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A new quasigroup isomorphism invariant

arising from fractal image patterns

Raúl M. Falcón

Abstract. The analysis and recognition of fractal image patterns derived from Cayley tables has
turned out to play a relevant role for distributing distinct types of algebraic and combinatorial
structures into isomorphism classes. In this regard, Dimitrova and Markovski described in 2007
a graphical representation of quasigroups by means of fractal image patterns. It is based on the
construction of pseudo-random sequences arising from a given quasigroup. In particular, isomor-
phic quasigroups give rise to the same fractal image pattern, up to permutation of underlying
colors. This possible difference may be avoided by homogenizing the standard sets related to
these patterns. Based on the differential box-counting method, the mean fractal dimension of
homogenized standard sets constitutes a quasigroup isomorphism invariant which is analyzed in
this paper in order to distribute quasigroups of the same order into isomorphism classes.

1. Introduction
A Latin square of order n is an n × n array whose entries are chosen from a set
of n distinct symbols so that each symbol appears precisely once in each row and
precisely once in each column. From here on, let Ln denote the set of Latin squares
of order n whose entries are chosen from the set of symbols [n] := {1, . . . , n}. Every
Latin square L = (li,j) ∈ Ln is uniquely identified with its set of entries

Ent(L) := {(i, j, li,j) : 1 6 i, j 6 n}.

The set Ln is preserved by the action of the symmetric group Sn on the set
[n]. It is so that every permutation π ∈ Sn acts on a Latin square L = (li,j) ∈
Ln by giving rise to its isomorphic Latin square Lπ ∈ Ln, where Ent(Lπ) =
{(π(i), π(j), π(li,j)) : 1 6 i, j 6 n}. The permutation π constitutes a Latin square
isomorphism. To be isomorphic is an equivalence relation among Latin squares.
Currently, it is only known [7] the distribution into isomorphism classes of Latin
squares of order n 6 11. In order to deal with higher orders, new Latin square
isomorphism invariants are being introduced in the recent literature [2, 6, 14]. This
paper delves into this topic by focusing on the fractal dimension of the standard
set of image patterns associated to any given Latin square.
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Every Latin square in Ln is the Cayley table of a quasigroup ([n], ·), where the
set [n] is endowed with a binary operation so that both left and right divisions are
feasible. Two quasigroups ([n], ·) and ([n], ◦) are isomorphic if and only if there
exists a bijection f on the set [n] such that f(i · j) = f(i) ◦ f(j), for all i, j ∈ [n].
Equivalently, if and only if their associated Latin squares are isomorphic.

In 2007, Dimitrova and Markovski [3] proposed a graphical representation of
quasigroups, which was based on the construction of pseudo-random sequences
arising from the Cayley table of these algebraic structures [9, 10, 11]. Some of the
resulting images revealed fractal patterns that enable one to distribute quasigroups
into fractal and non-fractal classes. Particularly, fractal quasigroups are recom-
mended for designing error detecting codes [8], whereas non-fractal quasigroups
are recommended for designing cryptographic primitives [1, 12]. An interesting
aspect to take into account is the fact that isomorphic quasigroups give rise to the
same image pattern, up to permutation of underlying colors. Due to it, the recog-
nition and analysis of image patterns arising from quasigroups have recently arisen
as an efficient new approach for classifying quasigroups and related structures into
isomorphism classes [4, 5]. In this paper, the standard set of image patterns is
homogenized in order to determine its mean fractal dimension, which turns out to
be a relevant quasigroup isomorphism invariant.

The paper is organized as follows. In Section 2, it is reminded the construction
of standard sets of image patterns arising from any given quasigroup. Based on
this construction, it is introduced the concept of homogenized standard set, which
constitutes itself an invariant of quasigroup isomorphisms. Then, based on the dif-
ferential box-counting method, and in order to distinguish homogenized standard
sets of image patterns arising from non-isomorphic quasigroups, it is introduced
in Section 3 the notion of mean fractal dimension of any given homogenized stan-
dard set. In addition, it is shown how this new invariant characterizes all the
isomorphism classes of quasigroups of order n 6 4. Finally, Section 4 illustrates
the effectiveness of this new isomorphism invariant by focusing on the problem of
distributing random Latin squares into isomorphism classes.

2. Preliminaries

Let L ∈ Ln be the Cayley table of a quasigroup ([n], ·) and let T = t1 . . . tm be
a plaintext, for some positive integer m, where ti ∈ [n], for all i 6 m. Then, for
each s ∈ [n], it is defined [3] the encrypted string Es(T ) := e1 . . . em−1, where
e1 := s · t1 and ei := ei−1 · ti, whenever 1 < i 6 m. An iterative implementation
of this encryption gives rise to arrays describing fractal patterns. In order to see
it, let r > 2 be a positive integer and let S = (s1, . . . , sr−1) be an (r − 1)-tuple of
positive integers such that si ∈ [n], for all i < r. Then, the r ×m image pattern
based on L is the r ×m array (pi,j) such that, for each pair of positive integers
i 6 r and j 6 m,
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pi,j :=


tj , if i = 1,

si−1 · pi−1,1, if i > 1 and j = 1,

pi,j−1 · pi−1,j , otherwise.
(1)

Each one of its cells constitutes a pixel of the image pattern under consideration.
In addition, the symbol within each pixel may uniquely be identified with a color
of a given palette of n colors. Further, the image pattern is called s-standard [4],
with s ∈ [n], if S is the constant (r − 1)-tuple (s, . . . , s) and T is the constant
plaintext s . . . s of length m. From here on, let Pr,m;s(L) denote this array. The
standard set of r ×m image patterns associated to the Latin square L is the set
{Pr,m;s(L) : s ∈ [n]}.

Isomorphic Latin squares give rise, up to permutation of colors, to the same
standard set of r × m image patterns (see [4]). In order to avoid this possible
difference, let us fix a palette P = {c1, . . . , cn} of n distinct colors so that they
are ordered in natural way by means of their corresponding intensity. Then, we
say that an s-standard r×m image pattern Pr,m;s(L) is homogenized with respect
to the palette P if its colors appear in natural order (according to their intensity)
when the image pixels are read row by row then column by column.

In addition, we say that the homogenized standard set of r×m image patterns
associated to the Latin square L, with respect to the palette P, is that one in
which all its r × m image patterns are homogenized with respect to P. In this
way, isomorphic Latin squares give rise to exactly the same homogenized standard
set of r ×m image patterns with respect to a given palette.

Example 1. Let us consider the quasigroups having as respective Cayley tables
the following four Latin squares in L4.

1 2 3 4

2 1 4 3

4 3 1 2

3 4 2 1

3 1 4 2

4 3 2 1

1 2 3 4

2 4 1 3

1 2 4 3

2 1 3 4

3 4 1 2

4 3 2 1

1 2 3 4

3 1 4 2

4 3 2 1

2 4 1 3

L1 L2 L3 L4

L1 and L2 are isomorphic by means of the Latin square isomorphism (13)(2)(4) ∈
S4. Visual representations of their respective standard sets of 90 × 90 image
patterns are shown in Figure 1. It consists of a collage in form of 2 × 4 array,
whose cell (i, j) represents the j-standard 90 × 90 image pattern of the Latin
square Li, for all i 6 2 and j 6 4. Each standard image pattern is represented as
a 90× 90 pixel array so that each symbol is uniquely replaced by a colour within
the same grayscale palette of four colours. Notice that both standard sets coincide,
up to permutation of colors. Similarly, the homogenized standard sets of 90× 90
image patterns of the Latin squares L1, L3 and L4, with respect to a grayscale
palette of four colors, with respective gray-level intensities 0.25, 0.5, 0.75 and 1,
are shown in the collage of form of 3× 4 array in Figure 2.
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Figure 1. Standard sets of 90× 90 image patterns of the Latin squares L1 (upper row)
and L2 (lower row).

Figure 2. Homogenized standard sets of 90× 90 image patterns of the Latin squares L1

(upper row), L3 (second row) and L4 (lower row).

From Figure 2, it is readily verified, even visually, that L4 is isomorphic neither
to L1 nor to L3. Nevertheless, it is not so evident that the homogenized standard
sets of L1 and L3 are distinct. In order to make easier the distinction of homoge-
nized standard sets, the next section delves into the study of the fractal dimension
of their image patterns.

3. Mean fractal dimension of
homogenized standard sets

Let n be a positive integer and let Pn = {c1, . . . , cn} be the grayscale palette
such that, for each positive integer i 6 n, the gray-level intensity of the color ci
is i/n. (In this way, the color cn is always white.) Then, let Hr,m(L) denote
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the homogenized standard set of r × m image patterns of a Latin square L ∈
Ln, with respect to the palette Pn. There is no loss of generality in assuming
a grayscale palette, because the distribution of Latin squares into isomorphism
classes is currently only known for all n 6 11.

Further, let Div(r,m) denote the set of common divisors of both parameters r
and m. Since each positive integer k ∈ Div(r,m) is in compliance with the image
dimensions of every image pattern Pr,m;s(L) ∈ Hr,m(L), with s ∈ [n], it is always
possible to cover the latter by an r

k ×
m
k grid formed by two-dimensional boxes of

side length k. Let Ii,j,k(Pr,m;s(L)) denote the range of gray-level intensities within
the region of Pr,m;s(L) that is bounded by the cell (i, j) of the mentioned grid.
Then, let us consider the value

Ik(Pr,m;s(L)) :=
∑

(i,j)∈[ rk ]×[
m
k ]

(1 + Ii,j,k(Pr,m;s(L))).

Now, based on the known method of differential box-counting [13] for deter-
mining the fractal dimension of a given grayscale image, we define the differential
box-counting fractal dimension DB(Pr,m;s(L)) of the image pattern Pr,m;s(L) as
the slope of the linear regression line of the set of points

{(ln(Ik(Pr,m;s(L))), ln(1/k)) : k ∈ Div(r,m)} .

We call the mean value of this fractal dimension, averaged over all the positive
integers k ∈ Div(r,m), the mean fractal dimension DB(Hr,m(L)) of the homoge-
nized standard set Hr,m(L). The following result follows readily.

Proposition 1. Let r, m and n be three positive integers, and let L1 and L2 be
two Latin squares in Ln. If DB(Hr,m(L1)) 6= DB(Hr,m(L2)), then L1 and L2 are
not isomorphic.

In order to illustrate Proposition 1, Table 1 enumerates both the differential
box-counting dimension and the mean fractal dimension of each one of the three
homogenized standard sets described in Example 1. Notice in particular that their
mean fractal dimensions are pairwise distinct, which enables one to ensure that
the Latin squares L1, L2 and L3 correspond to different isomorphism classes.

L
L1 L3 L4

DB(P90,90;1(L)) 2.00000 2.00000 2.00000
DB(P90,90;2(L)) 1.95165 1.95165 1.92136
DB(P90,90;3(L)) 1.8877 1.88873 1.92331
DB(P90,90;4(L)) 1.8877 1.88873 1.90088
DB(H90,90(L)) 1.9317625 1.9322775 1.9363875

Table 1. Differential box-counting and mean fractal dimensions of the homogenized
standard sets of 90× 90 image patterns in Example 1.
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Furthermore, Table 2 enables one to ensure that the mean fractal dimension
of homogenized standard sets of 90 × 90 image patterns characterizes the five
isomorphism classes of the set L3 and the 35 isomorphism classes of the set L4.
(Notice the existence of only one isomorphism class for all n ∈ {1, 2}.) In the
table, isomorphism classes of each order n ∈ {3, 4} are arranged according to the
increasing value of their associated mean fractal dimension (see also Figure 3). In
order to identify each isomorphism class, it has been used the notation introduced
in [4, 5]. It is so that each class is identified with the corresponding represen-
tative Ln.i appearing in the mentioned references. The mean fractal dimension
DB(H90,90(Ln.i)) is shown in the column DB(n.i).

n i DB(n, i) n i DB(n, i) n i DB(n, i) n i DB(n, i)
3 1 1.9285267 4 30 1.9212575 4 35 1.9338325 4 23 1.9428575

5 1.9335900 29 1.9213650 19 1.9357400 15 1.9472450
2 1.9524867 27 1.9215325 21 1.9359200 12 1.9476600
3 1.9527467 25 1.9216950 4 1.9363875 22 1.9495350
4 2.0000000 7 1.9230125 5 1.9366250 18 1.9504400

4 32 1.9072150 8 1.9274475 20 1.9411800 14 1.9511850
28 1.9099250 9 1.9285825 13 1.9411950 11 1.9606500
33 1.9137400 2 1.9296225 16 1.9413250 34 1.9637375
31 1.9139600 1 1.9317625 10 1.9413500 17 1.9807250
26 1.9210725 6 1.9322775 3 1.9413775 24 2.0000000

Table 2. Mean fractal dimensions of the homogenized standard sets of 90 × 90 image
patterns of each isomorphism class of Latin squares of order n ∈ {3, 4}.

Figure 3. Mean fractal dimensions of the homogenized standard sets of 90 × 90 image
patterns of each isomorphism class of Latin squares of order n ∈ {3, 4}.

Notice in particular the existence of exactly one isomorphism class associated
to the maximum mean fractal dimension 2 in each one of the sets L3 and L4. Their
representatives are the Latin squares
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1 3 2

3 2 1

2 1 3

and

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

.

Both of them are multiplication tables of idempotent quasigroups. That is,
the cell (i, i) contains the symbol i, for all i ∈ [n]. In fact, the following result is
readily verified.

Proposition 2. The mean fractal dimension of the homogenized standard set of
r×m image patterns based on the multiplication table of an idempotent quasigroup
is 2, for every pair of positive integers r and m.

The previous result, together with the existence of non-isomorphic idempotent
quasigroups even from order n > 5, implies that the mean fractal dimension is not
definitive for characterizing isomorphism classes of Latin squares of higher orders.
It is the case, for instance of the five non-isomorphic idempotent quasigroups of
order five, which are represented by the following Latin squares in L5.

1 3 2 5 4

4 2 5 1 3

5 4 3 2 1

3 5 1 4 2

2 1 4 3 5

1 3 2 5 4

5 2 4 1 3

4 5 3 2 1

3 1 5 4 2

2 4 1 3 5

1 3 4 5 2

3 2 5 4 1

2 5 3 1 4

5 1 2 4 3

4 3 1 2 5

1 3 4 5 2

4 2 5 3 1

5 1 3 2 4

2 5 1 4 3

3 4 2 1 5

1 3 4 5 2

3 2 5 1 4

4 5 3 2 1

5 1 2 4 3

2 4 1 3 5

4. Patterns arising from random Latin squares
Let us illustrate the effectiveness of the new isomorphism invariant that we have
just introduced by focusing on the problem of distributing random Latin squares
into isomorphism classes. To this end, it has been chosen the randomization
method described in [2], which consists of adding sequentially a set of feasible
random entries to an empty n × n array until a Latin square is reached. The
computation of the mean fractal dimension of the homogenized set of 90×90 image
patterns of each one of these random Latin squares enables one to distinguish non-
isomorphic classes among them.

By means of this procedure, the five isomorphism classes of L3 have been ob-
tained after six attempts. Furthermore, the 35 isomorphism classes of L4 have been
obtained after 326 attempts. Figure 4 illustrates the computational progression
for obtaining such classes in this last case.
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Figure 4. Computational progression for obtaining the 35 isomorphism classes of L4.

In a similar way, Figure 5 illustrates the case n = 5, for which, after 20, 000
attempts, it has been distinguished 1, 404 isomorphism classes of the 1, 411 ones.
Figure 6 illustrates all their mean fractal dimensions in increasing order.

Figure 5. Computational progression for obtaining isomorphism classes of L5.

Figure 6. Mean fractal dimensions of the homogenized standard sets of 90 × 90 image
patterns associated to each distinct isomorphism class of 20, 000 random Latin squares
of order n = 5.
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5. Conclusion and further work
The analysis of standard sets of image patterns related to a given quasigroup has
recently arisen as an efficient way for distinguishing, even visually, distinct isomor-
phism classes of quasigroups. In order to avoid possible discrepancies concerning
the underlying colors, the concept of homogenized standard set has been intro-
duced in this paper. Based on the differential box-counting method, the mean
fractal dimension of these homogenized standard sets has also been introduced as
an efficient invariant for dealing with the open problem of distributing quasigroups
of order n > 12 into isomorphism classes. Concerning the computational efficiency
of this invariant, notice that the maximum running time that is required to com-
pute any of the mean fractal dimensions appearing in this paper has been less than
one second in an Intel Core i7-8750H CPU (6 cores), with a 2.2 GHz processor and
8 GB of RAM. In the same computer system, the mean fractal dimension of the
homogenized standard sets of 90× 90 image patterns associated to the quasigroup
of order 256 described in [4] is obtained in 81.63 seconds. Its mean fractal dimen-
sion is 1.88926. It is, therefore, computationally feasible to make use of this new
invariant even to deal with the possible characterization of isomorphism classes of
quasigroups of order n = 256, which are the most commonly used in the litera-
ture for designing codes and cryptographic primitives. It is established as further
work. As a preliminary stage, it has been shown the computational progression
for obtaining the isomorphism classes of quasigroups of order n 6 5 by focusing
to this end on the mean fractal dimension of a given set of random Latin squares.

The existence of non-isomorphic idempotent quasigroups even from order n > 5
implies that the mean fractal dimension is not definitive for characterizing quasi-
group isomorphism classes. In this regard, it is also established as further work
the study of algebraic and combinatorial properties of those isomorphism classes
of Latin square whose homogenized standard sets of image patterns are associated
to the same mean fractal dimension.
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