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Rad-supplemented property in the lattices

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel

and Saboura Dolati Pish Hesari

Abstract. Let L be a lattice with the greatest element 1. Following the concept of Rad-
supplemented modules, we define Rad-supplemented filters and we will make an intensive inves-
tigate the basic properties and possible structures of these filters.

1. Introduction

Lattices are natural topic in algebra to study because they now play an important
role in many disciplines of mathematics such as combinatorics, number theory and
group theory and, hence, ought to be in the literature. In structure, lattices lie
between semigroups and rings. In this paper, we extend several concepts from
module theory to lattice theory. With a careful generalization, we can cover some
basic corresponding results in the former setting. The main difficulty is figuring out
what additional hypotheses the lattice or filter must satisfy to get similar results.
Nevertheless, growing interest in developing the algebraic theory of lattices can be
found in several papers and books (see for example [2, 3, 5, 6, 7, 8, 9]).

The notion of a supplement submodule was introduced in [12, 14] in order to
characterize semiperfect modules, that is projective modules whose factor modules
have projective cover. For submodules U and V of a module M , V is said to be a
supplement of U in M or U is said to have a supplement V in M if U +V = M and
U ∩V � V . The module M is called supplemented if every submodule of M has a
supplement in M . See [4] and [16] for results and the definitions related to supple-
ments and supplemented modules. In a series of papers, Zöschinger has obtained
detailed information about supplemented and related modules [17]. Supplemented
modules are also discussed in [13]. Recently, several authors have studied differ-
ent generalizations of supplemented modules. Rad-supplemented modules have
been studied in [1] and [15]. See [15]; these modules are called generalized sup-
plemented modules. For submodules U and V of a module M , V is said to be
a Rad-supplement of U in M or U is said to have a Rad-supplement V in M if
U + V = M and U ∩ V ⊆ Rad(V ). M is called a Rad-supplemented module
if every submodule of M has a Rad-supplement in M . Recently, the study of
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the supplemented property in the rings, modules, and lattices has become quite
popular (see for example [1, 3, 8, 9, 10, 11, 12].

Let L be a distributive lattice with 1. In the present paper, we are interested
in investigating (amply) Rad-supplemented filters to use other notions of (amply)
Rad-supplemented, and associate which exist in the literature as laid forth in [15].
It is of interest to know how far the old theories extend to the new situation. If
A is a subset of a lattice L, then the filter generated by A, denoted by T (A),
is the intersection of all filters that is containing A. A subfilter G of a filter F
of L is called small in F , written G � F , if, for every subfilter H of F , the
equality T (G ∪ H) = F implies H = F . Here is a brief outline of the article.
Among many results in this paper, in Section 2, we investigate some properties
of Rad-supplemented filters, weakly Rad-supplemented filters and amply Rad-
supplemented filters. We prove in Theorem 2.5 that if H is a Rad-supplement in
a filter F of L, then Rad(H) = H ∩ Rad(F ). As one of the main results of this
section, we prove in Theorem 2.10 that if F is a Rad-supplemented filter of L,
then there exist a semisimple subfilter K and a subfilter G with Rad(G) E G such
that F = K ⊕ G. We prove that if F1 and F2 are Rad-supplemented filters of L
and F = T (F1 ∪ F2), then F is a Rad-supplemented filter; Theorem 2.12. Also,
we prove in Theorem 2.14 that a filter F of L is semisimple if and only if every
subfilter of F is Rad-supplement in F . Using a similar proof like that in Theorem
2.12, we also prove that if F1 and F2 are weakly Rad-supplemented filters of L
and F = T (F1 ∪ F2), then F is a weakly Rad-supplemented filter; Theorem 2.18.
Finally, if F is an amply Rad-supplemented filter of L, then every direct summand
of F (resp. every supplement of a subfilter of F ) is an amply Rad-supplemented
filter, Theorem 2.24. Section 3 contains some basic properties of quotient Rad-
supplemented filters, quotient weakly Rad-supplemented filters and quotient amply
Rad-supplemented filters. It starts by stating useful properties of quotient filters.
One of the main results of this part is: If F is a Rad-supplemented filter of L
(resp. a weakly Rad-supplemented filter), then every quotient filter of F is Rad-
supplemented (weakly Rad-supplemented); Theorem 3.5. We prove in Theorem
3.7 that if F is a Rad-supplemented filter of L, then F

Rad(F ) is a semisimple filter.
Finally, using the characterization of lifting filters given in Theorem 3.11, we prove
in Theorem 3.14 that if F is a filter of L with ACC on small subfilters, then F is
an amply Rad-supplemented filter and every Rad-supplement is a direct summand
if and only if F is a lifting filter.

Let us briefly review some definitions and tools that will be used later [3]. By
a lattice we mean a poset (L,6) in which every couple elements x, y has a g.l.b.
(called the meet of x and y, and written x ∧ y) and a l.u.b. (called the join of
x and y, and written x ∨ y). A lattice L is complete when each of its subsets X
has a l.u.b. and a g.l.b. in L. Setting X = L, we see that any nonvoid complete
lattice contains a least element 0 and greatest element 1 (in this case, we say
that L is a lattice with 0 and 1). A lattice L is called a distributive lattice if
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L (equivalently, L is distributive if
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(a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A non-empty subset F of a lattice
L is called a filter, if for a ∈ F , b ∈ L, a 6 b implies b ∈ F , and x ∧ y ∈ F for
all x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). A
proper filter P of L is said to be maximal if E is a filter in L with P $ E, then
E = L. If F is a filter of a lattice L, then the radical of F , denoted by Rad(F ), is
the intersection of all maximal subfilters of F .

Let L be a lattice. If A is a subset of L, then the filter generated by A, denoted
by T (A), is the intersection of all filters that is containing A. A filter F is called
finitely generated if there is a finite subset A of F such that F = T (A). A subfilter
G of a filter F of L is called small in F , written G� F , if, for every subfilter H of
F , the equality T (G∪H) = F implies H = F . A subfilter G of F is called essential
in F , written G E F , if G ∩H 6= {1} for any subfilter H 6= {1} of F . Let G be
a subfilter of a filter F of L. A subfilter H of F is called a supplement of G in F
if F = T (G ∪H) and H is minimal with respect to this property, or equivalently,
F = T (G ∪ H) and G ∩ H � H. H is said to be a supplement subfilter of F
if H is a supplement of some subfilter of F . F is called a supplemented filter if
every subfilter of F has a supplemented in F . A subfilter G of a filter F of L has
ample supplements in F if, for every subfilter H of F with F = T (H ∪ G), there
is a supplement H ′ of G with H ′ ⊆ H. If every subfilter of a filter F has ample
supplements in F , then we call F amply supplemented. A filter F of a lattice L is
called hollow if F 6= {1} and every proper subfilter G of F is small in F . F is called
local if it has exactly one maximal subfilter that contains all proper subfilters.

Proposition 1.1. [6, 7] A non-empty subset F of a lattice L is a filter if and only
if x∨ z ∈ F and x∧y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x∨ (x∧y),
y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L.

Proposition 1.2. [8, Lemma 2.4 and Theorem 2.6] Let F be a filter of a distribu-
tive lattice L with 1.

(1) If A� F and C ⊆ A, then C � F .
(2) If A,B are subfilters of F with A� B, then A is a small subfilter in

subfilters of F that contains the subfilter of B. In particular, A� F .
(3) If F1, F2, · · · , Fn are small subfilters of F , then T (F1∪F2∪· · ·∪Fn) is also

small in F .
(4) If A,B,C and D are subfilters of F with A� B and C � D, then

T (A ∪ C)� T (B ∪D).
(5) x ∈ Rad(F ) if and only if T ({x})� F . Moreover, rad(F ) = T (∪G�FG).

2. Basic properties of Rad-supplemented filters
Throughout this paper, we shall assume unless otherwise stated, that L is a dis-
tributive lattice with 1. At this stage it is useful to make an elementary lemma
about filters of L which we will use without further comment.
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Lemma 2.1. [8, Lemma 2.1]
(1) Let A be an arbitrary non-empty subset of L. Then

T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an 6 x for some ai ∈ A (1 6 i 6 n)}.
Moreover, if F is a filter and A is a subset of L with A ⊆ F , then T (A) ⊆ F ,

T (F ) = F and T (T (A)) = T (A).

(2) Let A,B and C be subfilters of a filter F of L. Then
T (T (A ∪B) ∪ C) ⊆ T (A ∪ T (B ∪ C)).

In particular, if F = T (T (A ∪B) ∪ C), then
F = T (T (C ∪B) ∪A) = T (T (A ∪ C) ∪B).

(3) (Modular law) If F1, F2, F3 are filters of L with F2 ⊆ F1, then
F1 ∩ T (F2 ∪ F3) = T (F2 ∪ (F1 ∩ F3)).

Definition 2.2. Let G,H be subfilters of a filter F of L. If F = T (G ∪H) and
G∩H ⊆ Rad(H), then H is called a Rad-supplement of G in F . If every subfilter
of F has a Rad-supplement in F , then F is called a Rad-supplemented filter.

A filter F of L is called radical if Rad(F ) = F , and F is called reduced if it
has no radical subfilter G 6= {1}.

Remark 2.3.
(1) Clearly, each supplement is a Rad-supplement (since G ∩H � H gives

G∩H ⊆ Rad(H)). So (amply) supplemented filters, hollow filters and local filters
are Rad-supplemented filters.

(2) Let F be a radical filter. For every subfilter G of F , we have F = T (F ∪G)
and G ∩ F = G ⊆ Rad(F ). Hence F is Rad-supplemented.

(3) Let L be a lattice such that Rad(H) � H for every filter H 6= {1} of L.
Let F be a Rad-supplemented filter. We show that F is supplemented. If G is a
proper subfilter of F , then there exists a subfilter H of F such that F = T (H ∪G)
and G ∩H ⊆ Rad(H)� H; so G ∩H � H. Thus F is supplemented.

Proposition 2.4. Let U, V be subfilters of a filter F of L. Then V is a Rad-
supplement of U in F if and only if F = T (U ∪ V ) and T ({x}) � V for all
x ∈ U ∩ V .

Proof. Let V be a Rad-supplement of U in F and x ∈ U ∩V ; so F = T (U ∪V ) and
x ∈ U∩V ⊆ Rad(V ). Then xi1∧xi2∧· · ·∧xik 6 x, where xi1 ∈ Fi1 � V, · · · , xik ∈
Fik � V by Proposition 1.2. By Lemma 2.1, T ({x}) ⊆ T (Fi1 ∪ · · · ∪ Fik) � V ;
so T ({x}) � V . Conversely, assume that F = T (U ∪ V ) and T ({x}) � V for all
x ∈ U ∩ V ; so x ∈ Rad(V ) and so U ∩ V ⊆ Rad(V ).

Theorem 2.5. If H is a Rad-supplement in a filter F of L, then Rad(H) =
H ∩ Rad(F ).
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Proof. We first show that if K is a subfilter of F with K ⊆ Rad(F ), then K∩H ⊆
Rad(H). By assumption, there exists a subfilter G of F such that F = T (G ∪H)
and G ∩ H ⊆ Rad(H). If H = Rad(H), then we are done. So we may assume
that H 6= Rad(H). Assume to the contrary, let H ∩ K * Rad(H). Then there
is a maximal subfilter P of H such that K ∩ H * P and G ∩ H ⊆ P . Then
H = T (P ∪ T ({{x})) for some x ∈ K ∩H \ P . It follows that F = T (G ∪ T (P ∪
T ({x})) = T (T ({x}) ∪ T (G ∪ P )). Since x ∈ K ⊆ Rad(F ), we get T ({x}) � F
by Proposition 1.2 and this implies that F = T (G ∪ P ). By modularity law,
H = H ∩ T (G ∪ P ) = T (P ∪ (G ∩ H)) = T (P ) = P which is impossible. Thus
K ∩H ⊆ Rad(H). If K = Rad(F ), then H ∩Rad(F ) ⊆ Rad(H), as required.

Lemma 2.6. Let G,H be subfilters of a filter F of L. If H is a Rad-supplement
of G in F and K is a maximal subfilter of H, then T (K∪G) is a maximal subfilter
of F .

Proof. By assumption, H = T (K ∪ T ({x})) for all x ∈ H \ K. We claim that
F 6= T (G ∪K). Suppose F = T (G ∪K) and look for a contradiction. Then we
can write x = (g ∧ k) ∨ x = (x ∨ g) ∧ (x ∨ k) for some g ∈ G and k ∈ K. It
follows that x ∨ g ∈ G ∩ H ⊆ Rad(H) ⊆ K; hence x ∈ K which is impossible.
Thus F 6= T (G ∪ K). Let T (G ∪ K) $ H ′ ⊆ F for some subfilter H ′ of F .
There is an element y ∈ H ′ with y /∈ T (G ∪ K) (so y /∈ G and y /∈ K). As
y ∈ H ′ ⊆ T (G ∪ H) = F , y = (y ∨ a) ∧ (y ∨ b) for some a ∈ G and b ∈ H.
Since y ∨ a ∈ G, we get y ∨ b /∈ K (otherwise y ∈ T (G ∪ K)). It follows that
H = T (K ∪ T ({y ∨ b})) ⊆ H ′. Now G ⊆ H ′ gives H ′ = F . Thus T (K ∪ G) is a
maximal subfilter of F .

Theorem 2.7. Assume that G,H are subfilters of a filter F of L and let H be a
Rad-supplement of G in F . Then the following hold:

(1) If H is a non-radical filter, then G contained in a maximal subfilter of F .
(2) If G is a maximal subfilter of F , then Rad(H) = G∩H is a unique maximal

subfilter of H.

Proof. (1). By hypothesis, H contains a maximal subfilter K. Then T (K ∪G) is
a maximal subfilter of F by Lemma 2.6 with G ⊆ T (G ∪K), as required.

(2). Since T (G ∪ H) = F and G is a maximal subfilter of F , then H * G;
so G ∩ H 6= H. Let K be a subfilter of H such that G ∩ H $ K ⊆ H. Then
there is an element x ∈ K ⊆ H with x /∈ G. Now G $ T (T ({x}) ∪ G) ⊆ F gives
F = T (T ({x}) ∪G). By modular law, we conclude that

H = H ∩ T (T ({x}) ∪G) = T (T ({x}) ∪ (G ∩H)) ⊆ K;

so H = K. Thus G∩H is a maximal subfilter of H which implies that Rad(H) ⊆
G ∩ H. As H is a Rad-supplement of G, G ∩ H ⊆ Rad(H). Hence Rad(H) =
G ∩H.
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Proposition 2.8. Let F be a filter of L. Then the following hold:
(1) If F is a reduced and Rad-supplemented filter, then Rad(F )� F .
(2) Let F be a reduced filter such that every Rad-supplement subfilter of F is

Rad-supplemented. Then F is supplemented.

Proof. (1). By Proposition 2.7, every proper subfilter is contained in a maximal
subfilter of F . If F = T (Rad(F ) ∪ U) with U 6= F , then there is a maximal
subfilter P of F such that U ⊆ P , and so F ⊆ T (Rad(F )∪P ) = T (P ) = P which
is a contradiction. Thus Rad(F )� F .

(2). By hypothesis, F is Rad-supplemented. Let G be a subfilter of F . So
there is a subfilter H of F such that F = T (G ∪H) and G ∩H ⊆ Rad(H). Since
H is Rad-supplemented and F is reduced (so H is reduced), Rad(H)� H by (1);
hence G ∩H � H. Therefore F is supplemented.

A lattice L is called semisimple, if for each proper filter F of L, there exists a
filter G of L such that L = T (F ∪G) and F ∩G = {1}). In this case, we say that
F is a direct summand of L, and we write L = F ⊕G. A filter F of L is called a
semisimple filter, if every subfilter of F is a direct summand. A simple filter), is a
filter that has no filters besides the {1} and itself.

Proposition 2.9. Let F be a Rad-supplemented filter of L. If H is a subfilter of
F with H ∩Rad(F ) = {1}, then H is semisimple. In particular, if Rad(F ) = {1},
then F is semisimple.

Proof. Let H ′ be any subfilter of H. By assumption, there is a subfilter K of F
with F = T (H ′∪K) andH ′∩K ⊆ Rad(K). By modular law, H = H∩T (H ′∪K) =
T (H ′∪ (H ∩K)). As (H ∩K)∩H ′ = K∩H ′ ⊆ H ∩Rad(K) ⊆ H ∩Rad(F ) = {1},
we get (H ∩K) ∩ H ′ = {1} and H = T (H ′ ∪ (H ∩K)). Thus H is semisimple.
The in particular statement is clear.

Let G be a subfilter of a filter F of L. If subfilter H of F is maximal with
respect to G ∩ H = {1}, then we say that H is a complement of G. Using the
maximal principle we readily see that if G is a subfilter of F , then the set of those
subfilters of F whose intersection with G is {1} contains a maximal element H.
Thus every subfilter G of F has a complement.

Theorem 2.10. Let F be a Rad-supplemented filter of L. Then there exist a
semisimple subfilter K and a subfilter G with Rad(G) E G such that F = K ⊕G.

Proof. Let K be a complement of Rad(F ) in F . We first show that T (K ∪
Rad(F )) E F . If {1} 6= H ⊆ F and T (K ∪ Rad(F )) ∩ H = {1}, then we
prove that Rad(F ) ∩ T (H ∪ K) = {1}. Let x ∈ Rad(F ) ∩ T (H ∪ K). Then
x ∈ Rad(F ) and x = (a ∧ b) ∨ x = (x ∨ a) ∧ (x ∨ b) for some a ∈ K and b ∈ H.
As a ∨ x ∈ Rad(F ) ∩ K = {1}, we get x = b ∨ x ∈ H. Thus x ∈ H ∩ T (K ∪
Rad(F )) = {1}, contrary to the maximality of K. Thus K ∩ Rad(F ) = {1} and
T (K ∪ Rad(F )) E F . Since F is a Rad-supplemented filter, there is a subfilter G
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of F such that F = T (K∪G) and K∩G ⊆ Rad(G). Since K∩G = K∩(K∩G) ⊆
K ∩ Rad(G) ⊆ K ∩ Rad(F ) = {1}; hence F = K ⊕ G. By Proposition 2.9, K is
semisimple. Since Rad(F ) = T (Rad(G)∪Rad(K)) = T (Rad(G)∪{1}) = Rad(G),
T (K ∪ Rad(G)) E F = T (K ∪ G). Suppose, Rad(G) is not essential in G; so
Rad(G) ∩ A = {1} for some subfilter A 6= {1} of G. Let y ∈ T (K ∪ Rad(G)) ∩ A.
Then y ∈ A and y = (g1 ∧ g2) ∨ y = (y ∨ g1) ∧ (y ∨ g2) for some g1 ∈ K and
g2 ∈ Rad(G). Then y ∨ g2 ∈ A ∩ Rad(G) = {1}; hence y = g1 ∨ y ∈ K. Therefore
y ∈ G ∩ K = {1}. Thus T (K ∪ Rad(G)) ∩ A = {1} which is impossible. Thus
Rad(G) E G, as required.

Proposition 2.11. Assume that F1 and G are subfilters of a filter F of L and let
F1 be a Rad-supplemented filter. If T (F1 ∪ G) has a Rad-supplement in F , then
the same is true for G.

Proof. LetX be a Rad-supplement of T (F1∪G) in F ; so T (X∪T (F1∪G)) = F and
X ∩T (F1∪G) ⊆ Rad(X). For D = T (X ∪G)∩F1 ⊆ T (X ∪G), since F1 is a Rad-
supplemented filter, there exists a subfilter Y of F1 such that T (Y ∪D) = F1 and
D∩Y = T (X∪G)∩Y ⊆ Rad(Y ). By Lemma 2.1, we have F = T (X∪T (F1∪G)) =
T (F1 ∪ T (X ∪G)) = T (T (Y ∪D) ∪ T (X ∪G)) ⊆

T (Y ∪ T (D ∪ T (G ∪X))) = T (Y ∪ T (X ∪G)) = T (G ∪ T (X ∪ Y )) ⊆ F ;

hence F = T (G∪T (X∪Y )) = T (Y ∪T (X∪G)) and T (X∪G)∩Y ⊆ Rad(Y ), that
is, Y is a Rad-supplement of T (G∪X) in F . Now we show that T (X∪Y ) is a Rad-
supplement of G in F . It is enough to show that T (X ∪Y )∩G ⊆ Rad(T (X ∪Y )).
Since T (G∪Y ) ⊆ T (F1∪G), T (G∪Y )∩X ⊆ X∩T (F1∪G) ⊆ Rad(X). To simplify
our notation let T (X ∪G)∩ Y = A and T (G∪ Y )∩X = B. If z ∈ T (X ∪ Y )∩G,
then z = z∨(a∧b)∨z = ((z∨a)∧(z∨b))∨z for some a ∈ X (so z∨a ∈ B) and b ∈ Y
(so z ∨ b ∈ A) which implies that z ∈ T (A∪B). Hence T (X ∪Y )∩G ⊆ T (A∪B).
Therefore T (X ∪ Y ) ∩G ⊆ T (A ∪B) ⊆ T (Rad(X) ∪ Rad(Y )) ⊆ Rad(T (X ∪ Y )),
as needed.

Theorem 2.12. Let F1 and F2 be Rad-supplemented filters of L. If F = T (F1 ∪
F2), then F is a Rad-supplemented filter.

Proof. Let G be a subfilter of F (so T (F2 ∪ G ∪ F1) = F ). Let H be a Rad-
supplement of A = T (F2 ∪ G) ∩ F1 ⊆ T (F2 ∪ G) in F1; so T (H ∪ A) = F1 and
A ∩ H = T (G ∪ F2) ∩ H ⊆ Rad(H). Clearly, T (A ∪ F2 ∪ G) ⊆ T (F2 ∪ G). By
Lemma 2.1, F = T (F2 ∪G ∪ F1) = T (F2 ∪G ∪ T (H ∪A)) ⊆

T (H ∪ T (F2 ∪G ∪A)) ⊆ T (H ∪ T (F2 ∪G)) ⊆ F ;

hence F = T (H∪T (F2∪G)) which implies thatH is a Rad-supplement of T (F2∪G)
in F . Now the assertion follows from Proposition 2.11.

Corollary 2.13. If F1, · · · , Fn are Rad-supplemented filters of L, then T (Un
i=1Fi)

is a Rad-supplemented filter.
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Theorem 2.14. The following statements are equivalent for a filter F of L.
(1) Every subfilter of F is Rad-supplement in F .
(2) Every subfilter of F is supplement in F .
(3) Every subfilter of F is a direct summand of F .
(4) F is semisimple.

Proof. (4) ⇒ (3). is clear. To see (3) ⇒ (2), let X be a subfilter of F . Then
there is a subfilter X ′ of F such that X ∩X ′ = {1} � X and F = T (X ∪X ′) by
(3). It follows that X is a supplement of X ′ in F . (2) ⇒ (1) is clear since each
supplement is a Rad-supplement.

(1) ⇒ (3). Let H be a subfilter of F . Then there is a subfilter G of F such
that F = T (G ∪H) and G ∩H ⊆ Rad(H). Let x ∈ G ∩H. Then by Proposition
2.4, T ({x}) � H and it follows that T ({x}) � F ; hence T ({x}) ⊆ Rad(F ). By
(1), T ({x}) is a Rad-supplement in F . Now Theorem 2.5 gives Rad(T ({x})) =
T ({x})∩Rad(F ) = T ({x}) which implies that x = 1 since every finitely generated
filter contains a maximal subfilter. Therefore G ∩H = {1}, and so H is a direct
summand of F .

For the remainder of this section we collect some basic properties concerning
weakly Rad-supplemented filters and amply Rad-supplemented filters.

Definition 2.15. Let G,H be subfilters of a filter F of L. If F = T (G ∪ H)
and G ∩ H ⊆ Rad(F ), then H is called a weak Rad-supplement of G in F . If
every subfilter of F has a weak Rad-supplement in F , then F is called a weakly
Rad-supplemented filter.

Proposition 2.16. Let F be a weakly Rad-supplemented filter of L. Then every
supplement filter of F is a weakly Rad-supplemented filter.

Proof. Let K be a subfilter of F . If G is a subfilter of K, since F is a weakly
Rad-supplemented, there is a subfilter H of F such that F = T (G ∪ H) and
G∩H ⊆ Rad(F ). Hence K = K∩T (G∪H) = T (G∪ (K∩H)) and G∩ (K∩H) =
G ∩ H = K ∩ (G ∩ H) ⊆ K ∩ Rad(F ) = Rad(K). Thus K is a weakly Rad-
supplemented filter.

Proposition 2.17. Assume that F1 and G are subfilters of a filter F of L and let
F1 be a weakly Rad-supplemented filter. If T (F1 ∪G) has a weak Rad-supplement
in F , then the same is true for G.

Proof. By hypothesis, there is a subfilter N of F such that T (N ∪T (F1∪G)) = F
and N ∩ T (F1 ∪G) ⊆ Rad(F ). Since F1 is a Rad-supplemented filter, there exists
a subfilter H of F such that T (H ∪ (F1 ∩ T (N ∪G))) = F1 and H ∩ T (N ∪G) ⊆
Rad(F1). By an argument like that in Proposition 2.11, F = T (G ∪ T (N ∪H)).
Set A = N ∩ T (F1 ∪ G) and B = H ∩ T (G ∪ N). We can easily show that
G ∩ T (N ∪ H) ⊆ T (A ∪ B) ⊆ T (Rad(F ) ∪ Rad(F1)) ⊆ Rad(F ). This completes
the proof.
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Theorem 2.18. Let F1 and F2 be weakly Rad-supplemented filters of L. If F =
T (F1 ∪ F2), then F is a weakly Rad-supplemented filter.

Proof. Let G be a subfilter of F (so T (F2 ∪ G ∪ F1) = F ). Let H be a Rad-
supplement of T (F2 ∪G) ∩ F1 in F1. By an argument like that in Theorem 2.12,
H is a Rad-supplement of T (F2 ∪G). Now the assertion follows from Proposition
2.17.

Corollary 2.19. If F1, . . . , Fn are weakly Rad-supplemented filters of L, then
T (Un

i=1Fi) is a weakly Rad-supplemented filter.

Definition 2.20. A subfilter G of a filter F of L has ample Rad-supplement in
F if, whenever F = T (G ∪ H), G has a Rad-supplement H ′ with H ′ ⊆ H. If
every subfilter of F has an ample Rad-supplement in F , then F is called an amply
Rad-supplemented filter.

Proposition 2.21. Let F be a filter of L. If every subfilter of F is a Rad-
supplemented filter, then F is an amply Rad-supplemented filter.

Proof. Let G and H be subfilters of F such that F = T (G ∪H). By assumption,
There exists a subfilter H ′ of H such that H = T (H ′ ∪ (H ∩ G)) and (G ∩H) ∩
H ′ = H ′ ∩ G ⊆ Rad(H ′). Then H = T (H ′ ∪ (H ∩ G)) ⊆ T (H ′ ∪ G) gives
F = T (G ∪H) ⊆ T (G ∪ T (H ′ ∪G)) = T (H ′ ∪G) ⊆ F ; hence F = T (H ′ ∪G), as
required.

Corollary 2.22. The following statements are equivalent for a lattice L.
(1) Every filter is amply Rad-supplemented.
(2) Every filter is Rad-supplemented.

Theorem 2.23. Assume that F1 and F2 are subfilters of a filter F of L and let
F = T (F1 ∪ F2). If F1 and F2 have ample Rad-supplements in F , then F1 ∩ F2

also has ample Rad-supplements in F .

Proof. Let V be a subfilter of F such that F = T (V ∪ (F1 ∩ F2)). Suppose now
that F1 ∩ F2 = C and F1 ∩ V = D. Then by Lemma 2.1, F1 ∩ F2 ⊆ F1 gives
F1 = F1 ∩ T (V ∪ (F1 ∩ F2)) = T ((F1 ∩ F2) ∪ (F1 ∩ V )) = T (C ∪D) which implies
that F = T (F1 ∪ F2) = T (T (C ∪ D) ∪ F2) = T (D ∪ T (C ∪ F2)) = T (D ∪ F2) =
T (F2 ∪ (F1 ∩ V )). Similarly, F = T (F1 ∪ (F2 ∩ V )). Since F1, F2 have ample Rad-
supplements in F , there exist V ′2 ⊆ V ∩F2 and V ′1 ⊆ F1∩V such that F = T (F1∪V ′2)
and F1 ∩ V ′2 ⊆ Rad(V ′2), and F = T (F2 ∪ V ′1) and F2 ∩ V ′1 ⊆ Rad(V ′1). We show
that T (V ′1 ∪ V ′2) is a ample Rad-supplements of F1 ∩ F2 in F . Since V ′1 ∪ V ′2 ⊆ V ,
T (V ′1 ∪ V ′2) ⊆ V . Moreover, F1 = F1 ∩ T (V ′1 ∪ F2) = T (V ′1 ∪ (F1 ∩ F2)) and
F2 = T (V ′2 ∪ (F1 ∩F2)). Therefore F = T (F1 ∪V ′2) = T (V ′2 ∪T (V ′1 ∪ (F1 ∩F2))) ⊆
T (T (V ′1 ∪ V ′2) ∪ (F1 ∩ F2)) ⊆ F ; so F = T (T (V ′1 ∪ V ′2) ∪ (F1 ∩ F2)). Moreover,
T (V ′1 ∪ V ′2) ∩ (F1 ∩ F2) = (T (V ′1 ∪ V ′2) ∩ F1) ∩ F2 = (T (V ′1 ∪ (V ′2 ∩ F1)) ∩ F2 =
T ((V ′2∩F1)∪(V ′1∩F2)) ⊆ T (Rad(V ′1)∪Rad(V ′2)) ⊆ Rad(T (V ′1∪V ′2). This completes
the proof.
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Theorem 2.24. Let F be an amply Rad-supplemented filter of L. Then the fol-
lowing hold:

(1) Every supplement of a subfilter of F is an amply Rad-supplemented filter.
(2) Every direct summand of F is an amply Rad-supplemented filter.

Proof. (1). Assume that K is a supplement in F and let U be a subfilter of K.
Suppose that K = T (U ∪ V ) for some subfilter V of K. Since K is a supplement
in F , there is a subfilter A of F with F = T (K ∪ A). It follows that F =
T (A∪T (U∪V )) = T (V ∪T (A∪U)). By assumption, V contains a Rad-supplement
H of T (A∪U) in F ; so F = T (H∪T (A∪U)) = T (A∪T (H∪U)) andH∩T (A∪U) ⊆
Rad(H). Note that T (U ∪H) ⊆ K. Since K is a supplement of A in F and F =
T (A∪T (H ∪U)), we have K = T (H ∪U). Now U ∩H ⊆ H ∩T (A∪U) ⊆ Rad(H)
gives H is a Rad-supplement of U in K. Hence K is amply Rad-supplemented.

(2). Let G be a direct summand of an amply Rad-supplemented filter F . Then
there is a subfilter H of F such that F = T (G ∪H) and G ∩H = {1}. Suppose
that G = T (C ∪D) for some subfilters C,D of G. Then

F = T (T (C ∪D) ∪H) = T (D ∪ T (C ∪H)).

By assumption, there exists a subfilter K of D with F = T (K ∪ T (C ∪H)) and
K ∩ T (C ∪H) ⊆ Rad(K). Therefore by modular law, G =

G ∩ T (K ∪ T (C ∪H)) = G ∩ T (H ∪ T (C ∪K)) = T (T (C ∪K) ∪ (G ∩H)) =

T (T (C ∪K)) = T (C ∪K). Since the inclusion C ∩K ⊆ T (C ∪H)∩K is clear we
will prove the reverse inclusion. Let x ∈ T (C ∪H) ∩K. Then x = (a ∧ b) ∨ x =
(x ∨ a) ∧ (x ∨ b) for some a ∈ C and b ∈ H. Since x ∨ b ∈ H ∩K ⊆ G ∩H = {1},
x = x ∨ a ∈ C since C is a filter, and so we have the equality. Now we have
G = T (C ∪K) and K ∩ C ⊆ Rad(K). This completes the proof.

3. Rad-supplemented filters in quotient lattices
Quotient lattices are determined by equivalence relations rather than by ideals as
in the ring case. If F is a filter of a lattice (L,6), we define a relation on L, given
by x ∼ y if and only if there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then ∼ is an
equivalence relation on L, and we denote the equivalence class of a by a ∧ F and
these collection of all equivalence classes by L

F . We set up a partial order 6Q on L
F

as follows: for each a∧F, b∧F ∈ L
F , we write a∧F 6Q b∧F if and only if a 6 b. It

is straightforward to check that (L
F ,6Q) is a poset. The following notation below

will be kept in this section: Let a ∧ F, b ∧ F ∈ L
F and set X = {a ∧ F, b ∧ F}.

By definition of 6Q, (a ∨ b) ∧ F is an upper bound for the set X. If c ∧ F is any
upper bound of X, then we can easily show that (a ∨ b) ∧ F 6Q c ∧ F . Thus
(a∧F )∨Q (b∧F ) = (a∨ b)∧F . Similarly, (a∧F )∧Q (b∧F ) = (a∧ b)∧F . Thus
(L
F ,6Q) is a lattice.
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Remark 3.1. Let G be a subfilter of a filter F of L.
(1) If a ∈ F , then a ∧ F = F . By the definition of 6Q, it is easy to see that

1 ∧ F = F is the greatest element of L
F .

(2) If a ∈ F , then a ∧ F = b ∧ F (for every b ∈ L) if and only if b ∈ F . In
particular, c ∧ F = F if and only if c ∈ F . Moreover, if a ∈ F , then a ∧ F = F =
1 ∧ F .

(3) By the definition 6Q, we can easily show that if L is distributive, then L
F

is distributive.
(4) F

G = {a ∧G : a ∈ F} is a filter of L
G .

(5) If K is a filter of L
G , then K = F

G for some filter F of L.
(6) If H is a filter of L such that G ⊆ H and F

G = H
G , then F = H.

(7) If H and V are filters of L containing G, then F
G ∩

H
G = V

G if and only if
V = H ∩ F .

(8) If H is a filter of L containing G, then T (F∪H)
G = T (H

G ∪
F
G ).

(9) Let H be a subfilter of F with G ⊆ H. H is a maximal subfilter of F if
and only if H

G is a maximal subfilter of F
G .

Lemma 3.2. Let F be a filter of L. Then the following hold:
(1) If K,H are subfilters of F with H � F , then T (H∪K)

K � F
K .

(2) Let K,H be subfilters of F with K ⊆ H. If H � F , then H
K �

F
K .

(3) Let K,H be subfilters of F with K ⊆ H. If K � F and H
K �

F
K ,

then H � F .
(4) Assume that G is a subfilter of F and let H be a Rad-supplement of G in

F . If F
G is radical, then H is radical.

Proof. (1). Assume that A = T (H ∪ K) and let F
K = T ( A

K ∪
G
K ) = T (A∪G)

K for
some subfilter G

K of F
K ; so F = T (T (H ∪K)∪G) = T (H ∪T (K ∪G)) = T (H ∪G).

Then H � F gives G = F . This completes the proof.
(2). Apply (1).
(3). Let F = T (H ∪H ′) for some subfilter H ′ of F . Then by assumption,

T (
H

K
∪ T (H ′ ∪K)

K
) =

T (H ∪ T (H ′ ∪K))

K
=

T (H′∪H)
K = F

K gives T (H′∪K))
K = F

K ; hence T (K ∪H ′) = F . It follows that H ′ = F
since K � F , as required.

(4). Assume to the contrary, let Rad(H) 6= H. Let K be a maximal subfilter
of H. Then by Lemma 2.6, T (G ∪K) is a maximal subfilter of F and so T (K∪G)

G

is a maximal subfilter of F
G by Remark 3.1 (9). This is a contradiction. Thus

Rad(H) = H, that is, H is radical.

Lemma 3.3. If F,K are filters of L with K ⊆ F , then

T (Rad(F ) ∪K)

K
⊆ Rad(

F

K
).
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Proof. Let x ∧K ∈ T (Rad(F )∪K)
K . Then there exist a ∈ Rad(F ) and k ∈ K such

that x = x∨x = x∨ [(x∨k)∧(x∨a)]. There are elements ai1 ∈ Fi1 � F, · · · , aik ∈
Fik � F such that a = (a∨ai1)∧· · ·∧(a∨aik); so x = x∨[(x∨k)∧(x∨a∨ai1)∧· · ·∧
(x∨a∨aik)]. By Proposition 1.2 and Lemma 3.2, T (

T (Fi1∪K)

K ∪· · ·∪T (K∪Fik
)

K )� F
K .

Now

[(x ∨ k) ∧ (x ∨ a ∨ ai1)] ∧K ∧Q · · · ∧Q [(x ∨ k) ∧ (x ∨ a ∨ aik)] ∧K

= [(x ∨ k) ∧ (x ∨ a ∨ ai1) ∧ · · · ∧ (x ∨ a ∨ aik)] ∧K 6Q x ∧K

gives x ∧ K ∈ T (
T (Fi1

∪K)

K ∪ · · · ∪ T (K∪Fik
)

K ) ⊆ Rad( F
K ). This completes the

proof.

Proposition 3.4. Let X,U be subfilters of a filter F of L with X ⊆ U . Then
(1) If V is a Rad-supplement of U in F , then T (X∪V )

X is a Rad-supplement of
U
X in F

X .
(2) If V is a weak Rad-supplement of U in F , then T (X∪V )

X is a weak Rad-
supplement of U

X in F
X .

(3) If V is a supplement of U in F , then T (X∪V )
X is a supplement of U

X in F
X .

Proof. (1). If A = T (V ∪X), then by Lemma 2.1, T (A ∪ U) =

T (U ∪ T (V ∪X)) = T (V ∪ T (U ∪X)) = T (U ∪ V ) = F.

Now Remark 3.1 gives T ( U
X ∪

A
X ) = T (U∪A)

X = F
X . For X ⊆ U , we have U ∩

T (X ∪ V ) = T (X ∪ (U ∩ V )) by modular law, and so U
X ∩

T (V ∪X)
X = U∩T (V ∪X)

X =
T ((U∩V )∪X)

X by Remark 3.1. Since V is a Rad-supplement of U in F , we have
D = U ∩ V ⊆ Rad(V ). Therefore by Lemma 3.3, it is enough to show that

T (D ∪X)

X
⊆ T (X ∪ Rad(A))

X
⊆ Rad(

A

X
).

Since X ∪D ⊆ X ∪ Rad(V ) ⊆ X ∪ Rad(A), we get T (X ∪D) ⊆ T (X ∪ Rad(A)),
as required.

(2). Similar to the proof of part (1).
(3). Since V is a supplement of U in F , we have D = U ∩ V � V . By an

argument like that in (1), we obtain T ( U
X ∪

A
X ) = F

X . By the above consideration,
it is enough to show that B = T (D∪X)

X � A
X . Let

T (B ∪ K

X
) =

A

X

for some subfilter K
X of A

X . Then A
X = T (T (D∪X)∪K)

X = T (D∪K)
X ; so A = T (D∪K) =

T (K ∪ (U ∩ V )). Since U ∩ V � V ⊆ T (V ∪X) = A, we get U ∩ V � T (V ∪X)
= A; hence K = A, as required.
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Theorem 3.5.
(1) If F is a Rad-supplemented filter of L, then every quotient filter of F is

Rad-supplemented.
(2) If F is a weakly Rad-supplemented filter of L, then every quotient filter of

F is weakly Rad-supplemented.
(3) If F is a supplemented filter of L, then every quotient filter of F is supple-

mented.

Proof. Clear from Proposition 3.4.

Theorem 3.6.
(1) If F is an amply Rad-supplemented filter of L, then every quotient filter of

F is amply Rad-supplemented.
(2) If F is an amply supplemented filter of L, then every quotient filter of F is

amply supplemented.

Proof. (1). Let V
X be a subfilter of F

X such that F
X = T ( V

X ∪
U
X ) for some subfilter U

X

of F
X ; so F = T (V ∪ U). Since F is amply Rad-supplemented, there is a subfilter

H ⊆ U such that H is a Rad-supplement V in F . Then by Proposition 3.4,
T (H∪X)

X ⊆ U
X is a Rad-supplement V

X in F
X . Thus F

X is amply Rad-supplemented.
(2). Similar to the proof of part (1).

Theorem 3.7. If F is a Rad-supplemented filter of L, then F
Rad(F ) is a semisimple

filter.

Proof. Let G be any subfilter of F containing Rad(F ). Then there is a Rad-
supplement H of G in F ; so T (G ∪ H) = F and H ∩ G ⊆ Rad(H) ⊆ Rad(F ).
Then F = T (Rad(F ) ∪H ∪G) ⊆ T (G ∪ T (Rad(F ) ∪H)) ⊆ F which implies that
F = T (G ∪ T (Rad(F ) ∪ H)). Set T (Rad(F ) ∪ H) = A. Thus by Remark 3.1,

F
Rad(F ) = T (G∪A)

Rad(F ) = T ( G
Rad(F ) ∪

A
Rad(F ) ). It suffices to show that G

Rad(F ) ∩
A

Rad(F ) =

{1̄}, where 1̄ = 1∧Rad(F ) = Rad(F ) is the greatest element of L
Rad(F ) . By modular

law and Remark 3.1, we have G
Rad(F ) ∩

A
Rad(F ) = G∩A

Rad(F ) = T (Rad(F )∪(G∩H))
Rad(F ) =

T (Rad(F ))
Rad(F ) = Rad(F )

Rad(F ) = {1̄}. This completes the proof.

Corollary 3.8. If F is a supplemented filter of L, then F
Rad(F ) is a semisimple

filter.

Proof. Let G be any subfilter of F containing Rad(F ). Then there is a supplement
H of G in F ; so T (G∪H) = F and H∩G� H; hence H∩G ⊆ Rad(H) ⊆ Rad(F ).
By an argument like that in Theorem 3.7, we get F

Rad(F ) is a semisimple filter.

Theorem 3.9. Let F be a filter of L such that Rad(F )� F . Then F is a weakly
Rad-supplemented filter if and only if F

Rad(F ) is semisimple.
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Proof. Assume that F is a weakly Rad-supplemented filter and let H be any
subfilter of F containing Rad(F ). By assumption, there exists a subfilter G of F
such that F = T (H ∪G) and G ∩H ⊆ Rad(F ). Thus

F

Rad(F )
=

T (H ∪G)

Rad(F )
= T (

H

Rad(F )
∪ T (G ∪ Rad(F ))

Rad(F )
)

and H
Rad(F ) ∩

T (G∪Rad(F )
Rad(F ) = H∩T (G∪Rad(F ))

Rad(F ) = T (Rad(F )∪(H∩G)
Rad(F ) = Rad(F )

Rad(F ) = {1̄};
so H

Rad(F ) is a direct summand of F
Rad(F ) . Conversely, assume that F

Rad(F ) is
semisimple. For any subfilterH of F , since F

Rad(F ) is semisimple, there is a subfilter
G of F containing Rad(F ) such that

F

Rad(F )
=

T (H ∪ Rad(F ))

Rad(F )
⊕ G

Rad(F )
.

Thus F = T (G ∪ T (Rad(F ) ∪ H)) = T (Rad(F ) ∪ T (H ∪ G)); hence T (H ∪
G) = F since Rad(F ) � F . Now T (H∪Rad(F ))

Rad(F ) ∩ G
Rad(F ) = G∩T (Rad(F )∪H)

Rad(F ) =
T (Rad(F )∪(H∩G))

Rad(F ) = Rad(F )
Rad(F ) gives G ∩ H ⊆ Rad(F ); hence F is a weakly Rad-

supplemented filter.

Let G,H be subfilters of a filter F of L with G ⊆ H. We say H lies above G
in F if H

G �
F
G . F is called a lifting filter if every subfilter of F lies above a direct

summand of F . A subfilter G of F is called coclosed in F if and only if G has no
proper subfilter K such that G lies above K. We call H a weak supplement of G
in F if and only if F = T (G ∪H) and H ∩G� F .

Lemma 3.10. Let F be a filter of L. If G ⊆ H are subfilters of F , then H lies
above G in F if and only if T (G ∪ K) = F holds for all subfilter K of F with
T (H ∪K) = F .

Proof. Suppose that H lies above G in F . If F = T (H ∪K), then

F

G
=

T (H ∪K)

G
= T (

H

G
∪ T (K ∪G)

G
)

and H
G �

F
G gives F

G = T (K∪G)
G ; hence T (G ∪K) = F . Conversely, suppose that

T (G∪K) = F for all subfilterK of F with T (H∪K) = F . If there exists a subfilter
K of F containing G such that T (H

G ∪
K
G ) = T (H∪K)

G = F
G , then F = T (H ∪K)

yields F = T (K ∪G) = K; so H lies above G in F .

Proposition 3.11. Let H be a subfilter of a filter F of L. Consider the following
statements:

(1) H is a supplement in F ;
(2) H is coclosed in F ;
(3) For all subfilter K of H, K � F implies K � H.

Then (1) ⇒ (2) ⇒ (3) holds and if H is a weak supplement in F , then (3) ⇒ (1)
holds.
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Proof. (1) ⇒ (2). Assume that H is a supplement of G ⊆ F (so T (H ∪G) = F ).
For all subfilters K ⊆ H such that H lies above K, we have that T (H ∪ G) = F
implies T (G ∪K) = F . By the minimality of H with respect to this property we
get K = H. Hence H is coclosed.

(2)⇒ (3). Let K � F and K ⊆ H. Assume H = T (K ∪X) for X ⊆ H; then
for every Y ⊆ F with F = T (H ∪Y ) = T (Y ∪T (K ∪X)) ⊆ T (K ∪T (X ∪Y )) ⊆ F
we get F = T (X ∪ Y ) since K � F ; hence H lies above X. As H is coclosed, we
get H = X and thus K � H. Assume that H is a weak supplement of G in F ; we
show that (3) ⇒ (1). By assumption, G ∩H � F ; so G ∩H � H by (3). Thus
H is a supplement G in F .

Proposition 3.12. Let F be a filter of L. If F is an amply supplemented filter,
then every subfilter of F that is not small in F lies above a supplement in F .

Proof. Let G be a subfilter of F such that it is not small in F . Let F = T (X ∪G)
with X a supplement of G in F ; then G contains a supplement Y of X in F ; hence
T (X∪Y ) = F . Let T (G

Y ∪
K
Y ) = F

Y for some subfilter K
Y of F

Y . Then T (K∪G) = F
by Remark 3.1. By Lemma 2.1, we have K = K ∩T (X ∪Y ) = T (Y ∪ (K ∩X)); so
F = T (G∪T (Y ∪ (K∩X))) = T ((K∩X)∪T (G∪Y )) = T (G∪ (K∩X)). Since X
is a supplement of G in F , we get X ⊆ K which implies that F = T (X ∪Y ) ⊆ K.
Thus G

Y �
F
Y , and so G lies above Y in F .

We next give three other characterizations of lifting filters

Theorem 3.13. Let F be a filter of L. Then the following statements are equiv-
alent:

(1) F is lifting;
(2) For every subfilter G of F there is a decomposition F = F1 ⊕ F2 such that

F1 ⊆ G and G ∩ F2 � F .
(3) Every subfilter G of F can be written as G = G1 ⊕G2 with G1 a direct

summand of F and G2 � F .
(4) F is amply supplemented and every coclosed subfilter of F is a direct sum-

mand of F .

Proof. (1)⇒ (2). Let G be a subfilter of F . Then G lies above a direct summand
F1 of F . Thus there is a decomposition F = F1⊕F2 with G

F1
� F

F1
. Suppose now

that T ((G ∩ F2) ∪H) = F2 for some subfilter H of F2. Then

F = T (F1 ∪ F2) = T (F1 ∪ T (H ∪ ∪(G ∩ F2))) = T (H ∪ T (F1 ∪ (G ∩ F2)))

= T (H ∪ T ((F1 ∪G)∩ (F1 ∪F2))) ⊆ T (H ∪ T (F1 ∪G)) = T (G∪ T (H ∪F1)) ⊆ F ;

so F = T (G ∪ T (H ∪ F1)). Then by Remark 3.1, F
F1

= T ( G
F1
∪ T (H∪F1)

F1
); so

F
F1

= T (H∪F1)
F1

which implies that F = T (H ∪ F1). Since F2 is a supplement of F1

in F and H ⊆ F2, we get H = F2. Thus G ∩ F2 � F2 and so G ∩ F2 � F by
Proposition 1.2.
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(2) ⇒ (3). For every subfilter G there is a decomposition F = G1 ⊕ F2 with
G1 ⊆ G and G∩F2 � F . It follows that G = G∩T (G1 ∪F2) = T (G1 ∪ (G∩F2)).
Set G2 = F2 ∩G. Therefore G1 ∩G2 = {1}, G = T (G1 ∪G2) and G2 � F .

(3) ⇒ (4). Let F = T (G ∪K) for subfilters G,K of F . We will show that K
contains a supplement of G. By assumption, K = N ⊕H with H � F and N is a
direct summand of F . Then F = T (G∪K) = T (G∪T (N∪H)) = T (H∪T (G∪N))
gives F = T (G∪N) since H � F . By hypothesis, G∩N = N1⊕S with S � F and
N1 is a direct summand of F . It follows that N1∩H ′ = {1} and F = T (N1∪H ′) for
some subfilter H ′ of F which implies that N = N ∩T (N1∪H ′) = T (N1∪(H ′∩N))
with N1 ∩ (H ′ ∩ N) = H ′ ∩ N1 = {1}. Hence N1 is a direct summand of N and
S � N (see proposition 3.11). Let N = N1 ⊕N2 for some subfilter N2 of N . We
claim that N2 is a supplement of T (N1∪S) in N . To prove this consider a subfilter
Y ⊆ N2 such thatN = T (Y ∪T (N1∪S)) = T (S∪T (N1∪Y )). Then T (N1∪Y ) = N
holds as S � N . Thus Y = N2 since N2 is a supplement N1 in N . Therefore N2

is a supplement of G ∩N = T (N1 ∪ S) in N and so N = T (N2 ∪ T (S ∪N1)). So
F = T (G∪N) = T (G∪T (N2 ∪ (G∩N)) = T (N2 ∪T (G∪ (G∩N))) = T (G∪N2)
and G ∩N2 = (G ∩N) ∩N2 � N2 holds; so N2 is a supplement of G in F . Thus
F is an amply supplemented filter.

Let U be a coclosed subfilter of F . Then U = U1 ⊕ U2 with U2 a direct
summand of F and U1 � F . Let K be a subfilter of F such that T (K ∪ U) = F .
So F = T (K ∪ U) = T (K ∪ T (U1 ∪ U2)) = T (U1 ∪ T (K ∪ U2)) which implies that
T (K ∪ U2) = F since U1 � F . It follows that U lies above U2 in F by Lemma
3.10. Hence U = U2 as U is coclosed.

(4)⇒ (1). Let G be a subfilter of F . If G� F , then G
K �

F
K for every direct

summand K of F with K ⊆ G. So we may assume that G is not small in F . By
Lemma 3.12, G lies above a supplement in F (so it is coclosed in F Proposition
3.11) and hence above a direct summand.

Remark 3.14. Lifting filters are exactly the amply supplemented filters whose
supplements are direct summands.

A filter F of L is called Noetherian if any non-empty set of subfilters of F has
a maximal with respect to set inclusion. This definition is equivalent to ascending
chain condition on subfilters of F .

Proposition 3.15. Let F be a filter of L.
(1) F is Noetherian if and only if every subfilter of F is finitely generated.
(2) Rad(F ) is Noetherian if and only if F satisfies ACC on small subfilters.

Proof. (1). Let G be a subfilter of F . Assume that G is not finitely generated and
look for a contradiction. Let Ω be the set of all subfilters of G which are finitely
generated; so Ω 6= ∅ since {1} ∈ Ω. Since F is Noetherian, it follows from the
maximal condition that Ω has a maximal element H with respect to inclusion with
H $ G. Let x ∈ G \H; then T (H ∪ {x}) is a finitely generated subfilter of G and
H $ T (H ∪{x}). Thus we have a contradiction to the maximality of H in Ω. The
proof of the other implication is similar.
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(2). By Proposition 1.2, since the small subfilters are subfilters of Rad(F ), the
necessity is clear. Conversely, assume that F satisfies ACC on small subfilters.
Then F contains a maximal small subfilter H. Thus Rad(F ) = H, and so Rad(F )
is Noetherian by Proposition 1.2.

Theorem 3.16. Let F be a filter of L with ACC on small subfilters. Then F is
an amply Rad-supplemented filter and every Rad-supplement is a direct summand
if and only if F is a lifting filter.

Proof. Suppose that F has the stated property; we show that F is a lifting filter.
Let F = T (G ∪ H). Since F is an amply Rad-supplemented filter, there is a
subfilter K of H such that F = T (G∪K) and G∩K ⊆ Rad(K). Since F satisfies
ACC on small subfilters, Rad(K) is Noetherian by Proposition 3.15, and hence
Rad(K) is finitely generated by Proposition 3.15, so Rad(K) = T (A), where A =
{a1, · · · , an} ⊆ Rad(K). By Proposition 1.2, for each i (1 6 i 6 n), T ({ai})� K;
so T (A) ⊆ T (T ({a1})∪· · ·∪T ({an}))� K which implies that T (A) = Rad(K)�
K. It follows that G ∩ K � K. Therefore K is a supplement of G in F . Thus
F is an amply supplemented filter. Since every supplement subfilter is a Rad-
supplement filter, every supplement is a direct summand of F by assumption.
Thus F is lifting.

Conversely, assume that F is lifting. Then F is an amply supplemented filter
by Theorem 3.13, and hence it is an amply Rad-supplemented. Let H be a Rad-
supplement in F ; so there is a subfilter G of F such that F = T (G ∪ H) and
G∩H ⊆ Rad(H). By an argument like that the above, we get H is a supplement
of G. So H is a direct summand of F by assumption, as needed.
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