
Quasigroups and Related Systems 30 (2022), 47− 62

https://doi.org/10.56415/qrs.v30.04

Simplicial polygroups and

the generalized Moore complexes

Bijan Davvaz and Murat Alp

Abstract. A simplicial group is a simplicial object in the category of groups. A very nice appli-
cation of simplicial group which is simplicial polygroup is given in this paper. Using polygroups
instead of groups, we already had very good results from the well known properties due to Loday.
Loday proved that a crossed module, a cat1-group, a group object in the category of categories
and a simplicial group whose Moore complex is of length one are equivalent. Using Loday’s idea
we present a functor from the category of groups to the category of polygroups and the simplicial
groups to the simplicial polygroups. We show that there exist a functor from the category of
cat1-polygroups to the category of groups and the category of groups to the category of poly-
groups. We also prove that the category of simplicial groups is equivalent to the category of
simplicial polygroups and the category of simplicial polygroups with generalized Moore complex
with of length one is equivalent to the category of polygroups.

1. Introduction
More than last thirty years, simplicial groups play very important role to help
improving homological group theory and homotopy theory. Especially simplicial
group with Moore complex in grater than n provide n-types simplicial groups.

Crossed module firstly defined by J. H. C. Whitehead in [23]. Crossed module
is a very powerful applications tools for simplicial groups too. Because, some
applications of simplicial groups has been got from the equivalence categories idea.
The good example of these applications can be found in [2]. Equivalent categories
are presented by Loday [20] as a crossed module, a cat1-group, a group object
in the category of categories and a simplicial group whose Moore complex is of
length one. The important application of these equivalent categories presented in
this paper as well.

The polygroup theory is a natural generalization of the group theory. In a
group the composition of two elements is an element, while in a polygroup the
composition of two elements is a set. Polygroups have been applied in many
area, such as geometry, lattices, combinatorics and color scheme. There exists a
rich bibliography: publications appeared within 2013 can be found in “Polygroup
Theory and Related Systems" by B. Davvaz [9]. This book contains the principal
definitions endowed with examples and the basic results of the theory. Applications
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of hypergroups appears in special subclasses like polygroups that they were studied
by Comer [4], also see [1, 9, 10, 11, 15]. Specially, Comer and Davvaz developed the
algebraic theory for polygroups. A polygroup is a completely regular, reversible in
itself multigroup. A new application of crossed module which is crossed module of
polygroups is presented in [3]. Also, cat1-polygroups defined by Davvaz and Alp in
[12]. In this paper we show that a polygroup object in the category of categories is
equivalent to a simplicial polygroup whose generalized Moore complex is of length
one. To do this new application we use the idea of Mutlu and Porter in [21].

2. Simplicial groups
Simplicial groups occupy a place somewhere between homological group theory,
homotopy theory, algebraic K-theory an algebraic geometry. We recall some basic
concepts from [21].

A simplicial group G over the category of groups G consists of

(i) for every integer n > 0 an object Gn ∈ G, and

(ii) for every pair of integers (i, n) with 0 6 i 6 n, face and degeneracy maps

di : Gn → Gn−1 and si : Gn → Gn+1

in G satisfying the simplicial identities:

didj = dj−1di if i < j,

disj =

 sj−1di if i < j,
id if i = j or j + 1,
sjdi−1 if i > j + 1,

(1)

sisj = sjsi−1 if i > j.

Similarly a simplicial map f : G→ G′ between two simplicial groups consists
of maps

fn : Gn → G′n ∈ G

which commute with the face and degeneracy maps, i.e.

difn = fn−1di and sifn = fn+1si for all i.

Now, we recall a few well-known definitions and facts about simplicial groups.
Suppose G is a simplicial group.

For n = 0, a 0-dimensional simplex is simply an element x ∈ G0 and a 1-
dimensional simplex is just, for x ∈ G1,

d1x•
x // •d0x.
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2-dimensional simplices are just triangles: for x ∈ G2

•

d1x

��

x

•
d0x

//

d2x

FF

•

with the indicated faces, and 3-dimensional simplices are just tetrahedra:

1

����

))))0

''''

//

88

3

2

FF

The face dix is the face opposite the ith vertex and so on.
Lemma 2.1 and Proposition 2.2 are related to semi-direct product of simplicial

groups.

Lemma 2.1. [21] Let G be a simplicial group. Then, Gn can be decomposed as a
semi-direct product:

Gn ∼= kerdn0 n sn−1
0 (Gn−1).

Proposition 2.2. [5] If G is a simplicial group, then for any n > 0,

Gn ∼= (. . . NGn n sn−1NGn−1) n . . .n sn−2 . . .n s1NG1)n
(. . . (s0NGn−1 n s1s0NGn−2) n . . .n sn−1sn−2 . . . s0NG0).

3. Crossed modules
Let G be a group and Ω be a non-empty set. A (left) group action is a binary
operator τ : G× Ω→ Ω that satisfies the following two axioms:

(1) τ(gh, ω) = τ(g, τ(h, ω)), for all g, h ∈ G and ω ∈ Ω,

(2) τ(e, ω) = ω, for all ω ∈ Ω.

For ω ∈ Ω and g ∈ G, we write gω := τ(g, ω). A crossed module X = (M,N, ∂, τ)
consists of groups M and N together with a homomorphism ∂ : M → N and a
(left) action τ : N ×M →M on M , satisfying the conditions:
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(1) ∂( gm) = g∂(m)g−1, for all m ∈M and g ∈ N ,

(2) ∂(m)m′ = mm′m−1, for all m,m′ ∈M .

The crossed module X also is denoted by X = (∂ : M → N). Let M be a group
and take G = Aut(M). Then, ∂ sends x to the inner automorphism x(−)x−1.
This obviously is a crossed module with the respect to the action of Aut(M) on
M .

A categorical group or cat1-group is a group G together with a subgroup N and
two homomorphisms s, b : G→ N satisfying the following conditions:

(1) s|N = b|N = idN ,

(2) [kers, kerb] = 1.

This cat1-group is denoted by C = (G;N) if no confusion can arise. A morphism
of cat1-groups C → C ′ is a group homomorphism f : G → G′ such f(N) ⊆ N ′

and s′f = f |Ns, b′f = f |Nb.

Lemma 3.1. [20] The following data are equivalent:

(1) a crossed module ∂ : M → N ,

(2) a cat1 group C = (G;N),

(3) a group object in the category of categories,

(4) a simplicial group whose Moore complex is of the length one.

4. Polygroups and crossed polymodules
Let H be a non-empty set and ? : H × H → P∗(H) be a hyperoperation. The
couple (H, ?) is called a hypergroupoid. For any two non-empty subsets A and B
of H and x ∈ H, we define

A ? B =
⋃
a∈A
b∈B

a ? b, A ? x = A ? {x} and x ? B = {x} ? B.

A hypergroupoid (H, ?) is called a semihypergroup if for all a, b, c of H we have
(a ? b) ? c = a ? (b ? c), which means that⋃

u∈a?b
u ? c =

⋃
v∈b?c

a ? v.

Let (H, ?) is a semihypergroup and A be a non-empty subset of H. We say that A
is a complete part of H if for any non-zero natural number n and for all a1, . . . , an
of H, the following condition holds:

A ∩
n∏
i=1

ai 6= ∅ ⇒
n∏
i=1

ai ⊆ A.
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A hypergroupoid (H, ?) is called a quasihypergroup if for all a of H we have
a ? H = H ? a = H. This condition is also called the reproduction axiom. A
hypergroupoid (H, ?) which is both a semihypergroup and a quasihypergroup is
called a hypergroup. The details about algebraic hyperstructures can be found
in the comprehensive reviews published by Corsini [6], Corsini and Leoreanu [7],
Davvaz and Leoreanu-Fotea [13] and Vougiouklis [22]. Also, see [18, 19]. A special
class of hypergroups is polygroups. We recal the following definition from [4, 9] A
polygroup is a multi-valued systemM =< P, ◦, e,−1>, with e ∈ P , −1 : P −→ P ,
◦ : P × P −→ P∗(P ), where the following axioms hold for all x, y, z in P :

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z),

(2) e ◦ x = x ◦ e = x,

(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

By using the concept of generalized permutation, in [8], Davvaz defined permu-
tation polygroups and action of a polygroup on a set. For the definition of crossed
polymodule, it is necessary the notion of polygroup action.

Definition 4.1. [8, 9] Let P =< P, ◦, e,−1> be a polygroup and Ω be a non-
empty set. A map α : P × Ω → P∗(Ω) is called a (left) polygroup action on Ω if
the following axioms hold:

(1) α(e, ω) = {ω} = ω, for all ω ∈ Ω,

(2) α(h, α(g, ω)) =
⋃

x∈h◦g
α(x, ω), for all g, h ∈ P and ω ∈ Ω,

(3)
⋃
ω∈Ω

α(g, ω) = Ω, for all g ∈ P ,

(4) for all g ∈ P , x ∈ α(g, y)⇒ y ∈ α(g−1, x).

From the second condition, we get
⋃

ω0∈α(g,ω)

α(h, ω0) =
⋃

x∈h◦g
α(x, ω). For ω ∈

Ω, we write gω := α(g, ω). Therefore, we have

(1) eω = ω,

(2) h( gω) = h◦gω, where gA =
⋃
a∈A

ga and Bω =
⋃
b∈B

bω, for all A ⊆ Ω and

B ⊆ P ,

(3)
⋃
ω∈Ω

gω = Ω,

(4) for all g ∈ P , a ∈ gb⇒ b ∈ g−1

a.

Alp and Davvaz in [3, 12] introduced and studied the concept of crossed poly-
modules as a generalization of crossed modules
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Definition 4.2. A crossed polymodule X = (C,P, ∂, α) consists of polygroups
< C, ?, e,−1> and < P, ◦, e,−1> together with a strong homomorphism ∂ : C → P
and a (left) action α : P × C → P∗(C) on C, satisfying the conditions:

(1) ∂( pc) = p ◦ ∂(c) ◦ p−1, for all c ∈ C and p ∈ P ,

(2) ∂(c)c′ = c ? c′ ? c−1, for all c, c′ ∈ C.

Example 4.3. [12]A conjugation crossed polymodule is an inclusion of a normal
subpolygroup N of P , with action given by conjugation. In particular, for any
polygroup P the identity map IdP : P → P is a crossed polymodule with the
action of P on itself by conjugation. Indeed, there are two canonical ways in
which a polygroup P may be regarded as a crossed polymodule: via the identity
map or via the inclusion of the trivial subpolygroup.

We say the action of P on C is productive, if for all c ∈ C and p ∈ P there
exist c1, . . . , cn in C such that pc = c1 ? . . . ? cn. The action defined in Examples
4.3 is productive.

5. Fundamental relation

Let < P, ◦, e,−1> be a polygroup. We define the relation β∗P as the smallest
equivalence relation on P such that the quotient P/β∗P , the set of all equivalence
classes, is a group. In this case β∗P is called the fundamental equivalence relation on
P and P/β∗P is called the fundamental group. The product � in P/β∗P is defined
as follows: β∗P (x) � β∗P (y) = β∗P (z), for all z ∈ β∗P (x) ◦ β∗(y). This relation is
introduced by Koskas [16] and studied mainly by Corsini [6], Leoreanu-Fotea [17]
and Freni [14] concerning hypergroups, Vougiouklis [22] concerning Hv-groups,
Davvaz concerning polygroups [9], and many others. We consider the relation βP
as follows:

x βP y ⇔ there exist z1, . . . zn such that {x, y} ⊆ ◦
n∏
i=1

zi.

Freni in [14] proved that for hypergroups β = β∗. Since polygroups are certain
subclass of hypergroups, we have β∗P = βP . The kernel of the canonical map
ϕP : P −→ P/β∗P is called the core of P and is denoted by ωP . Here we also
denote by ωP the unit of P/β∗P . It is easy to prove that the following statements:
ωP = β∗P (e) and β∗P (x)−1 = β∗P (x−1), for all x ∈ P . So, the notion of a heart of a
polygroup is directly connected to the fundamental relation on that polygroup.

Lemma 5.1. ωP is a subpolygroup of P .

Theorem 5.2. [13] The heart of a polygroup P is the smallest complete part
subpolygroup of P

Lemma 5.3. [3, 12] For every p ∈ P , p ◦ p−1 ⊆ ωp.
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Throughout the paper, we denote the binary operations of the fundamental
groups P/β∗P and C/β∗C by � and ⊗, respectively.

Theorem 5.4. [3, 12] Let X = (C,P, ∂, α) be a crosed polymodule such that the
action of P on C is productive. Then, Xβ∗ = (C/β∗C , P/β

∗
P ,D, ψ) is a crossed

module.

Now, we can consider another notion of the kernel of a strong homomorphism
of polygroups. Let < P, ◦, e,−1> and < C, ?, e,−1> be two polygroups and ∂ :
C → P be a strong homomorphism. The core-kernel of ∂ is defined by

ker∗∂ = {x ∈ C | ∂(x) ∈ ωP }.

Lemma 5.5. [3, 12] ker∗∂ is a normal subpolygroup of C.

Theorem 5.6. Let X = (C,P, ∂, α) be a crossed polymodule. Then, ker∗∂ is a
P/∂(C)-polymodule.

The following proposition is noted in [3]. A proof is included for completeness.

Proposition 5.7. Let < C, ?, e,−1> and < P, ◦, e,−1> be two polygroups and let
∂ : C → P be a strong homomorphism. Then, ∂ induces a group homomorphism
D : C/β∗C → P/β∗P by setting

D(β∗C(c)) = β∗P (∂(c)), for all c ∈ C.

Proof. First, we prove that D is well defined. Suppose that β∗C(c1) = β∗C(c2).

Then, there exist a1, . . . , an such that {c1, c2} ⊆ ?
n∏
i=1

ai. So,

{∂(c1), ∂(c2)} ⊆ ∂
(
?

n∏
i=1

ai

)
= ◦

n∏
i=1

∂(ai).

Hence, ∂(c1) β∗P ∂(c2), which implies that D (β∗C(c1)) = D (β∗C(c2)). Now, we have

D(β∗C(c1)⊗ β∗C(c2)) = D(β∗C(c1 ? c2)) = β∗P (∂(c1 ? c2))

= β∗P (∂(c1) ◦ ∂(c2)) = β∗P (∂(c1))� β∗P (∂(c2))

= D(β∗C(c1))�D(β∗C(c2)).

Lemma 5.8. Let < P, ◦, e,−1 > and < C, ∗, e,−1 > be two polygroups and ∂ be a
strong homomorphism C → P . Then, for x ∈ C, β∗C(x) ∈ kerD ⇔ x ∈ ker∗ ∂.

Proof. Suppose that x ∈ C. Then, we have

β∗C(x) ∈ kerD ⇔ D(β∗C(x) ∈ kerD) = wP

⇔ β∗P (∂(x)) = wP

⇔ ∂(x) ∈ wP
⇔ x ∈ ker∗∂
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Definition 5.9. [12] A cat1-polygroup C = (k; t, h : P → C) consists of polygroups
P and C, two strong epimorphisms t, h : P → C and an embedding k : C → P
satisfying

CAT-P-1 : tk = hk = IdC ,
CAT-P-2 : [x, y] ⊆ wP ,∀x ∈ ker∗t,∀y ∈ ker∗h,

where [x, y] = {z | z ∈ x ◦ y ◦ x−1 ◦ y−1}.

The maps t, h are called the source and target.

Lemma 5.10. [12] Condition CAT-P-2 is equivalent to, for all x, y ∈ P ,

[β∗P (x), β∗P (y)] = wP = 1P/β∗
P
.

6. Simplicial groups obtained from
simplicial polygroups

In this section first we introduce the concept of simplicial polygroups. Indeed, in
the theory of simplicial sets, a simplicial polygroup is a simplicial object in the
category of polygroups. Then, by using the notion of fundamental relation, we
make a connection between simplicial polygroups and simplicial groups.

Definition 6.1. A simplicial polygroup P over the category of polygroups P
consists of

(i) for every integer n > 0 an object Pn ∈ P, and

(ii) for every pair of integers (i, n) with 0 6 i 6 n, face and degeneracy maps

di : Pn → Pn−1 and si : Pn → Pn+1

in P satisfying the simplicial identities:

didj = dj−1di if i < j,

disj =

 sj−1di if i < j,
id if i = j or j + 1,
sjdi−1 if i > j + 1,

(2)

sisj = sjsi−1 if i > j.

Lemma 6.2. Every simplicial group is a simplicial polygroup.

Proof. It is clear, since every group is a polygroup,

Theorem 6.3. Let P be a simplicial polygroup. Then, by using the fundamental
relations, we obtain a simplicial group.
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Proof. For every pair of integers (i, n) with 0 6 i 6 n, we define

Di : Pn/β
∗
n −→ Pn−1/β

∗
n−1

Di (β∗n(x)) = β∗n−1(di(x)), for all x ∈ Pn
and

Si : Pn/β
∗
n −→ Pn+1/β

∗
n+1

Si (β∗n(x)) = β∗n+1(si(x)), for all x ∈ Pn.
Then, for i < j we obtain

DiDj (β∗n(x)) = Di

(
β∗n−1(dj(x)

)
= β∗n−2(didj(x))

= β∗n−2(dj−1di(x)) = Dj−1

(
β∗n−1(di(x)

)
= Dj−1Di (β∗n(x)) .

So, DiDj = Dj−1Di.

(1) For i < j, we have

DiSj (β∗n(x)) = Di

(
β∗n+1(sj(x)

)
= β∗n(disj(x))

= β∗n(sj−1di(x)) = Sj−1

(
β∗n−1(di(x)

)
= Sj−1Di (β∗n(x)) .

(2) For i = j or j + 1, we have

DiSj (β∗n(x)) = Di

(
β∗n+1(sj(x)

)
= β∗n(disj(x)) = β∗n(x)).

(3) For i > j + 1, we have

DiSj (β∗n(x)) = Di

(
β∗n+1(sj(x)

)
= β∗n(disj(x))

= β∗n(sjdi−1(x)) = Sj
(
β∗n−1(di−1(x)

)
= SjDi−1 (β∗n(x)) .

Therefore, we conclude that

DiSj =

Sj−1Di if i < j,
Id if i = j or j + 1,
SjDi−1 if i > j + 1,

Also, for i > j we obtain

SiSj (β∗n(x)) = Si
(
β∗n+1(sj(x)

)
= β∗n+2(sisj(x))

= β∗n+2(sjsi−1(x)) = Sj
(
β∗n+1(si−1(x)

)
= SjSi−1 (β∗n(x)) .

So, SiSj = SjSi−1. This completes the proof.
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Theorem 6.4. Let P and H be two simplicial polygroups and f : P → H be a
simplicial map between them consists of maps

fn : Pn → Hn.

Then, F : P/β∗P → H/β∗H is a simplicial map between simplicial groups consists
of maps

Fn : Pn/(β
∗
P )n −→ Hn/(β

∗
H)n

Fn ((β∗P )n(x)) = (β∗H)n(f(x)), for all x ∈ Pn.

Proof. We have

DiFn ((β∗P )n(x)) = Di ((β∗H)n(fn(x)) = (β∗H)n−1(difn(x))

= (β∗H)n−1(fn−1di(x)) = Fn−1 ((β∗P )n−1(di(x))

= Fn−1Di ((β∗P )n(x)) .

Similarly, we obtain

SiFn ((β∗P )n(x)) = Si ((β∗H)n(fn(x)) = (β∗H)n+1(sifn(x))

= (β∗H)n+1(fn+1si(x)) = Fn+1 ((β∗P )n+1(si(x))

= Fn+1Si ((β∗P )n(x)) .

Corollary 6.5. Let P be a simplicial polygroup. Then, Pn/β∗Pn can be decomposed
as a semi-direct product:

Pn/β
∗
Pn
∼= kerDn

0 n Sn−1
0 (Pn−1/β

∗
Pn−1

).

Proof. The proof follows from Theorem 6.3 and Lemma 2.1.

Corollary 6.6. If P is a simplicial polygroup, then for any n > 0,

Pn/β
∗
Pn
∼= (. . . NPn/β

∗
Pn

n Sn−1NPn−1/β
∗
Pn−1

) n . . .n Sn−2 . . .n S1NP1/β
∗
P1

)n
(. . . (S0NPn−1/β

∗
Pn−1

n S1S0NPn−2/β
∗
Pn−2

) n . . .n
Sn−1Sn−2 . . . S0NP0/β

∗
P0

).

Proof. The proof follows from Theorem 6.3 and Proposition 2.2.

The order of terms in this multiple semi-direct product are generated by the
sequence

P1/β
∗
P1

∼= (NP1/β
∗
P1

n S0NP0/β
∗
P0

),

P2/β
∗
P2

∼= (NP2/β
∗
P2

n S1NP1/β
∗
P1

) n (S0NP1/β
∗
P1

n S1S0NP0/β
∗
P0

),

P3/β
∗
P3

∼= (NP3/β
∗
P3

n S2NP2/β
∗
P2

) n (S1NP2/β
∗
P2

n S2S1NP1/β
∗
P1

)n

(S0NP2/β
∗
P2

n S2S0NP1/β
∗
P1

) n (S1S0NP1/β
∗
P1

n S2S1S0NP0/β
∗
P0

),
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P4/β
∗
P4

∼= (NP4/β
∗
P4

n S3NP3/β
∗
P3

) n (S2NP3/β
∗
P3

n S3S2NP2/β
∗
P2

)n

(S1NP3/β
∗
P3

n S3S1NP2/β
∗
P2

) n (S2S1NP2/β
∗
P2

n S3S2S1NP1/β
∗
P1

).

Theorem 6.7. Let C = (k; t, h : P → C) be a cat1-polygroup. Then, by using the
fundamental relation, we obtain a group object in the category of categories.

Proof. Starting with a cat1-polygroup C = (k; t, h : P → C) we construct a small
category with objects of C/β∗C and morphisms the elements of P/β∗P . The mor-
phisms β∗P (p) and β∗P (q) are compatible if and only if β∗P (t(p)) = β∗P (h(q)) and
we define their composition by β∗P (p)Oβ∗P (q) = β∗P (p)� β∗P (t(p))−1 � β∗P (q). It is
easy to check that the axioms of a category are satisfied. We must show that the
composition is a group homomorphism. If β∗P (p′), β∗P (q′) are two other composable
morphisms, then this property holds

β∗P (p)� β∗P (t(p))−1 � β∗P (q)� β∗P (p′)� β∗P (t(p′))−1 � β∗P (q′)

= β∗P (p)� β∗P (p′)� β∗P (t(pp′))−1 � β∗P (q)� β∗P (q′).

After simplification use of the quality β∗P (t(p)) = β∗P (h(q)) proves that it is equiv-
alent to

β∗P (h(q))−1 � β∗P (q)� β∗P (p′)� β∗P (t(p′))−1

= β∗P (p′)� β∗P (t(p′))−1 � β∗P (h(q))−1 � β∗P (q) (3)

Since h(q)−1 ∈ C, it follows that h(h(q)−1) = h(q)−1. Hence,

h(h(q)−1 ◦ q) = h(h(q)−1) ◦ h(q) = h(q)−1 ◦ h(q).

By Lemma 5.3, h(q)−1 ◦ h(q) ⊆ wC and so h(h(q)−1 ◦ q) ⊆ wC . This implies
that h(q)−1 ◦ q ⊆ ker∗h. Similarly, we have p′ ◦ t(p′)−1 ⊆ ker∗t. Therefore,
we have [p′ ◦ t(p′)−1, h(q)−1 ◦ q] ⊆ wP . So by Lemma 5.10, we conclude that
[β∗P (p′ ◦ t(p′)−1), β∗P (h(q)−1 ◦ q)] = 1P/β∗ or

[β∗P (p′)� β∗P (t(p′))−1, β∗P (h(q)−1)� β∗P (q)] = 1P/β∗ (4)

Equation (4) is equivalent to Equation (3). In conclusion, composition in this
category is a group homomorphism if and only if axiom 2 for cat1-polygroups is
valid.

7. The generalized Moore complexes
Let P be a simplicial polygroup. Note that di : Pn → Pn−1 and so

ker∗di = {x ∈ Pn | di(x) ∈ ωPn−1
}.

According to Lemma 5.5, ker∗di is a normal subpolygroup of Pn. Now, we define
the generalized Moore complex as follows:
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Definition 7.1. Let P be a simplicial polygroup. The generalized Moore complex
(NP, ∂) of P is the chain complex defined by

NPn =
n−1⋂
i=0

ker∗dni

with ∂n : NPn → NPn−1 induced from dnn by restriction.

The nth homotopy polygroup πn(P) of P is the nth homology of the generalized
Moore complex of P, i.e.,

πn(P) ∼= Hn(NP, ∂),

=
n⋂
i=0

ker∗dni /d
n+1
n+1(

n⋂
i=0

ker∗dn+1
i ).

Similar to simplicial groups, the interpretation of NP and πn(P) is as follows:
for n = 1, p ∈ NP1,

∂p•
p // •1

and p ∈ NP2 looks like

•

1

��

p

•
1

//

∂p

FF

•

and so on.

Remark 7.2. p ∈ NP2 is in ker∗∂ if it looks like

•

1

��

p

•
1

//

1

FF

•

whilst it will give the trivial element of π2(P) if there is a 3-simplex x with p on
its third face and all other faces identity.

This simple interpretation of the elements of NP and πn(P) will ‘pay off’ later
by aiding interpretation of some of the elements in other situations.
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Definition 7.3. A simplicial polygroup P is augmented by specifying a constant
simplicial polygroup K(P, 0) and a surjective polygroup strong homomorphism,
f = d0

0 : P0 → P with fd1
0 = fd1

1 : P1 → P . An augmentation of the simplicial
polygroup P is then a map

P −→ K(P, 0),

or more simply f : P0 −→ P. An augmented simplicial polygroup (P, f) is acyclic
if the corresponding complex is acyclic, i.e., Hn(P) ∼= 1 for n > 0 and H0(P) ∼= P.

Theorem 7.4. The following data are equivalent:

(1) a polygroup object in the category of categories,

(2) a simplicial polygroup P whose generalized Moore complex is of length one.

Proof. Starting from the category we obtain a simplicial set by taking the nerve.
Indeed, this simplicial set is the simplicial polygroup P, because the category is a
polygroup object in the category of categories. Its generalized Moore complex is
of the length one, i.e.,

· · · → ω → ω → ker∗d1 → P0.

There is a cat1-polygroup associated to this stuation. We put P = P1 and C =
s0(P0) The structurel morphisms t and h are given by h = d1 and t = d0. The first
condition of Definition 5.9 follows from the relations between face and degeneracy
maps, i.e.,

d1|C = h |C= idC and d0 |C= t |C= idC .

In order to prove the second condition of Definition 5.9, we suppose that x ∈ ker∗d1

and y ∈ ker∗d0. Note that d0 : P1 → P0 and d1 : P1 → P0. So, we have

d1(x) ∈ ωP0
and d0(y) ∈ ωP0

.

This implies that

β∗P0
(d1(x)) = ωP0

= 1P0/β∗P0
and β∗P0

(d0(y)) = ωP0
= 1P0/β∗P0

.

Now, we obtain

D1(β∗P2
([s0(x), s0(y) ∗ s1(y)−1]))

= D1([β∗P2
(s0(x)), β∗P2

(s0(y))⊗ β∗P2
(s1(y))−1])

= [D1(β∗P2
(s0(x))), D1(β∗P2

(s0(y)))⊗D1(β∗P2
(s1(y)))−1]

= [β∗P1
(d1s0(x)), β∗P1

(d1s0(y))⊗ β∗P1
(d1s1(y))−1]

= [β∗P1
(x), β∗P1

(y)⊗ β∗P1
(y)−1]

= [β∗P1
(x), ωP1

]

= ωP1
.

Similarly, we have
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D2(β∗P2
([s0(x), s0(y) ∗ s1(y)−1]))

= D2([β∗P2
(s0(x)), β∗P2

(s0(y))⊗ β∗P2
(s1(y))−1])

= [D2(β∗P2
(s0(x))), D2(β∗P2

(s0(y)))⊗D2(β∗P2
(s1(y)))−1]

= [β∗P1
(d2s0(x)), β∗P1

(d2s0(y))⊗ β∗P1
(d2s1(y))−1]

= [β∗P1
(s0d1(x)), β∗P1

(s0d1(y))⊗ β∗P1
(y−1)]

= [S0(β∗P0
(d1(x))), S0(β∗P0

(d1(y)))⊗ β∗P1
(y−1)]

= [S0(ωP0
), S0(ωP0

)⊗ β∗P1
(y−1)]

= [ωP1
, ωP1

⊗ β∗P1
(y−1)]

= [ωP1
, β∗P1

(y−1)]

= ωP1
.

Moreover, we have

D0(β∗P2
([s0(x), s0(y) ∗ s1(y)−1]))

= D0([β∗P2
(s0(x)), β∗P2

(s0(y))⊗ β∗P2
(s1(y))−1])

= [D0(β∗P2
(s0(x))), D0(β∗P2

(s0(y)))⊗D0(β∗P2
(s1(y)))−1]

= [β∗P1
(d0s0(x)), β∗P1

(d0s0(y))⊗ β∗P1
(d0s1(y−1))]

= [β∗P1
(x), β∗P1

(y)⊗ β∗P1
(s0d0(y−1))]

= [β∗P1
(x), β∗P1

(y)⊗ S0(β∗P0
(d0(y−1)))]

= [β∗P1
(x), β∗P1

(y)⊗ S0(ωP0
)]

= [β∗P1
(x), β∗P1

(y)⊗ ωP1
]

= [β∗P1
(x), β∗P1

(y)].

Therefore, by the above calculations we proved that

D1(β∗P2
([s0(x), s0(y) ∗ s1(y)−1])) = ωP1

, (5)

D2(β∗P2
([s0(x), s0(y) ∗ s1(y)−1])) = ωP1

, (6)

D0(β∗P2
([s0(x), s0(y) ∗ s1(y)−1])) = [β∗P1

(x), β∗P1
(y)]. (7)

By using Lemma 6.2, we obtain

[s0(x), s0(y) ∗ s1(y)−1] ⊆ ker∗d1,

[s0(x), s0(y) ∗ s1(y)−1] ⊆ ker∗d2

and so
[s0(x), s0(y) ∗ s1(y)−1] ⊆ ker∗d1 ∩ ker∗d1

Thus,
β∗P2

([s0(x), s0(y) ∗ s1(y)−1]) = ωP2
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and its image by D0 is [β∗P1
(x), β∗P (y)]. Since kerD1 ∩ kerD2 = 1P1/β∗P1

, it follows
that [β∗P1

(x), β∗P (y)] = 1P1/β∗P1
. By Lemma 5.10 the second condition of Definition

[12] is satisfied.

Now, according to Lemma 6.2, Theorem 6.4 and Theorem 7.4, we can expand
the Corollary 3.7 of [12] as follows.

Corollary 7.5. The following diagram shows all the results obtained and thus
gives their relations.

Cat1 − groups
Id //

��

∼=

tt

Cat1 − polygroups

ϕβ∗tt ��
Simplicial groups

ϕβ∗

��

44

∼= // Crossed modules

∼=

OO

//oo

Inc

��

Category of groupsoo

��

Crossed polymodules

ϕβ∗

OO

Simplicial polygroups //

Inc

OO

Category of Polygroupoo
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