Therefore all right S-acts satisfying condition (E) satisfy condition
(PE), by assumption. Hence, S is regular, by Theorem 3.3. Then by [6, IV, The-
orem 6.6], all right S-acts are PWF . Since PWF ⇒ TF ⇒ R-TF , then all right
S-acts are R-torsion free, and so, by assumption, all right S-acts satisfy condition
(PE). Therefore by [3, Theorem 2.1], S is regular and satisfies condition (R).

(3)⇒ (1). It is obvious, by [3, Theorem 2.1].

It is clear that the theorem above is also true for finitely generated right S-acts
and right S-acts generated by at most (exactly) two elements.

Recall from [6] that an element a ∈ AS is called divisible by s ∈ S if there
exists b ∈ A, such that bs = a. An act AS is called divisible if every element of A
is divisible by any left cancellable element of S.

Notation: Cl (Cr) is the set of all left (right) cancellable elements of S

Theorem 3.5. For any monoid S the following statements are equivalent:
(1) All right S-acts are divisible.
(2) All monocyclic right S-acts satisfying condition (PE), are divisible.
(3) Sc = S for every c ∈ Cl.

Proof. Implication (1)⇒ (2) is obvious.
(2)⇒ (3). By part (2.1) of Theorem 2.1, SS satisfies condition (PE) therefore

by assumption, for every x ∈ S, SS ∼= S/∆S = S/ρ(x,x) is divisible, that is, Sc = S
for all c ∈ Cl.

(3)⇒ (1). It is obvious, by [6, III, Proposition 2.2].

We recall from [6] that a right S-act A is (strongly) faithful if for s, t ∈ S the
equality as = at, for (some) all a ∈ A, implies that s = t. It is obvious that every
strongly faithful right S-act is faithful, but the converse is not true in generally.

In [1, Lemma 2.10], there exists at least one strongly faithful cyclic right (left)
S-act if and only if SS (SS) is a strongly faithful right (left) S-act, which it is
equivalent to S is left (right) cancellative monoid.

Theorem 3.6. For any monoid S the following statements are equivalent:
(1) All strongly faithful right S-acts satisfy condition (PE).
(2) S is not a left cancellative monoid or S is regular.
(3) S is not a left cancellative monoid or S is group.

Proof. (1) ⇒ (2). If S is not left cancellative, the result follows. Otherwise, if
sS = S, for s ∈ S, then s is regular. Now let sS 6= S. Then

A = S
sS∐
S =

{
(l, x)|l ∈ S \ sS

}
∪̇ sS ∪̇

{
(t, y)|t ∈ S \ sS

}
is a right S-act and
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B =
{

(l, x)|l ∈ S \ sS
}
∪̇ sS ∼= S ∼=

{
(t, y)|t ∈ S \ sS

}
∪̇ sS = C.

Since S is left cancellative, it is strongly faithful. Therefore B and C are
strongly faithful as subacts of A. Thus A is strongly faithful, and so, it satisfies
condition (PE), by assumption. Now by the proof (4)⇒ (5) of Theorem 3.3, S is
regular.

(2) ⇒ (3). If S is left cancellative, then it is regular. Thus for every s ∈ S,
there exists x ∈ S such that sxs = s, which implies xs = 1. Hence for every s ∈ S,
Ss = S, and so, S is group.

(3)⇒ (1). If S is not left cancellative, then we are done, because, by [1, Lemma
2.10], there exists no strongly faithful right S-act. Otherwise, since S is group,
all right S-acts satisfy condition (P ), by [6, IV, Theorem 9.10], and so, all right
S-acts satisfy condition (PE).

It is clear that above theorem is true for finitely generated right S-acts and
also right S-acts generated by two elements.

We recall from [9] that a right S-act A is called almost weakly flat if A is
principally weakly flat and satisfies condition

(W ′) If as = a′t and Ss ∩ St 6= ∅ for a, a′ ∈ A, s, t ∈ S, then there exist a′′ ∈ A,
u ∈ Ss ∩ St such that as = a′t = a′′u.

Theorem 3.7. For any monoid S the following statements are equivalent:
(1) All generator right S-acts satisfy condition (PE).
(2) All finitely generated generator right S-acts satisfy condition (PE).
(3) All generator right S-acts generated by at most three elements satisfy condi-

tion (PE).
(4) S ×A satisfies condition (PE), for every generator right S-act A.
(5) S × A satisfies condition (PE), for every finitely generated generator right

S-act A.
(6) S ×A satisfies condition (PE), for every generator right S-act generated by

at most three elements A.
(7) S ×A satisfies condition (PE), for every right S-act A.
(8) S ×A satisfies condition (PE), for every finitely generated right S-act A.
(9) S ×A satisfies condition (PE), for every right S-act A generated by at most

two elements.
(10) A right S-act A satisfies condition (PE), if Hom(A,S) 6= ∅.
(11) A finitely generated right S-act A satisfies condition (PE), if Hom(A,S) 6= ∅.
(12) A right S-act A generated by at most two elements satisfies condition (PE),

if Hom(A,S) 6= ∅.
(13) All right S-acts are almost weakly flat.
(14) S is regular and S satisfies condition bellow:
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(∀s, t ∈ S)
(
Ss ∩ St 6= ∅ ⇒

(
∃w ∈ Ss ∩ St; 1(kerλs ∨ kerλt)w

))
.

Proof. The implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6), (7) ⇒ (8) ⇒ (9),
(10)⇒ (11)⇒ (12) and (7)⇒ (4) are obvious.

(13) ⇔ (14). By [9, Theorem 3.4] all generators are weakly flat, and so, it is
obvious, by [9, Theorem 3.8].

(1)⇒ (7). Let A be a right S-act. It is obvious that the mapping π : S×A→ S,
where π(s, a) = s, for a ∈ A and s ∈ S, is an epimorphism in Act-S, and so by [6,
II, Theorem 3.16], S × A is a generator. Thus S × A satisfies condition (PE), by
assumption.

(12) ⇒ (1). Let A be a generator right S-act and as = a′t for a, a′ ∈ A and
s, t ∈ S. If B = aS∪a′S. It is obvious that B is a subact of A and generated by at
most two elements. Since A is generator, there exists an epimorphism π : A→ S
in Act-S. So π|B : B → S is a homomorphism in Act-S, and so, Hom(B,S) 6= ∅.
Thus, by assumption, B satisfies condition (PE). Therefore equality as = a′t in B,
implies that there exist a′′ ∈ B ⊆ A, u, v ∈ S and e, f ∈ E(S) such that ae = a′′u,
a′f = a′′v, us = vt, es = s and ft = t. Hence, A satisfies condition (PE).

(6) ⇒ (1). Let A be a generator right S-act and as = a′t for a, a′ ∈ A and
s, t ∈ S. Since A is generator, there exists an epimorphism π : A → S in Act-S.
Let π(z) = 1 and B = aS ∪ a′S ∪ zS. It is obvious that B is a subact of A and
generated by at most three elements. Since π|B : B → S is an epimorphism in
Act-S, by [6, II, Theorem 3.16], B is a generator. Thus, by assumption, S × B
satisfies condition (PE). If π(a) = l, π(a′) = l′ then equality as = a′t in B, implies
equality (l, a)s = (l′, a′)t in S×B. Hence, by definition, there exist (w, a′′) ∈ S×B,
u, v ∈ S and e, f ∈ E(S) such that (l, a)e = (w, a′′)u, (l′, a′)f = (w, a′′)v, us = vt,
es = s and ft = t. Thus, ae = a′′u, a′f = a′′v, us = vt, es = s and ft = t. Hence,
A satisfies condition (PE).

(3) ⇒ (1). Let A be a generator right S-act and as = a′t for a, a′ ∈ A and
s, t ∈ S. Since A is generator, there exists an epimorphism π : A → S in Act-S.
Let π(z) = 1 and B = aS ∪ a′S ∪ zS. It is obvious that B is a subact of A
and generated by at most three elements. Since π|B : B → S is an epimorphism
in Act-S, by [6, II, Theorem 3.16], B is a generator. Thus, by assumption, B
satisfies condition (PE). Therefore equality as = a′t in B, implies that there exist
a′′ ∈ B ⊆ A, u, v ∈ S and e, f ∈ E(S) such that ae = a′′u, a′f = a′′v, us = vt,
es = s and ft = t. Hence, A satisfies condition (PE).

(1) ⇒ (13). By [4, Theorem 2.3], condition (PE) implies weakly flat. So by
assumption all generator right S-acts are weakly flat. Then by [9, Theorem 3.4]
all right S-acts are almost weakly flat.

(13)⇒ (1). By [9, Theorem 3.4] all generator right S-acts are weakly flat. Thus,
by [9, Theorem 3.8], S is regular, and so, S is left PP . Then by [4, Theorem 2.5],
condition (PE) and weakly flat are equivalent, the result follows.

(9) ⇒ (10). Let for right S-act A, Hom(A,S) 6= ∅ and as = a′t for a, a′ ∈ A
and s, t ∈ S. If B = aS ∪ a′S then B is a subact of A and generated by at most
two elements. Since Hom(A,S) 6= ∅ let f : A→ S be a homomorphism in Act-S.
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Now equality as = a′t in A implies equality
(
f(a), a

)
s =

(
f(a′), a′

)
t in S × B.

Since by assumption S ×B, satisfies condition (PE), there exist (w, a′′) ∈ S ×B,
u, v ∈ S and e, f ∈ E(S) such that

(
f(a), a

)
e = (w, a′′)u,

(
f(a′), a′

)
f = (w, a′′)v,

us = vt, es = s and ft = t. Then ae = a′′u, a′f = a′′v, us = vt, es = s and
ft = t. Hence, A satisfies condition (PE).

Recall [6] that a right S-act Q is injective (Inj), if for any monomorphism
ι : A → B and any homomorphism f : A → Q there exists a homomorphism
f : B → Q such that f = fι. It is called (fg-) weakly injective ((fg-)WI), if it is
injective relative to all embeddings of (finitely generated) right ideals into S.

Recall [7] that for elements u, v ∈ S, the relation Pu,v is defined on S as
Pu,v =

{
(x, y) ∈ S × S|ux = vy

}
.

For s, t ∈ S, let µs,t = kerλs ∨ kerλt.
For any right ideal I of S let ρI denote the right Rees congruence, i.e., for x, y

in S,
(x, y) ∈ ρI ⇐⇒ x = y or x, y ∈ I.

Theorem 3.8. For any monoid S the following statements are equivalent:
(1) All fg-weakly injective right S-acts satisfy condition (PE).
(2) All weakly injective right S-acts satisfy condition (PE).
(3) All injective right S-acts satisfy condition (PE).
(4) All cofree right S-acts satisfy condition (PE).
(5) (∀s, t ∈ S) (∃u, v ∈ S)

(
∃e1, e2 ∈ E(S)

)
; (e1s = s, e2t = t ∧ us = vt) and the

following conditions hold

(i) Pue1,ve2 ⊆ Pe1,s ◦ µs,t ◦ Pt,e2 ,
(ii) kerλu ∩ (e1S × e1S) ⊆ ρsS,
(iii) kerλv ∩ (e2S × e2S) ⊆ ρtS.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious, because cofree⇒ Inj ⇒
WI ⇒ fg −WI.

(4)⇒ (5). Let s, t ∈ S and S1, S2 be two distinct sets, where |S1| = |S2| = |S|,
and α : S → S1, β : S → S2 are bijections. Put X = (S/µs,t) ∪̇ S1 ∪̇ S2, and
define the mappings f, g : S → X as follows:

f(x) =

{
[y]µs,t if there exists y ∈ S; x = sy

α(x) if x ∈ S \ sS

g(x) =

{
[y]µs,t

if there exists y ∈ S; x = ty

β(x) if x ∈ S \ tS.

We show that f is well-defined. For this, suppose that sy1 = sy2, for y1, y2 ∈ S,
hence (y1, y2) ∈ kerλs ⊆ kerλs ∨ kerλt = µs,t and so [y1]µs,t

= [y2]µs,t
, that
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is, f(sy1) = [y1]µs,t = [y2]µs,t = f(sy2) and so f is well-defined. Similarly, g is
well-defined.

Since fs = gt, and XS =
{
h : S → X

}
satisfies condition (PE), there exist

mapping h : S → X, u, v ∈ S and e1, e2 ∈ E(S) such that fe1 = hu, ge2 = hv,
e1s = s, e2t = t and us = vt. So fe1 = hue1, ge2 = hve2, e1s = s, e2t = t and
us = vt. Let (l1, l2) ∈ Pue1,ve2 , for l1, l2 ∈ S, then:

(fe1)l1 = (hue1)l1 = h(ue1l1) = h(ve2l2) = (hve2)l2 = (ge2)l2 = g(e2l2)

So by the definitions f and g there exist y1, y2 ∈ S such that e1l1 = sy1 and
e2l2 = ty2 so f(e1l1) = f(sy1) = [y1]µs,t

and g(e2l2) = g(ty2) = [y2]µs,t
. Then

[y1]µs,t
= [y2]µs,t

implies (y1, y2) ∈ µs,t. Therefore
e1l1 = sy1 ⇒ (l1, y1) ∈ Pe1,s

(y1, y2) ∈ µs,t ⇒ (l1, l2) ∈ Pe1,s ◦ µs,t ◦ Pt,e2
e2l2 = ty2 ⇒ (y2, l2) ∈ Pt,e2

that is, Pue1,ve2 ⊆ Pe1,s ◦ µs,t ◦ Pt,e2 , and so (i) is proved.
Now let (t1, t2) ∈ kerλu ∩ (e1S× e1S), for t1, t2 ∈ S. So ut1 = ut2 and there exist
w1, w2 ∈ S such that t1 = e1w1 and t2 = e1w2. So ue1w1 = ut1 = ut2 = ue1w2.
Then f(e1w1) = (fe1)w1 = (hue1)w1 = h(ue1w1) = h(ue1w2) = (hue1)w2 =
(fe1)w2 = f(e1w2).

According to the definition of f of the last equality, two cases can be considered.
Case 1. e1w1, e1w2 ∈ S\sS then: f(e1w1) = f(e1w2)⇒ α(e1w1) = α(e1w2)⇒

e1w1 = e1w2 ⇒ t1 = t2 ⇒ (t1, t2) ∈ ρsS
Case 2. e1w1, e1w2 ∈ sS then there exist y1, y2 ∈ S such that e1w1 = sy1 and

e1w2 = sy2 so (t1, t2) = (e1w1, e1w2) = (sy1, sy2) ∈ (sS × sS) ∪∆S = ρsS . Thus
kerλu ∩ (e1S × e1S) ⊆ ρsS . Similarly (iii).

(5)⇒ (1). Suppose that A is an fg-weakly injective right S-act and let as = a′t,
for a, a′ ∈ A and s, t ∈ S. By assumption, there exist u, v ∈ S and e1, e2 ∈ E(S)
such that e1s = s, e2t = t and us = vt and conditions (i), (ii) and (iii) hold.

Define

ϕ : ue1S ∪ ve2S → A x 7→

{
ae1p ∃p ∈ S : x = ue1p,

a′e2q ∃q ∈ S : x = ve2q.

First we show that ϕ is well-defined. If there exist p, q ∈ S such that ue1p =
ve2q, then (p, q) ∈ Pue1,ve2 . So by condition (i), there exist y1, y2 ∈ S such that
(p, y1) ∈ Pe1,s, (y1, y2) ∈ µs,t and (y2, q) ∈ Pt,e2 . Then e1p = sy1, e2q = ty2 and
(y1, y2) ∈ kerλs ∨ kerλt = µs,t. By this last relation, there exist z1, . . . , zn ∈ S
such that:

sy1 = sz1, sz2 = sz3, ... szn−1 = szn, tz1 = tz2, ... ... ... tzn = ty2

and so
ae1p = asy1 = asz1 = a′tz1 = a′tz2 = ... = a′tzn = a′ty2 = a′e2q.

Now let p1, p2 ∈ S such that ue1p1 = ue1p2, then (e1p1, e1p2) ∈ kerλu∩(e1S×e1S)
and so by (ii), e1p1 = e1p2 or there exist y1, y2 ∈ S such that e1p1 = sy1 and
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e1p2 = sy2. If e1p1 = e1p2 then ae1p1 = ae1p2. If e1p1 = sy1 and e1p2 = sy2 then
usy1 = ue1p1 = ue1p2 = usy2 = vty2 and so, ue1sy1 = ve2ty2 then (sy1, ty2) ∈
Pue1,ve2 . So by condition (i), there exist l1, l2 ∈ S such that (sy1, l1) ∈ Pe1,s,
(l1, l2) ∈ µs,t and (l2, ty2) ∈ Pt,e2 . Then sy1 = e1sy1 = sl1, ty2 = e2ty2 = tl2 and
(l1, l2) ∈ kerλs ∨ kerλt = µs,t. Thus, there exist z′1, ..., z′m ∈ S such that:

sl1 = sz′1, sz′2 = sz′3, ... sz′m−1 = sz′m, tz′1 = tz′2, ... ... ... tz′m = tl2

and so
ae1p1 = asy1 = asl1 = asz′1 = a′tz′1 = a′tz′2 = ... = a′tz′m = a′tl2 = a′ty2 =
asy2 = ae1p2

If there exist q1, q2 ∈ S such that ve2q1 = ve2q2, then by conditions (i) and (iii),
with a similar argument a′e2q1 = a′e2q2. Thus, ϕ is well-defined, and obviously it
is a homomorphism. Since by assumption, A is an fg-weakly injective right S-act,
there exists a homomorphism ψ : S → A such that ψ|ue1S∪ve2S = ϕ.

Let a′′ = ψ(1), then ae1 = ϕ(ue1) = ψ(ue1) = ψ(1)ue1 = a′′ue1 and a′e2 =
ϕ(ve2) = ψ(ve2) = ψ(1)ve2 = a′′ve2. that is, A satisfies condition (PE).
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