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Relative (pre-)anti-flexible algebras

and associated algebraic structures
Mafoya Landry Dassoundo

Abstract. Pre-anti-flexible family algebras are introduced and used to define and describe the
notions of Q.-relative anti-flexible algebras, left and right pre-Lie family algebras and .-relative
Lie algebras. The notion of 2.-relative pre-anti-flexible algebras are introduced and also used to
characterize pre-anti-flexible family algebras, left and right pre-Lie family algebras and significant
identities associated to these algebraic structures are provided. Finally, a generalization of the
Rota-Baxter operators defined on an .-relative anti-flexible algebra is introduced and it is
also proved that both Rota-Baxter operators and its generalization provide Q.-relative pre-anti-

flexible algebras structures and related consequences are derived.

1. Introduction and preliminaries

Anti-flexible algebra, originally derived in the generalization of flexible algebras
(algebras satisfy identity (zy)z = z(yz)) leading to the introduction of several
classes of nonassociative algebras ([23]), is a vector space A equipped with bilinear
product “x : A x A — A” satisfying, for any x,y,z € A,

(xxy)xzt+zx(y*x)=(zxy)xx+x*(y*2), (1a)
equivalently
(z,y,2) = (2,9, 2), (1b)
where,
(#,y,2) = (wxy)xz —xx(y*2), (2)

is the associator of the bilinear product * : A x A — A. Anti-flexible algebras
are also known as Gy-associative algebras ([15]) and center-symmetric algebras
([19]). Simplicity and semi-simplicity of anti-flexible algebras were investigated
and characterized ([24]). Besides, simple and semisimple (totally) anti-flexible
algebras over splitting fields of characteristic different to 2 and 3 were studied and
classified in [6, 25, 26]. Moreover, the primitive structures and prime anti-flexible
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rings were investigated in [7] and it were established that a simple nearly anti-
flexible algebra of characteristic prime to 30 satisfying the identity (z,z,2) =0 in
which its commutator gives non-nilpotent structure possesses a unity element [10].

A Rota-Baxter operator, originally introduced in [4, 27], is a linear operator
Rp : A — A defined on an associative algebra (A, ) and satisfying, for any z,y €
A

)

Rp(z) - Rp(y) = Rp(Rp(z) -y) + Rp(x - Rp(y))- (3)

It is well known from [2] that Rota-Baxter operator of weight zero on a given
associative algebra induces a dendriform algebra (introduced by Loday in [20])
structures. More precisely, for a given linear map R : A — A on an associative
algebra (A, -), the two following bilinear products <,>: A x A — A given by, for
any z,y € A,

z=y:=R(x)-y, zx<y:=z-R(y), (4)

satisfy the following relations, for any z,y, z € A,

(x=y)<z—xz>(y<2)=0, (5a)
(zr-yt+az<y)=z—xz>(y=2) =0, (5b)
r=<y=-z+y<z)—(x<y)<z=0, (5¢)

if and only if R : A — A is a Rota-Baxter operator of weight zero on A, that
is, R satisfies Eq. (3). Similarly, from [8, 9], it is established that for a given a
Rota-Baxter operator of weight zero defined on an anti-flexible algebra (A, *), the
bilinear products given by Eq. (4) satisty, for any x,y,z € A,

(z=y)<z—xz>=@y<2)=CEry)<z—2(y=<uz), (6a)

(x>=y+z=<y)=-z—az>=y=2)=z<@Wyr-z+y<z)—(2<y) <z, (6b)

and the algebra (A, <, >) is known as pre-anti-flexible algebra. More generally,
for a given linear map Grp : A — A defined on an anti-flexible algebra (A4, %) and
considering the following bilinear products given by, for any z,y € A,

x>="y:=Grpx)xy, x=<"y:=2xGrply), (7)
then (A, <’,>’) is a pre-anti-flexible algebra if and only if, for z,y, z € A,

(Grp(GrB(2) *y + 2% GrB(Y)) — Gre(z) * GrB(Y)) * 2+
zx(Grp(Yy) * Grp(r) — Gre(GrB(Y) ** +y *x Grp(2))) =0.  (8)
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A linear map Grp : A — A given on an anti-flexible algebra (A, x) satisfying
Eq. (8) is known as a generalization of the Rota-Baxter operator of weight zero.

Besides, dendriform and (di-)tri-algebras were introduced and related to Rota-
Baxter operators and associated consequences were derived ([11]). Moreover, it is
well known (from [16]) that Koszul duality of operad governing (di-)tri-algebras
is corresponding to operad governing variety of (di-)tri-dendriform algebras which
are embedded to zero’s weight Rota-Baxter algebra. Furthermore, it is proved
that a general operadic definition for the notion of splitting algebraic structures are
equivalent with some Manin products of operads which are closely related to Rota-
Baxter operators ([3]). More generally, splitting algebraic operations procedure in
any algebraic operad theory were uniformed and linked to the notion of Rota-
Baxter operators on operads ([22]) and other results established on Rota-Baxter
algebras are surveyed in [18] and the references therein.

The notion of operated semi-group are introduced to build some algebraic
structures on combinatoric elements mainly the binary rooted trees. The most
relevant examples are the construction of free Rota-Baxter algebras in terms of
Motzkin paths and planar rooted trees ([17]) and the use of typed decorated trees
theory for describing combinatorial species ([5]). Given a (non)associative K (field
of characteristic zero) algebra A, a Rota-Baxter family operators of weight A (A €
K) is a family of linear maps P,, : A — A, where w € , satisfying, for any z,y € A
and for any «, 8 € Q,

Pa(I)Pﬁ(y) = Paﬂ(xpﬁ(y)) + Paﬁ(Pa(x)y) + APaﬁ(Iy)' (9)

The theory of Rota-Baxter family operators takes its origins in renormalization
theory of quantum field theory ([12, page 591]). Recently, free (non)commutative
Rota-Baxter family is introduced and linked to (tri)dendriform family algebras
([28]). Moreover, it is proved that Rota-Baxter family algebras indexed by an as-
sociative semigroup amounts to an ordinary Rota-Baxter algebra structure on
the tensor product with the semigroup algebra. Similar results are provided
with (tri)dendriform family algebras ([29]), and more generally, the notion of
Q-dendriform structures are introduced and nonassociative structures on typed
binary trees are unified and generalized ([13]). Similarly, pre-Lie family algebras
and free pre-Lie family algebras, are introduced and related typed decorated trees
are constructed and related generalization are also derived (|21]). In addition, a
general account of family algebras over a finitely presented linear operad are given
and proved that this operad together with its presentation naturally define an
algebraic structure on the set of parameters ([14]).

Throughout this article, €2 is an associative semi-group and €2, is a commu-
tative associative semi-group, algebras are defined over a field of characteristic
zero. We end this introductory section by describing the content flowchart of this
paper as follows. In section , we introduce the notion of pre-anti-flexible family
algebras, establish their relations with dendriform family algebras and use them
to construct € -relative anti-flexible algebras as well as ) -relative Lie algebras,
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left and right pre-Lie family algebras and related consequences are derived. In sec-
tion , the notion of 2.-relative pre-anti-flexible algebras is introduced and viewed
as a generalization of the Q.-relative dendriform algebras and used to build €2.-
relative pre-anti-flexible algebras, € -relative pre-Lie and right pre-Lie algebras,
Q.-relative Lie algebras and other associated structures are derived. In section , we
prove that a Rota-Baxter family operators of weight zero defined on an € -relative
anti-flexible algebra and its generalization induce an ().-relative pre-anti-flexible
algebra structure. Under some assumptions on {.-relative anti-flexible algebra,
we prove that a Rota-Baxter family operators defined on a related Q.-relative Lie
algebra of an Q) -relative anti-flexible algebra also induces an €).-relative pre-anti-
flexible algebra structure.

2. Pre-anti-flexible family algebras

In this section, pre-anti-flexible family algebras are introduced and related con-
sequences are established. Associated family algebras are derived as well as its
Q.-relative algebraic structures.

Definition 2.1. A pre-anti-flexible family algebra is a quadruple (4, <, >, )
such that A is a vector space equipped with two families of bilinear products
<ay>=a: A X A — A with a € Q. and satisfying for any z,y,z € A and for any
o, B €,

(x>=ay)<pgz—a>a0 (Y=<p2)=(2>8Y) <aT—2>3 (Y <a ), (10a)

(T ay+T=8Y) a2 —T o (Y>52)=(2<8Y) <a
—2 <80 (Y =g T+ Yy <q ). (10b)

Remark 2.2. If the LHS and the RHS of each Eq. (10a) and Eq. (10b) become
zero, then pre-anti-flexible family algebra is dendriform family algebra (|28, 21,
29]). Consequently, pre-anti-flexible family algebras can be considered as a gener-
alization of dendriform family algebras.

Definition 2.3. An Q-relative anti-flexible algebra is a triple (4,-, ,,€) in
which A is a vector space equipped with the family of bilinear products “-_ , : A x
A — A” with (o, 8) € Q2 and satisfying, for any z,y,z € A and any a, 3,7 € Q.,

(.’t ‘a.p y) ‘apr 2 T2 5 (y B, l‘) B (Z 1.8 y) 8o L T Xy gy (y "By Z) =0, (11)
equivalently

(‘r7y72)ayﬁy—y = (Zvyvx),y,ﬁ,(,v (12)

where, for any z,y,z € A and for any «, 8,7 € Q,

(x,y7 Z)a,[:f,’y = (:L‘ ‘o, B y) “aBiy 2T gy (y By Z) (13)
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Theorem 2.4. Let (A, <y, =w, Q) be a pre-anti-flexible family algebra, the fol-
lowing family of bilinear products given by, for any o, B € Q. and for any x,y € A,

x*a,/ay:x>a y+$<;;y (14)
is such that (A, *q.5,9.) is an Qe-relative anti-flexible algebra.
Proof. Let z,y,z € A and «, 3,7 € Q.. We have

('Tvyvz)a,ﬂ,'y = (I *a,B y) *aﬁ,"f £z *O‘vB’Y (y *B*“f Z)
=@>=aytz=<py) =2+ @=aytr<py) <,z
— T a(Yrprty=y2)—x =, (Yrszt+y=y2)
{@=ay+a=<pYy) =200 (y=p 2}
{(z<py) =y z—2 =<y, (Yrp2+y=y2)}
{@=ay) =y z—2>=a (Y =4 2)}
{(z<8Y) =a®—2<ga (Y>=pgr+y<ax)}
}(z - y)—|— z =5 Y) >w(x ~z >)w} (y =5 )}
(2> Yy) =at—2>y (y=<az
(Zryy+2z=py) = 2+ (2= y+2<Yy) <a®
2y (Y g T4y <a2)—2<pa (Y >pT+Y=<a)
(x7yaz)a,5,fy = (Zvyax)ry,/i,a‘

=4+ 1+ + 1

Therefore, the family of bilinear products given by Eq. (14) satisfies Eq. (12). Thus
(A, 5,9.) is an Q.-relative anti-flexible algebra where, “x_, : A x A — A” is
derived by Eq. (14). O

Theorem 2.5. Let A be a k vector space and consider on A Q@ k)., two bilinear
products given by <, =: AQkQ. x AQkQ, = AQKQ.. The triple (A®kQ,, <, >)
is a pre-anti-flexible algebra if and only if (A, <u, =w, Q) is a pre-anti-flexible
family algebra and for any x,y, € A and for any a, B € ¢,

(z@a) < (y®p):=(r <5 y) ®ap, (15a)

(z®a)> (y®P) = (x =4 y) ®afb. (15Db)
Proof. Let z,y,z € A and «, 3,7 € Q.. We have
(z®@a) = (y®p) < (2®7)—(E®a) - (y® ) < (2®7)) =
(>ay) =y z2—2 >0 (Y =y 2)) ®afy, (16a)

(r@a) = (Y +(@ea)<(yxp)) = (207)
—(z@a)=((y2p) = (207) = (T =ay+2=<Y) =ap 2
—x = (Y =5 2)) @ afy. (16b)

Similarly, using the commutativity of €., we have

(Y= Hep)<(r@a)-(227) = (yeh) X (r®a)) =
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(27 Y) <a = 2>y (Y <a T)) ®aby, (17a)

(@7 <o) < (z0a)-(207) < ((y2h) - t®aq) (17b)
Hyepf) < (z®@a)=((2<p¥) <a =2 =<pa (Y =p 2+ Yy <az)) @aby.

Hence, if (A ® k., <, >) is a pre-anti-flexible algebra i.e., the RHS of Eq. (16a)
and Eq. (17a) are respectively equal to that of Eq. (16b) and (17b), then (A, <,
s >w, ) is a pre-anti-flexible family algebra.

Conversely, if (A4, <y, >, ) is a pre-anti-flexible family algebra in which “<,,
>t AxA — A” are given by Egs. (15a) and (15b), according to Egs. (16a), (16b),
(17a) and (17b), we deduce that (A @k, <,>) is a pre-anti-flexible algebra. [

Definition 2.6. (cf. [21]) A left pre-Lie family algebra is a triple (A,>,, Q)
in which A is a vector space equipped with the family of bilinear products >, :
A x A — A with w € Q,, satisfying for any z,y,z € A and for any «, 5 € €,

(@Pay)Pag 2 — 2o (YPg2) = (Y23 &) Pga 2 — Y (T Pa 2). (18)

Definition 2.7. A right pre-Lie family algebra is a triple (A, <, ;) in which A
is a vector space equipped with the family of bilinear products <, : Ax A — A
with w € €, satisfying for any z,y, z € A and for any «, 5 € Q,,

g (Y 2) — (< Y) <43 2 =2 <8a (2 Y) — (<95 2) <0 Y. (19)

Remark 2.8. For a given left pre-Lie family algebra (A, 4, Q), setting for any
z,y € A and for any o € Q., x -%PP y = y -, *, we have for any z,y,z € A and for
any o, 5 € Q,

. Z%p (y ,21)11 z) — (x -2 y) .Epp 5

Z'ﬂy)'aﬁx_z'ﬁ(y'ax)
y'az)'ﬁax_y'a(z'ﬁx)

(
T () — (@) 2y

Therefore, (A, 2P Q.) is a right pre-Lie family algebra.

Theorem 2.9. Let (A, <y, =w, Q) be a pre-anti-flexible family algebra, the two
following families of bilinear products

TDLY =T o Y —Y <u T, Yw E Q, (20a)

T Y =2 <o Y — Y=o T, YwE Q, (20b)

for any x,y € A and for any «, 8 € Q., are such that (A,>,, ) is a left pre-Lie
family algebra and (A,<,,,Q) is a right pre-Lie family algebra.
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Proof. Let x,y,z € A and «, 8 € Q.. We have

(DoY) Pap 2 — D (Y>p2) = (T =0 Y — Y <a T)Dap 2
—2Pa (Y rpz—2=3Y) =(T >0y —Y <al) =as 2
—z2=ap (@ >aY—Y=<a)—x o (y>=p2z—2=<3Y)
+Wrpz—2=pY) <axz={(x>ay) =ap z2— 2 >a (y >3 2)
—(2=8Y) <aT—2=ap (Y=a®)}— (Y <aZ)=ap 2—2<as (T >=ay)
+x0(2=pYy)+(y>=p2) <ax
=—(z<8Y) mapz— 2 <ap (Y = 2) = (Y <a ) =ap 2
—2=ag (@ =ay)tTa (2 <Y)+ (Y =52) <ax
=—(r<3Y+Y<a)>apz2—2=ap (@ >ay+y>3)
+ (Y=g 2)<ax+x >0 (2=<5Y) =(Yrg ) Pga 2 —yg (T >y 2).

Note that the third equal sign above upwards is due to Eq. (10b) while the last
equal sign one is due to Eq. (10a). Therefore, (A,>,,€.) is a left pre-Lie family
algebra.

Similarly to the above calculations, we prove that (A, <y, Q) is a right pre-Lie
family algebra. O

Definition 2.10. An Q.-relative Lie algebra is a triple (A, [,], ,, Q) in which A
is a vector space equipped with a family of bilinear products [-,-], , : A® A — A
with (o, 8) € Q., and satistying, for any z,y,2 € A, and for any «, 8,7 € Q,

[*7"7 y]a,ﬁ + [ya ‘T]B,a =0, (21&)

[[m7y]a,ﬁ7z}aﬁ,’y + [[ya Z]ﬁ,wx]ﬁw,a + [[Z7 x]’y.(x’y]—ya,ﬂ = 0. (21b)

Theorem 2.11. Let (A, <, >w, Q) be a pre-anti-flexible family algebra. The

following family of bilinear products given by, for any x,y € A and for any o, f €
Q

[T Yla s =05, sy —Y*, = (T =0y +r<5y) — (Y s T+y<am) (22)

is such that (A, [, -], 5,Qc) is an Q.-relative Lie algebra.

a,B?
Proof. For any x,y,z € A and for any «, 3,7 € €2, we have

e Skew symmetric,
[Tyl , +al,. =xx, ,y—y*, v +y*, x—ax*, ,y=0.
Thus, Eq. (21a) is satisfied.

e Family of Jacobi identity,

(2, 9]o 50 2asy T 2], 20,0+ 202], 00 Y0 s
= ('T *a.8 y) *opy X2 T E*, 05 (,T *.8 y)
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— % y7x)'y,5,a - (35, Zvy)a,«,,ﬁ - (ya z, Z)B,a,'y =0
due to Theorem 2.4 and Eq. (12). Hence, Eq. (21Db) is satisfied.

Therefore, (A, [, ], 5, ) is an Q.-relative Lie algebra. O

o,B?

Proposition 2.12. Let (A, <, >w, ) be a pre-anti-flexible family algebra. The
following family of bilinear products given on A by, for any a, 8 € Q. and for any
x,y € A,

['r7y]o<,[3 =ITPbaY —YPbpa, (23)

where, “>” is defined by Eq. (20a), turns A into an Q.-relative Lie algebra which
is the same as that given in Theorem 2.11.

Proof. Let x,y € A and «, 8 € Q.. We have

[Tyl , =TPay—Ybpr = =q Y —Y<al—Ygr+r <Y
=@ ay+T=3Y) (Y =pT+Y=<aT)=T*aY —Y*aT

which is the commutator given by Eq. (22). O

Theorem 2.13. Let (A, <, >w, Q) be a pre-anti-flexible family algebra. The
following family of bilinear products given by, for any x,y € A and for any o, 5 €
QC}

TO,,Y=T%pY+Y*saT, (24)

in which “¢qp3: Ax A— A”is given by Eq. (14) is such that, for any x,y,z € A
and for any a, B,y € Q.,

(;my,z) = [y> [x7z]a,»y];s,a~,v (25)

Ca,B,y

where,
(z,y,2) = (% 9,8 Y) Caf,y 2 — T %,y (Y OB,y 2), (26)

Co, B,y

and “[-,-], ;7 is given by Eq. (22).

Proof. Let x,y,z € A, and for all «, 8,7 € Q., we have

= (¥ 00,8 Y) Oaf,y Z = T %a,py (Y 0,y 2)
= (T *a,8 Y T Y*,a T) *af,y 2 + 2 *y,06 (T *a,8 Y + Y *p,0 T)

("I:7 y’ Z)

Ca, B,y
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— Tkapy (Y*y 2+ 2%58Y) — (Y67 2+ 2%48Y) *6y,a T
={(z*a,8Y) *apy 2 = T *a,8y (Y %5,y 2)}

—{(z%9,8Y) *7,0 T — 2 %y,08 (Y *3,a ¥)}

+ (Y *8,0 &) ¥apy 2 + 2 *y,08 (T *a,3Y)

— T *a,fy (2%4,8Y) = (Y *p,4 2) ¥py,a T

= (y *8,a 33) *aB,y Z T 2 *v,a8 (x *a,B y)

— Tka,py (2%y,8Y) = (Y %8,y 2) ¥8y,0 T

= Y *8,ay (T *a,y 2) + (2 %y,0 T) *ya,8 Y

—Y* By (Z *y,0 .7;) - (x *ar,y Z) *ay,8 Y = [y7 [l‘, Z]a,»y]/a,a»y'

Note that the three last equals sign upwards are due to Eq. (11). O

Proposition 2.14. Let (A4 3,Q:) be an Q.-relative anti-flexible algebra. We
have for any x,y,z € A and for any o, 5,7 € Q,

+ (z,z,y) + (y,2,2), =0, (27)

(z,y,2) e

o o
o, B,y v 0,8

where, for any x,y,z € A and for any «, B,y € Q., (z,y,2) is given by

Eq. (26) and v 00y =T apyY+Y paT-

o
@,

Proof. According to Eq. (26), Theorem 2.11 and Theorem 2.13, Eq. (27) holds. O

3. Associated ().-relative algebras

In this section, Q2 -relative pre-anti-flexible algebras structures are introduced and
associated Q.-relative algebras structures are derived. Moreover, 2 .-relative pre-
anti-flexible algebras are viewed as a generalization of pre-anti-flexible family al-
gebras and associated consequences are deduced.

Definition 3.1. An () -relative pre-anti-flexible algebra is a quadruple (A, <4,
. >=a,8,§2c) in which A is a vector space equipped with two families of bilinear
products <, g; =a,5: A X A — A for (o, B) € Q2 and satisfying for any z,y,z € A
and for any «, 8,y € Q.,

(T =a,8Y) <apy 2= T =apy (Y=py2) = (2=48Y) <vpa T
—2 >~ 8a (Y <B,a T), (28a)

(T <8 YTT>apY) =apy 2= T =apy (Y =gy 2) =
(2 =4,8Y) =480 T—2 =<y 8a (U <80 T+Y >3, ). (28b)

Remark 3.2. If the LSH and RHS of Eq. (28a) and Eq. (28b) vanish, then the
Q-relative pre-anti-flexible algebra (A4, <a g, >a.3, ) is called Q.-relative dendri-
form algebra ([1]). Hence, Q.-relative pre-anti-flexible algebras are a generalization
of Q.-relative dendriform algebras.
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Similarly to Theorem 2.5, we have

Theorem 3.3. Let A be a k vector space and consider the bilinear products given
on AQkQ: by <, A®kQ, x A®@kQ. - AR kQ.. The triple (A @ kQe, <, >)
is a pre-anti-flexible algebra if and only if the quadruple (A, <a 8, >a.8, ) is an
Q.-relative pre-anti-flexible algebra where, for any x,y € A and for any «, B € €,

(z®@a) < (y@p) = (r <ap y) @ab, (29a)

(z@a) = (Y@ B) = (x -apy) @ap. (29b)

Proposition 3.4. Let (A, <q.8, >a.8, Q) be an Q.-relative pre-anti-flexible alge-
bra. The following family of bilinear products given by, for any xz,y € A and for
any o, B € Q¢,

T®a Y =2 <apY+T>apsY, (30)
turns A into an Q.-relative anti-flexible algebra.

Proof. Let x,y,z € A and «, 8,7 € Q.. We have

(2,9, 2) @05, = (X =ap Y+ T <ap¥Y) =ay 2+ (T =ap ¥+ T <apY) <apy 2
— X =a,py (y B8y 2+ Y <~y Z) — T <a,8y (y =By 2+ Y <8y z)
={(z>apyY+T<apyY) =aBy 2 — T >=apy (Y >=p~2)}

— {2 <0y Wy 2+ Y <y 2) = (T <apY) <apy 2}
+{(@ =a,8Y) <apy 2 — T =apy (Y <5 2)}

={(2 <78 Y) <180 T — 2 <y 80 (Y <pa T+ Y >p.a )}
+{(z=48Y+2=78Y) =80T —2>48y (Y =p,a T)}
+{(z =78 Y) <v8.a T — 2 >~ 8a (Y <8,a T)}

= (Z ®y,38 y) ®ByB,a T — 2 By, Ba (y ®g,a :17) = (Za y7x)®'y,ﬁ,o¢7

the third equal sign upwards above is due to Eq. (28a) and Eq. (28b).
Therefore, (A, ® , Q) is an Q.-relative anti-flexible algebra. O

w1,w2

Definition 3.5. An .-relative pre-Lie (left-symmetric) algebra is a vector space
A equipped with a family of bilinear products *, , : A® A — A with (o, 3) € 02
such that for any x,y,z € A and for any «, 8,7 € Q,

(xayvz)a,g,.y = (yax?z)ﬂ,a,nﬂ (31)
or equivalently
(1‘ *a.8 y) *apy # T THE, 5, (y *5. Z) - (y *5 o ‘r) 1 +y *5 any (33 * vy Z) =0. (32)

Definition 3.6. An Q) -relative right-symmetric algebra is a vector space A equip-
ped with a family of bilinear products *_, : A® A — A for (o, 8) € 02 such that
for any z,y,z € A and for any «, 5,7 € Q,

(m7y7z)a,[3,w = (x’z7y)a"y,[37 (33)
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or equivalently

({,E *(x,[i y) *Q,B,'y Z—=T *rx,[‘l"y (y *[:f,-y Z) - (LL' *a,'y ) av,B Y +z *o, B (Z *7‘/3 y) = 0. (34)

Theorem 3.7. Let (A, <48, >a,8, ) be an Q.-relative pre-anti-flexible algebra,
defining for all a, B € Q and for any x,y € A,

s Y=T map Y — Y <Bal, (35&)

C Y=T =apY =Y " pal, (35b)

then (A,» ,,Qc) is an Q.-relative pre-Lie algebra and (A, <
relative right symmetric algebra.

Q) is an Q.-

a,B7

Proof. Let x,y,z € A and «, 3,7 € Q.. We have

(x’y7z)>a,ﬁ,'y = (‘T > y) » sy TP, (y > Z)
=(T>a8Y—Y <o) =aby 2
—2=yap (>0 yY—Y <8,a2)
— T mapy (Y =By 2= 2 =y,8Y)
T (Y =py 2= 2 <y y) By T
={(@ =apY) mapy 2 — T =a,py (Y =5~ 2)
—{(2 24,8 Y) <By,a T— 2 <480 (Y <g,a T)
( 2) <py,a T+ T a8y (2 24,8 Y)
—{(y <80 T) =apy 2+ 2 <y,a8 (
( 2) Rav,8 Yt Y =pay (2 <y,a T
TapY+Y<8al) =ap~y 2}
2 =08 (T=ap Y+ Y >=ga2)} =220,

the second equal sign upwards in the above successive relations is due to Eq. (28a)
and Eq. (28b) while the last one is due to Eq. (28a).

Therefore, (A4,», ,,€.) is an Q.-relative pre-Lie algebra.
Similarly, we prove that (A, <, ,, ) is an Q.-relative right symmetric algebra. [

Moreover, we have
Theorem 3.8. Let (A, <48, >a,8,8) be an Q.-relative pre-anti-flexible algebra.

There is an Q.-relative Lie algebra structure on A given by for any z,y € A and
for any o, B € .,

[0la s = (@ =ap Y+ T <apy) = (Y =pa T+ Y <pa ) (36)
Proof. Let x,y,z € A and o, 8,7 € Q.. In view of Eq. (36) and Eq. (30) we have

[aj?y]a,/i + [y7$][f,a = ®a,[3 y—y ®[3,a T+ Yy ®[€,a r—x ®a,/3 Y= 0.
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In addition, we have

257 PO PO o 70 PR O o | 7 DO 7] I
= (.%‘7y, z)@a,ﬁ,'y + (y’ z’l‘)@ﬁ,’y,a + (Za I’y)®’y,a,ﬁ
_(Zvy7x)®-y,ﬂ,a - (‘r7zvy)®a,w,6 - (y7x72)®/3,a,»y'

According to Proposition 3.4, we deduce the ) -relative Jacobi identity. Therefore,
A contains an ).-relative Lie algebra structure. O

Theorem 3.9. Let (A, <a,8,>a,p8, ) be an Qc-relative pre-anti-flexible algebra
such that its related Q.-relative anti-flexible algebra derived in Proposition 3.4 is
(A, By g Q.). The family of bilinear products given by, for any x,y € A and for
any «, B € Q,

T @a,,{i y=x ®a,ﬁ y+y ®[s,a Z, (37)

satisfies the following relation, for any x,y,z € A and for any «, B, € Q,

(CE,y, Z)@a,[:f,’y = [yv [(E7Z}a,’y}[3‘(x'\{7 (38>

where (2,9, 2)o. 5., = (O, ,Y) O, 2—20, , (YO, 2) and [z,y], , =@, ,
Yy—y®,, T

Proof. Let x,y,z € A and «, 3,7 € Q.. We have

(zvyv Z)@a,fi,’y = (x ©a,B y) @aﬁ,’y Z—Z ©a,ﬂw (y © )
= @@, ,9)®,,,2+{y®,, 1)@
+2@,., @@, ,9)+20, ., Y®,, 1)
- ®aﬁ'v (y ®3:’Y Z) - ®«1,Bv (Z ®’v,3 y)
- (y ®ﬂ,'v Z) ®I3%a T — (Z ®%5 y) By,
=(Y®,, ) By, 2+2® , (2®, ,Y)
-7 ®aﬂw (Z ®%B y) - (y ®Bw Z) ®B%a iL’
=Y ®ﬁ,m, (:E ®a,'y Z) + (Z ®’y,a LU) ®—ya,[i Yy
- (3? ®a,’y Z) ®a’y,ﬁ y—y ®ﬁ,—ya (Z ®-y,u .’17) = [y7 [SL‘, Z]a,q]ﬁ,aa,'

®

The second and third equal sign upward are due to Proposition 3.4. O

Proposition 3.10. Let (A, <qa.8, =a,8, Q) be an Q.-relative pre-anti-flexible alge-
bra. Consider the algebra (A, ©, ,,€) derived above. We have for any x,y,z € A
and for any a, B,y € Q.,

(ZE, Y, Z)@a,ﬁ,w + (z7x7y)@'y,a,,ﬂ + (y7 Z’x)@ﬂ,'y,a =0. (39)

Proof. According to Theorem 3.8 and Proposition 3.4 and Theorem 3.9, the above
equation is satisfied. O
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Proposition 3.11. Let (A, <w, ws» =wi,wes e) be an Qq-relative pre-anti-flexible
algebra. Suppose for any wi,wa € § the family of bilinear operations <., w,:
A® A — A is independent of wi and =, w,: AQ® A — A is independent of ws.
Then A possesses:

(1) a pre-anti-flexible family algebra structure which is (A, <wy, =w,, Qe). Con-
versely, if the quadruple (A, <y, =u, Q) s a pre-anti-flexible family algebra,
then it can be regarded as an Q.-relative pre-anti-flexible algebra (A, <w; ws
s > wrwss $le) B0 which for any wi,ws € Qe “<4,, w, 7 s independent of wy and

w1 . N
oy w18 independent of wa.

(2) a left pre-Lie family algebra structure and conversely, if A possesses a left
pre-Lie family algebra structure, then it can be regarded as an .-relative pre-
Lie algebra structure (given in Theorem 3.7) in which for any wi,ws € Q,
“<unws i independent of wi and “~, ., ” is independent of ws.

(3) similarly to (3.11), a right pre-Lie family algebra structure and conversely, if
A possesses a right pre-Lie family algebra structure (given in Theorem 3.7),
then it can be viewed as an Q.-relative right-symmetric algebra in which, for
any wi,wz € Q¢ , “<uyw, 18 independent of wy and “~,, ., ” is independent
of wa.

Proof. Under divers assumptions, Eq. (10a) is expressed by Eq. (28a) and Eq. (10b)
is translated by Eq. (28b). O

4. Rota-Baxter operators

This section deals with the use of the Rota-Baxter operators defined on ) .-relative
anti-flexible and Lie algebras to build {2.-relative pre-anti-flexible algebras. It is
proved that a Rota-Baxter operator define the Q) .-relative Lie algebra derived from
a given ).-relative anti-flexible algebra induces an §).-relative pre-anti-flexible al-
gebra.

Definition 4.1. Let (4, 4 8,$2) be an Q.-relative anti-flexible algebra. A Rota-
Baxter operator on A is a family of linear operators Rp_ : A = A, with o € €.,
satisfying for any z,y € A and any «, 5 € (),

Rp, (%) a8 RB,(y) = BB, (BB, (T) 0y + 2 ap BB, (Y))- (40)

Definition 4.2. Let (4,4 ,() be an Q.-relative anti-flexible algebra. A gener-
alized Rota-Baxter operator on A is a family of linear operators Grp, : A — A,
with a € €, satisfying for any «, 5,7 € Q. and any z,y,z € A,

0= (GrB,s(GrB,(T) ap Y+ T apsGrBs(Y) — GrB,(T) ‘0.6 GRB,(Y)) "apy 2
+2 .60 (GRB;(Y) 8.0 GRB, (¥) — GRB,. (GRB, (V) p.a T+ Y p.a GrB,(7))). (41)
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Proposition 4.3. Let (A,-4,3,9) be an Qc-relative anti-flexible algebra and
Grp, : A — A a generalized Rota-Bagzter operator. Defining for any x,y € A and
any o, B € Q,

X '<oz,ﬁ Y =2 ap GRBg (y)7 x >'a,5 Y= GRB(l ($> ‘a,B Y, (42)

then, (A, <a,8,>a,8,Sc) is turns to an Q.-relative pre-anti-flexible algebra. The
converse s true.

Proof. Let z,y,z € A and «, 8,7 € Q.. In view of Eq. (42) we have

(T >a,pY) <apy 2 =T =apy Y =<ap2) = (Grp.(2),Y,GRrB,(2))a ;.
(2 .8 Y) <vB.a T =2 =~ 6a (Y <paT) = (GRBW (2),y,GRrB, (x))m&ou

(T <0,8Y+T=a8Y) maBy 2 =T =apy (Y =5~ 2) = (2,GrB,(Y), GrB.(T))y,6,0
H(GRBus (GRBL(T) 0,8 Y+ T 0,8 GrE,(Y) — (GRBE.(T) 0,8 GRBE,(Y))) “apy %

(Z =v.,8 y) =<~B,a T — 2 =<5, Ba (y >B,a T+Y <Ba $> = (GRBa (3?)7 GRB;; (y)7 Z)a,ﬁ,'y
+2 .80 (GrBs(Y) g0 GRB. (2) — GrRBs. (GRB; (Y) Bia T+ Y g0 GRB, (2)))-

Therefore, Eq.(42) turns A into an .-relative pre-anti-flexible algebra if and only
if Grp,, satisfy Eq. (41). O

Corollary 4.4. Any Rota-Baxter operator on an Q.-relative anti-flexible algebra
induces an Q.-relative pre-anti-flexible algebra.

In the sequel of this section, we consider the €).-relative anti-flexible algebra
(A, 0y wey Qe) in which for any a € ., the linear map ¢_ : A — A is is such that
the elements

o) o s (YY) = Pus (@ s 0,(y) + 0, (), 5 y), YT,y €A Va,B € Q. (43)

satisfy the following, for any «, 8,v € Q. and for any z,y,z € A,

s P (W) T, ()0 5 Y) =
— @, () 0 s 05 (Y) a2 (44)

Definition 4.5. By a Rota-Baxter operator on an ().-relative Lie algebra
(A, [, ]..55 ) we mean a family of linear operators Rp, : A — A with a € Q,
satisfying for any z,y € A, and for any «, 5 € Q,,

[RBa (:L‘), RB[—} (y)]a‘/i = RBa[i([x’ RB[; (y)]a.ﬂ + [RBa ($)7y]a,3)' (45)
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Proposition 4.6. Let (A, -4 3,) be an Q.-relative anti-flexible algebra equipped
with a family of linear maps ¢, : A — A, with o € Q, in which the elements as
the form given in Eq. (43) satisfy Eq. (44). The family linear products given by,
for any x,y € A and any a, B € ),

T<a,BY =T, 5 Ps (y)7 T =a,pB Y=, (CL‘) wp Y (46)

defines an Q.-relative pre-anti-flexible structures on A if and only if the fam-
ily of linear maps “p,” is a Rota-Baxter operator on the Q.-relative Lie alge-
bra (A,[] Qc), where for any x,y € A and for any o, € Q, [v,y],, =

«,B? C

Tgal¥ " Ygal:

Proof. According to Proposition 4.3, the family of linear maps ¢,, satisfy Eq. (41)
and Eq. (44) if and only if any z,y,z € A and any «a, 8,7 € Q,

Z s ([0a (), 0, W s — Cas (T 0,0 s + [0, (2),9], ) = 0. (47)

Therefore, ¢, is a Rota-Baxter operator on the ) -relative Lie algebra
(A, [, ]..55 ), where for any z,y € A and for any o, 3 € Qc, [z,y], , =2,y —

y Ba xZ.
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