Relative (pre-)anti-flexible algebras and associated algebraic structures

Mafoya Landry Dassoundo

Abstract

Pre-anti-flexible family algebras are introduced and used to define and describe the notions of Ω_{c}-relative anti-flexible algebras, left and right pre-Lie family algebras and Ω_{c}-relative Lie algebras. The notion of Ω_{c}-relative pre-anti-flexible algebras are introduced and also used to characterize pre-anti-flexible family algebras, left and right pre-Lie family algebras and significant identities associated to these algebraic structures are provided. Finally, a generalization of the Rota-Baxter operators defined on an Ω_{c}-relative anti-flexible algebra is introduced and it is also proved that both Rota-Baxter operators and its generalization provide Ω_{c}-relative pre-antiflexible algebras structures and related consequences are derived.

1. Introduction and preliminaries

Anti-flexible algebra, originally derived in the generalization of flexible algebras (algebras satisfy identity $(x y) x=x(y x)$) leading to the introduction of several classes of nonassociative algebras ([23]), is a vector space A equipped with bilinear product "* : $A \times A \rightarrow A$ " satisfying, for any $x, y, z \in A$,

$$
\begin{equation*}
(x * y) * z+z *(y * x)=(z * y) * x+x *(y * z) \tag{1a}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
(x, y, z)=(z, y, x) \tag{1b}
\end{equation*}
$$

where,

$$
\begin{equation*}
(x, y, z)=(x * y) * z-x *(y * z) \tag{2}
\end{equation*}
$$

is the associator of the bilinear product $*: A \times A \rightarrow A$. Anti-flexible algebras are also known as G_{4}-associative algebras ([15]) and center-symmetric algebras ([19]). Simplicity and semi-simplicity of anti-flexible algebras were investigated and characterized ([24]). Besides, simple and semisimple (totally) anti-flexible algebras over splitting fields of characteristic different to 2 and 3 were studied and classified in $[6,25,26]$. Moreover, the primitive structures and prime anti-flexible

[^0]rings were investigated in [7] and it were established that a simple nearly antiflexible algebra of characteristic prime to 30 satisfying the identity $(x, x, x)=0$ in which its commutator gives non-nilpotent structure possesses a unity element [10].

A Rota-Baxter operator, originally introduced in [4, 27], is a linear operator $R_{B}: A \rightarrow A$ defined on an associative algebra (A, \cdot) and satisfying, for any $x, y \in$ A,

$$
\begin{equation*}
R_{B}(x) \cdot R_{B}(y)=R_{B}\left(R_{B}(x) \cdot y\right)+R_{B}\left(x \cdot R_{B}(y)\right) \tag{3}
\end{equation*}
$$

It is well known from [2] that Rota-Baxter operator of weight zero on a given associative algebra induces a dendriform algebra (introduced by Loday in [20]) structures. More precisely, for a given linear map $R: A \rightarrow A$ on an associative algebra (A, \cdot), the two following bilinear products $\prec, \succ: A \times A \rightarrow A$ given by, for any $x, y \in A$,

$$
\begin{equation*}
x \succ y:=R(x) \cdot y, \quad x \prec y:=x \cdot R(y), \tag{4}
\end{equation*}
$$

satisfy the following relations, for any $x, y, z \in A$,

$$
\begin{gather*}
(x \succ y) \prec z-x \succ(y \prec z)=0, \tag{5a}\\
(x \succ y+x \prec y) \succ z-x \succ(y \succ z)=0, \tag{5b}\\
 \tag{5c}\\
x \prec(y \succ z+y \prec z)-(x \prec y) \prec z=0,
\end{gather*}
$$

if and only if $R: A \rightarrow A$ is a Rota-Baxter operator of weight zero on A, that is, R satisfies Eq. (3). Similarly, from [8, 9], it is established that for a given a Rota-Baxter operator of weight zero defined on an anti-flexible algebra $(A, *)$, the bilinear products given by Eq. (4) satisfy, for any $x, y, z \in A$,

$$
\begin{align*}
&(x \succ y) \prec z-x \succ(y \prec z)=(z \succ y) \prec x-z \succ(y \prec x), \tag{6a}\\
&(x \succ y+x \prec y) \succ z-x \succ(y \succ z) \tag{6b}\\
&=z \prec(y \succ x+y \prec x)-(z \prec y) \prec x,
\end{align*}
$$

and the algebra (A, \prec, \succ) is known as pre-anti-flexible algebra. More generally, for a given linear map $G_{R B}: A \rightarrow A$ defined on an anti-flexible algebra $(A, *)$ and considering the following bilinear products given by, for any $x, y \in A$,

$$
\begin{equation*}
x \succ^{\prime} y:=G_{R B}(x) * y, \quad x \prec^{\prime} y:=x * G_{R B}(y) \tag{7}
\end{equation*}
$$

then $\left(A, \prec^{\prime}, \succ^{\prime}\right)$ is a pre-anti-flexible algebra if and only if, for $x, y, z \in A$,

$$
\begin{align*}
& \left(G_{R B}\left(G_{R B}(x) * y+x * G_{R B}(y)\right)-G_{R B}(x) * G_{R B}(y)\right) * z+ \\
& z *\left(G_{R B}(y) * G_{R B}(x)-G_{R B}\left(G_{R B}(y) * x+y * G_{R B}(x)\right)\right)=0 . \tag{8}
\end{align*}
$$

A linear map $G_{R B}: A \rightarrow A$ given on an anti-flexible algebra $(A, *)$ satisfying Eq. (8) is known as a generalization of the Rota-Baxter operator of weight zero.

Besides, dendriform and (di-)tri-algebras were introduced and related to RotaBaxter operators and associated consequences were derived ([11]). Moreover, it is well known (from [16]) that Koszul duality of operad governing (di-)tri-algebras is corresponding to operad governing variety of (di-)tri-dendriform algebras which are embedded to zero's weight Rota-Baxter algebra. Furthermore, it is proved that a general operadic definition for the notion of splitting algebraic structures are equivalent with some Manin products of operads which are closely related to RotaBaxter operators ([3]). More generally, splitting algebraic operations procedure in any algebraic operad theory were uniformed and linked to the notion of RotaBaxter operators on operads ([22]) and other results established on Rota-Baxter algebras are surveyed in [18] and the references therein.

The notion of operated semi-group are introduced to build some algebraic structures on combinatoric elements mainly the binary rooted trees. The most relevant examples are the construction of free Rota-Baxter algebras in terms of Motzkin paths and planar rooted trees ([17]) and the use of typed decorated trees theory for describing combinatorial species ([5]). Given a (non)associative \mathbb{K} (field of characteristic zero) algebra A, a Rota-Baxter family operators of weight $\lambda(\lambda \in$ \mathbb{K}) is a family of linear maps $P_{\omega}: A \rightarrow A$, where $\omega \in \Omega$, satisfying, for any $x, y \in A$ and for any $\alpha, \beta \in \Omega$,

$$
\begin{equation*}
P_{\alpha}(x) P_{\beta}(y)=P_{\alpha \beta}\left(x P_{\beta}(y)\right)+P_{\alpha \beta}\left(P_{\alpha}(x) y\right)+\lambda P_{\alpha \beta}(x y) . \tag{9}
\end{equation*}
$$

The theory of Rota-Baxter family operators takes its origins in renormalization theory of quantum field theory ([12, page 591]). Recently, free (non)commutative Rota-Baxter family is introduced and linked to (tri)dendriform family algebras ([28]). Moreover, it is proved that Rota-Baxter family algebras indexed by an associative semigroup amounts to an ordinary Rota-Baxter algebra structure on the tensor product with the semigroup algebra. Similar results are provided with (tri)dendriform family algebras ([29]), and more generally, the notion of Ω-dendriform structures are introduced and nonassociative structures on typed binary trees are unified and generalized ([13]). Similarly, pre-Lie family algebras and free pre-Lie family algebras, are introduced and related typed decorated trees are constructed and related generalization are also derived ([21]). In addition, a general account of family algebras over a finitely presented linear operad are given and proved that this operad together with its presentation naturally define an algebraic structure on the set of parameters ([14]).

Throughout this article, Ω is an associative semi-group and Ω_{c} is a commutative associative semi-group, algebras are defined over a field of characteristic zero. We end this introductory section by describing the content flowchart of this paper as follows. In section, we introduce the notion of pre-anti-flexible family algebras, establish their relations with dendriform family algebras and use them to construct Ω_{c}-relative anti-flexible algebras as well as Ω_{c}-relative Lie algebras,
left and right pre-Lie family algebras and related consequences are derived. In section, the notion of Ω_{c}-relative pre-anti-flexible algebras is introduced and viewed as a generalization of the Ω_{c}-relative dendriform algebras and used to build $\Omega_{c^{-}}$ relative pre-anti-flexible algebras, Ω_{c}-relative pre-Lie and right pre-Lie algebras, Ω_{c}-relative Lie algebras and other associated structures are derived. In section, we prove that a Rota-Baxter family operators of weight zero defined on an Ω_{c}-relative anti-flexible algebra and its generalization induce an Ω_{c}-relative pre-anti-flexible algebra structure. Under some assumptions on Ω_{c}-relative anti-flexible algebra, we prove that a Rota-Baxter family operators defined on a related Ω_{c}-relative Lie algebra of an Ω_{c}-relative anti-flexible algebra also induces an Ω_{c}-relative pre-antiflexible algebra structure.

2. Pre-anti-flexible family algebras

In this section, pre-anti-flexible family algebras are introduced and related consequences are established. Associated family algebras are derived as well as its Ω_{c}-relative algebraic structures.

Definition 2.1. A pre-anti-flexible family algebra is a quadruple $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ such that A is a vector space equipped with two families of bilinear products $\prec_{\alpha}, \succ_{\alpha}: A \times A \rightarrow A$ with $\alpha \in \Omega_{c}$ and satisfying for any $x, y, z \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{align*}
&\left(x \succ_{\alpha} y\right) \prec_{\beta} z-x \succ_{\alpha}\left(y \prec_{\beta} z\right)=\left(z \succ_{\beta} y\right) \prec_{\alpha} x-z \succ_{\beta}\left(y \prec_{\alpha} x\right), \tag{10a}\\
&\left(x \succ_{\alpha} y+x \prec_{\beta} y\right) \succ_{\alpha \beta} z-x \succ_{\alpha}\left(y \succ_{\beta} z\right)=\left(z \prec_{\beta} y\right) \prec_{\alpha} x \\
&-z \prec_{\beta \alpha}\left(y \succ_{\beta} x+y \prec_{\alpha} x\right) . \tag{10b}
\end{align*}
$$

Remark 2.2. If the LHS and the RHS of each Eq. (10a) and Eq. (10b) become zero, then pre-anti-flexible family algebra is dendriform family algebra ([28, 21, 29]). Consequently, pre-anti-flexible family algebras can be considered as a generalization of dendriform family algebras.
Definition 2.3. An Ω_{c}-relative anti-flexible algebra is a triple $\left(A,{ }_{\alpha, \beta}, \Omega_{c}\right)$ in which A is a vector space equipped with the family of bilinear products " ${ }_{\alpha, \beta}: A \times$ $A \rightarrow A "$ with $(\alpha, \beta) \in \Omega_{c}^{2}$ and satisfying, for any $x, y, z \in A$ and any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
\left(x \cdot_{\alpha, \beta} y\right) \cdot_{\alpha \beta, \gamma} z+z \cdot_{\gamma, \beta \alpha}\left(y \cdot_{\beta, \alpha} x\right)-\left(z \cdot_{\gamma, \beta} y\right) \cdot_{\gamma \beta, \alpha} x-x \cdot_{\alpha, \beta \gamma}\left(y \cdot_{\beta, \gamma} z\right)=0 \tag{11}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
(x, y, z)_{\alpha, \beta, \gamma}=(z, y, x)_{\gamma, \beta, \alpha} \tag{12}
\end{equation*}
$$

where, for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
(x, y, z)_{\alpha, \beta, \gamma}:=\left(x \cdot_{\alpha, \beta} y\right) \cdot_{\alpha \beta, \gamma} z-x \cdot_{\alpha, \beta \gamma}\left(y \cdot_{\beta, \gamma} z\right) . \tag{13}
\end{equation*}
$$

Theorem 2.4. Let $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ be a pre-anti-flexible family algebra, the following family of bilinear products given by, for any $\alpha, \beta \in \Omega_{c}$ and for any $x, y \in A$,

$$
\begin{equation*}
x *_{\alpha, \beta} y=x \succ_{\alpha} y+x \prec_{\beta} y \tag{14}
\end{equation*}
$$

is such that $\left(A, *_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative anti-flexible algebra.
Proof. Let $x, y, z \in A$ and $\alpha, \beta, \gamma \in \Omega_{c}$. We have

$$
\begin{aligned}
(x, y, z)_{\alpha, \beta, \gamma} & :=\left(x *_{\alpha, \beta} y\right) *_{\alpha \beta, \gamma} z-x *_{\alpha, \beta \gamma}\left(y *_{\beta, \gamma} z\right) \\
& =\left(x \succ_{\alpha} y+x \prec_{\beta} y\right) \succ_{\alpha \beta} z+\left(x \succ_{\alpha} y+x \prec_{\beta} y\right) \prec_{\gamma} z \\
& -x \succ_{\alpha}\left(y \succ_{\beta} z+y \prec_{\gamma} z\right)-x \prec_{\beta \gamma}\left(y \succ_{\beta} z+y \prec_{\gamma} z\right) \\
& =\left\{\left(x \succ_{\alpha} y+x \prec_{\beta} y\right) \succ_{\alpha \beta} z-x \succ_{\alpha}\left(y \succ_{\beta} z\right\}\right. \\
& +\left\{\left(x \prec_{\beta} y\right) \prec_{\gamma} z-x \prec_{\beta \gamma}\left(y \succ_{\beta} z+y \prec_{\gamma} z\right)\right\} \\
& +\left\{\left(x \succ_{\alpha} y\right) \prec_{\gamma} z-x \succ_{\alpha}\left(y \prec_{\gamma} z\right)\right\} \\
& =\left\{\left(z \prec_{\beta} y\right) \prec_{\alpha} x-z \prec_{\beta \alpha}\left(y \succ_{\beta} x+y \prec_{\alpha} x\right)\right\} \\
& +\left\{\left(z \succ_{\gamma} y+z \prec_{\beta} y\right) \succ_{\gamma \beta} x-z \succ_{\gamma}\left(y \succ_{\beta} x\right)\right\} \\
& +\left\{\left(z \succ_{\gamma} y\right) \prec_{\alpha} x-z \succ_{\gamma}\left(y \prec_{\alpha} x\right)\right\} \\
& =\left(z \succ_{\gamma} y+z \prec_{\beta} y\right) \succ_{\gamma \beta} x+\left(z \succ_{\gamma} y+z \prec_{\beta} y\right) \prec_{\alpha} x \\
& -z \succ_{\gamma}\left(y \succ_{\beta} x+y \prec_{\alpha} x\right)-z \prec_{\beta \alpha}\left(y \succ_{\beta} x+y \prec_{\alpha} x\right) \\
(x, y, z)_{\alpha, \beta, \gamma} & =(z, y, x)_{\gamma, \beta, \alpha} .
\end{aligned}
$$

Therefore, the family of bilinear products given by Eq. (14) satisfies Eq. (12). Thus $\left(A, *_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative anti-flexible algebra where, "* ${ }_{\alpha, \beta}: A \times A \rightarrow A$ " is derived by Eq. (14).

Theorem 2.5. Let A be a \mathbf{k} vector space and consider on $A \otimes \mathbf{k} \Omega_{c}$, two bilinear products given by $\prec, \succ: A \otimes \mathbf{k} \Omega_{c} \times A \otimes \mathbf{k} \Omega_{c} \rightarrow A \otimes \mathbf{k} \Omega_{c}$. The triple $\left(A \otimes \mathbf{k} \Omega_{c}, \prec, \succ\right)$ is a pre-anti-flexible algebra if and only if $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ is a pre-anti-flexible family algebra and for any $x, y, \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{align*}
& (x \otimes \alpha) \prec(y \otimes \beta):=\left(x \prec_{\beta} y\right) \otimes \alpha \beta \tag{15a}\\
& (x \otimes \alpha) \succ(y \otimes \beta):=\left(x \succ_{\alpha} y\right) \otimes \alpha \beta . \tag{15b}
\end{align*}
$$

Proof. Let $x, y, z \in A$ and $\alpha, \beta, \gamma \in \Omega_{c}$. We have

$$
\begin{align*}
& ((x \otimes \alpha) \succ(y \otimes \beta)) \prec(z \otimes \gamma)-(x \otimes \alpha) \succ((y \otimes \beta) \prec(z \otimes \gamma))= \\
& \quad\left(\left(x \succ_{\alpha} y\right) \prec_{\gamma} z-x \succ_{\alpha}\left(y \prec_{\gamma} z\right)\right) \otimes \alpha \beta \gamma, \tag{16a}\\
& \quad((x \otimes \alpha) \succ(y \otimes \beta)+(x \otimes \alpha) \prec(y \otimes \beta)) \succ(z \otimes \gamma) \\
& \quad-(x \otimes \alpha) \succ((y \otimes \beta) \succ(z \otimes \gamma))=\left(\left(x \succ_{\alpha} y+x \prec_{\beta} y\right) \succ_{\alpha \beta} z\right. \\
& \left.-x \succ_{\alpha}\left(y \succ_{\beta} z\right)\right) \otimes \alpha \beta \gamma . \tag{16b}
\end{align*}
$$

Similarly, using the commutativity of Ω_{c}, we have

$$
((z \otimes \gamma) \succ(y \otimes \beta)) \prec(x \otimes \alpha)-(z \otimes \gamma) \succ((y \otimes \beta) \prec(x \otimes \alpha))=
$$

$$
\begin{align*}
& \quad\left(\left(z \succ_{\gamma} y\right) \prec_{\alpha} x-z \succ_{\gamma}\left(y \prec_{\alpha} x\right)\right) \otimes \alpha \beta \gamma, \tag{17a}\\
& ((z \otimes \gamma) \prec(y \otimes \beta)) \prec(x \otimes \alpha)-(z \otimes \gamma) \prec((y \otimes \beta) \succ(x \otimes \alpha) \tag{17b}\\
& +(y \otimes \beta) \prec(x \otimes \alpha))=\left(\left(z \prec_{\beta} y\right) \prec_{\alpha} x-z \prec_{\beta \alpha}\left(y \succ_{\beta} x+y \prec_{\alpha} x\right)\right) \otimes \alpha \beta \gamma .
\end{align*}
$$

Hence, if $\left(A \otimes \mathbf{k} \Omega_{c}, \prec, \succ\right)$ is a pre-anti-flexible algebra i.e., the RHS of Eq. (16a) and Eq. (17a) are respectively equal to that of Eq. (16b) and (17b), then (A, \prec_{ω} , $\succ_{\omega}, \Omega_{c}$) is a pre-anti-flexible family algebra.

Conversely, if $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ is a pre-anti-flexible family algebra in which " \prec_{ω} $, \succ_{\omega}: A \times A \rightarrow A$ " are given by Eqs. (15a) and (15b), according to Eqs. (16a), (16b), (17a) and (17b), we deduce that $\left(A \otimes \mathbf{k} \Omega_{c}, \prec, \succ\right)$ is a pre-anti-flexible algebra.

Definition 2.6. (cf. [21]) A left pre-Lie family algebra is a triple $\left(A, \triangleright_{\omega}, \Omega_{c}\right)$ in which A is a vector space equipped with the family of bilinear products \triangleright_{ω} : $A \times A \rightarrow A$ with $\omega \in \Omega_{c}$, satisfying for any $x, y, z \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
\left(x \triangleright_{\alpha} y\right) \triangleright_{\alpha \beta} z-x \triangleright_{\alpha}\left(y \triangleright_{\beta} z\right)=\left(y \triangleright_{\beta} x\right) \triangleright_{\beta \alpha} z-y \triangleright_{\beta}\left(x \triangleright_{\alpha} z\right) . \tag{18}
\end{equation*}
$$

Definition 2.7. A right pre-Lie family algebra is a triple $\left(A, \triangleleft_{\omega}, \Omega_{c}\right)$ in which A is a vector space equipped with the family of bilinear products $\triangleleft_{\omega}: A \times A \rightarrow A$ with $\omega \in \Omega_{c}$, satisfying for any $x, y, z \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
x \triangleleft_{\alpha \beta}\left(y \triangleleft_{\beta} z\right)-\left(x \triangleleft_{\alpha} y\right) \triangleleft_{\beta} z=x \triangleleft_{\beta \alpha}\left(z \triangleleft_{\alpha} y\right)-\left(x \triangleleft_{\beta} z\right) \triangleleft_{\alpha} y \tag{19}
\end{equation*}
$$

Remark 2.8. For a given left pre-Lie family algebra $\left(A,{ }_{\alpha}, \Omega_{c}\right)$, setting for any $x, y \in A$ and for any $\alpha \in \Omega_{c}, x{ }_{\alpha}^{\circ o p p} y=y \cdot{ }_{\alpha} x$, we have for any $x, y, z \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{aligned}
x ._{\alpha \beta}^{o p p}\left(y \cdot{ }_{\beta}^{o p p} z\right)-\left(x \cdot{ }_{\alpha}^{o p p} y\right) \cdot_{\beta}^{o p p} z & =\left(z \cdot{ }_{\beta} y\right) \cdot{ }_{\alpha \beta} x-z \cdot \cdot_{\beta}(y \cdot \alpha x) \\
& =(y \cdot \alpha z) \cdot{ }_{\beta \alpha} x-y \cdot \alpha(z \cdot \beta x) \\
& =x \cdot{ }_{\beta \alpha}^{o p p}\left(z \cdot{ }_{\alpha}^{\circ p p} y\right)-\left(x \cdot_{\beta}^{o p p} z\right) \cdot{ }_{\alpha}^{o p p} y .
\end{aligned}
$$

Therefore, $\left(A,{ }_{\alpha}^{o p p}, \Omega_{c}\right)$ is a right pre-Lie family algebra.
Theorem 2.9. Let $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ be a pre-anti-flexible family algebra, the two following families of bilinear products

$$
\begin{align*}
& x \triangleright_{\omega} y:=x \succ_{\omega} y-y \prec_{\omega} x, \forall \omega \in \Omega_{c}, \tag{20a}\\
& x \triangleleft_{\omega} y:=x \prec_{\omega} y-y \succ_{\omega} x, \forall \omega \in \Omega_{c}, \tag{20b}
\end{align*}
$$

for any $x, y \in A$ and for any $\alpha, \beta \in \Omega_{c}$, are such that $\left(A, \triangleright_{\omega}, \Omega\right)$ is a left pre-Lie family algebra and $\left(A, \triangleleft_{\omega}, \Omega\right)$ is a right pre-Lie family algebra.

Proof. Let $x, y, z \in A$ and $\alpha, \beta \in \Omega_{c}$. We have

$$
\begin{aligned}
& \left(x \triangleright_{\alpha} y\right) \triangleright_{\alpha \beta} z-x \triangleright_{\alpha}\left(y \triangleright_{\beta} z\right)=\left(x \succ_{\alpha} y-y \prec_{\alpha} x\right) \triangleright_{\alpha \beta} z \\
- & x \triangleright_{\alpha}\left(y \succ_{\beta} z-z \prec_{\beta} y\right)=\left(x \succ_{\alpha} y-y \prec_{\alpha} x\right) \succ_{\alpha \beta} z \\
- & z \prec_{\alpha \beta}\left(x \succ_{\alpha} y-y \prec_{\alpha} x\right)-x \succ_{\alpha}\left(y \succ_{\beta} z-z \prec_{\beta} y\right) \\
+ & \left(y \succ_{\beta} z-z \prec_{\beta} y\right) \prec_{\alpha} x=\left\{\left(x \succ_{\alpha} y\right) \succ_{\alpha \beta} z-x \succ_{\alpha}\left(y \succ_{\beta} z\right)\right. \\
- & \left.\left(z \prec_{\beta} y\right) \prec_{\alpha} x-z \prec_{\alpha \beta}\left(y \prec_{\alpha} x\right)\right\}-\left(y \prec_{\alpha} x\right) \succ_{\alpha \beta} z-z \prec_{\alpha \beta}\left(x \succ_{\alpha} y\right) \\
+ & x \succ_{\alpha}\left(z \prec_{\beta} y\right)+\left(y \succ_{\beta} z\right) \prec_{\alpha} x \\
= & -\left(x \prec_{\beta} y\right) \succ_{\alpha \beta} z-z \prec_{\alpha \beta}\left(y \succ_{\beta} x\right)-\left(y \prec_{\alpha} x\right) \succ_{\alpha \beta} z \\
- & z \prec_{\alpha \beta}\left(x \succ_{\alpha} y\right)+x \succ_{\alpha}\left(z \prec_{\beta} y\right)+\left(y \succ_{\beta} z\right) \prec_{\alpha} x \\
= & -\left(x \prec_{\beta} y+y \prec_{\alpha} x\right) \succ_{\alpha \beta} z-z \prec_{\alpha \beta}\left(x \succ_{\alpha} y+y \succ_{\beta} x\right) \\
+ & \left(y \succ_{\beta} z\right) \prec_{\alpha} x+x \succ_{\alpha}\left(z \prec_{\beta} y\right)=\left(y \triangleright_{\beta} x\right) \triangleright_{\beta \alpha} z-y \triangleright_{\beta}\left(x \triangleright_{\alpha} z\right) .
\end{aligned}
$$

Note that the third equal sign above upwards is due to Eq. (10b) while the last equal sign one is due to Eq. (10a). Therefore, $\left(A, \triangleright_{\omega}, \Omega_{c}\right)$ is a left pre-Lie family algebra.

Similarly to the above calculations, we prove that $\left(A, \triangleleft_{\omega}, \Omega_{c}\right)$ is a right pre-Lie family algebra.

Definition 2.10. An Ω_{c}-relative Lie algebra is a triple $\left(A,[\cdot, \cdot]_{\alpha, \beta}, \Omega_{c}\right)$ in which A is a vector space equipped with a family of bilinear products $[\cdot, \cdot]_{\alpha, \beta}: A \otimes A \rightarrow A$ with $(\alpha, \beta) \in \Omega_{c}$, and satisfying, for any $x, y, z \in A$, and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{gather*}
{[x, y]_{\alpha, \beta}+[y, x]_{\beta, \alpha}=0} \tag{21a}\\
{\left[[x, y]_{\alpha, \beta}, z\right]_{\alpha \beta, \gamma}+\left[[y, z]_{\beta, \gamma}, x\right]_{\beta \gamma, \alpha}+\left[[z, x]_{\gamma, \alpha}, y\right]_{\gamma \alpha, \beta}=0 .} \tag{21b}
\end{gather*}
$$

Theorem 2.11. Let $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ be a pre-anti-flexible family algebra. The following family of bilinear products given by, for any $x, y \in A$ and for any $\alpha, \beta \in$ Ω,

$$
\begin{equation*}
[x, y]_{\alpha, \beta}=x *_{\alpha, \beta} y-y *_{\beta, \alpha} x=\left(x \succ_{\alpha} y+x \prec_{\beta} y\right)-\left(y \succ_{\beta} x+y \prec_{\alpha} x\right), \tag{22}
\end{equation*}
$$

is such that $\left(A,[\cdot, \cdot]_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative Lie algebra.
Proof. For any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$, we have

- Skew symmetric,

$$
[x, y]_{\alpha, \beta}+[y, x]_{\beta, \alpha}=x *_{\alpha, \beta} y-y *_{\beta, \alpha} x+y *_{\beta, \alpha} x-x *_{\alpha, \beta} y=0 .
$$

Thus, Eq. (21a) is satisfied.

- Family of Jacobi identity,

$$
\begin{aligned}
& {\left[[x, y]_{\alpha, \beta}, z\right]_{\alpha \beta, \gamma}+\left[[y, z]_{\beta, \gamma}, x\right]_{\beta \gamma, \alpha}+\left[[z, x]_{\gamma, \alpha}, y\right]_{\gamma \alpha, \beta} } \\
= & \left(x *_{\alpha, \beta} y\right) *_{\alpha \beta, \gamma} z-z *_{\gamma, \alpha \beta}\left(x *_{\alpha, \beta} y\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(y *_{\beta, \alpha} x\right) *_{\alpha \beta, \gamma} z+z *_{\gamma, \alpha \beta}\left(y *_{\beta, \alpha} x\right) \\
& +\left(y *_{\beta, \gamma} z\right) *_{\beta, \gamma} x-x *_{\alpha, \beta \gamma}\left(y *_{\beta, \gamma} z\right) \\
& -\left(z *_{\gamma, \beta} y\right) *_{\beta \gamma, \alpha} x+x *_{\alpha, \beta \gamma}\left(z *_{\gamma, \beta} y\right) \\
& +\left(z *_{\gamma, \alpha} x\right) *_{\gamma \alpha, \beta} y-y *_{\beta, \gamma \alpha}\left(z *_{\gamma, \alpha} x\right) \\
& -\left(x *_{\alpha, \gamma} z\right) *_{\gamma \alpha, \beta} y+y *_{\beta, \gamma \alpha}\left(x *_{\alpha, \gamma} z\right) \\
& =(x, y, z)_{\alpha, \beta, \gamma}+(y, z, x)_{\beta, \gamma, \alpha}+(z, x, y)_{\gamma, \alpha, \beta} \\
& -(z, y, x)_{\gamma, \beta, \alpha}-(x, z, y)_{\alpha, \gamma, \beta}-(y, x, z)_{\beta, \alpha, \gamma}=0
\end{aligned}
$$

due to Theorem 2.4 and Eq. (12). Hence, Eq. (21b) is satisfied.
Therefore, $\left(A,[\cdot, \cdot]_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative Lie algebra.
Proposition 2.12. Let $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ be a pre-anti-flexible family algebra. The following family of bilinear products given on A by, for any $\alpha, \beta \in \Omega_{c}$ and for any $x, y \in A$,

$$
\begin{equation*}
[x, y]_{\alpha, \beta}:=x \triangleright_{\alpha} y-y \triangleright_{\beta} x \tag{23}
\end{equation*}
$$

where, " \square " is defined by Eq. (20a), turns A into an Ω_{c}-relative Lie algebra which is the same as that given in Theorem 2.11.

Proof. Let $x, y \in A$ and $\alpha, \beta \in \Omega_{c}$. We have

$$
\begin{aligned}
{[x, y]_{\alpha, \beta} } & :=x \triangleright_{\alpha} y-y \triangleright_{\beta} x=x \succ_{\alpha} y-y \prec_{\alpha} x-y \succ_{\beta} x+x \prec_{\beta} y \\
& =\left(x \succ_{\alpha} y+x \prec_{\beta} y\right)-\left(y \succ_{\beta} x+y \prec_{\alpha} x\right)=x *_{\alpha, \beta} y-y *_{\beta, \alpha} x
\end{aligned}
$$

which is the commutator given by Eq. (22).
Theorem 2.13. Let $\left(A, \prec_{\omega}, \succ_{\omega}, \Omega_{c}\right)$ be a pre-anti-flexible family algebra. The following family of bilinear products given by, for any $x, y \in A$ and for any $\alpha, \beta \in$ Ω_{c},

$$
\begin{equation*}
x \circ_{\alpha, \beta} y=x *_{\alpha, \beta} y+y *_{\beta, \alpha} x, \tag{24}
\end{equation*}
$$

in which " ${ }_{\alpha, \beta}: A \times A \rightarrow A$ " is given by Eq. (14) is such that, for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
(x, y, z)_{o_{\alpha, \beta, \gamma}}=\left[y,[x, z]_{\alpha, \gamma}\right]_{\beta, \alpha \gamma}, \tag{25}
\end{equation*}
$$

where,

$$
\begin{equation*}
(x, y, z)_{\circ_{\alpha, \beta, \gamma}}=\left(x \circ_{\alpha, \beta} y\right) \circ_{\alpha \beta, \gamma} z-x \circ_{\alpha, \beta \gamma}\left(y \circ_{\beta, \gamma} z\right) \tag{26}
\end{equation*}
$$

and " $[\cdot, \cdot]_{\alpha, \beta}$ " is given by Eq. (22).
Proof. Let $x, y, z \in A$, and for all $\alpha, \beta, \gamma \in \Omega_{c}$, we have

$$
\begin{aligned}
(x, y, z)_{\circ_{\alpha, \beta, \gamma}} & =\left(x \circ_{\alpha, \beta} y\right) \circ_{\alpha \beta, \gamma} z-x \circ_{\alpha, \beta \gamma}\left(y \circ_{\beta, \gamma} z\right) \\
& =\left(x *_{\alpha, \beta} y+y *_{\beta, \alpha} x\right) *_{\alpha \beta, \gamma} z+z *_{\gamma, \alpha \beta}\left(x *_{\alpha, \beta} y+y *_{\beta, \alpha} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& -x *_{\alpha, \beta \gamma}\left(y *_{\beta, \gamma} z+z *_{\gamma, \beta} y\right)-\left(y *_{\beta, \gamma} z+z *_{\gamma, \beta} y\right) *_{\beta \gamma, \alpha} x \\
& =\left\{\left(x *_{\alpha, \beta} y\right) *_{\alpha \beta, \gamma} z-x *_{\alpha, \beta \gamma}\left(y *_{\beta, \gamma} z\right)\right\} \\
& -\left\{\left(z *_{\gamma, \beta} y\right) *_{\beta \gamma, \alpha} x-z *_{\gamma, \alpha \beta}\left(y *_{\beta, \alpha} x\right)\right\} \\
& +\left(y *_{\beta, \alpha} x\right) *_{\alpha \beta, \gamma} z+z *_{\gamma, \alpha \beta}\left(x *_{\alpha, \beta} y\right) \\
& -x *_{\alpha, \beta \gamma}\left(z *_{\gamma, \beta} y\right)-\left(y *_{\beta, \gamma} z\right) *_{\beta \gamma, \alpha} x \\
& =\left(y *_{\beta, \alpha} x\right) *_{\alpha \beta, \gamma} z+z *_{\gamma, \alpha \beta}\left(x *_{\alpha, \beta} y\right) \\
& -x *_{\alpha, \beta \gamma}\left(z *_{\gamma, \beta} y\right)-\left(y *_{\beta, \gamma} z\right) *_{\beta \gamma, \alpha} x \\
& =y *_{\beta, \alpha \gamma}\left(x *_{\alpha, \gamma} z\right)+\left(z *_{\gamma, \alpha} x\right) *_{\gamma \alpha, \beta} y \\
& -y *_{\beta, \gamma \alpha}\left(z *_{\gamma, \alpha} x\right)-\left(x *_{\alpha, \gamma} z\right) *_{\alpha \gamma, \beta} y=\left[y,[x, z]_{\alpha, \gamma}\right]_{\beta, \alpha \gamma} .
\end{aligned}
$$

Note that the three last equals sign upwards are due to Eq. (11).
Proposition 2.14. Let $\left(A,{ }_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative anti-flexible algebra. We have for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
(x, y, z)_{o_{\alpha, \beta, \gamma}}+(z, x, y)_{o_{\gamma, \alpha, \beta}}+(y, z, x)_{o_{\beta, \gamma, \alpha}}=0, \tag{27}
\end{equation*}
$$

where, for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c},(x, y, z)_{o_{\alpha, \beta, \gamma}}$ is given by Eq. (26) and $x \circ_{\alpha, \beta} y=x \cdot{ }_{\alpha, \beta} y+y \cdot{ }_{\beta, \alpha} x$.

Proof. According to Eq. (26), Theorem 2.11 and Theorem 2.13, Eq. (27) holds.

3. Associated Ω_{c}-relative algebras

In this section, Ω_{c}-relative pre-anti-flexible algebras structures are introduced and associated Ω_{c}-relative algebras structures are derived. Moreover, Ω_{c}-relative pre-anti-flexible algebras are viewed as a generalization of pre-anti-flexible family algebras and associated consequences are deduced.

Definition 3.1. An Ω_{c}-relative pre-anti-flexible algebra is a quadruple ($A, \prec_{\alpha, \beta}$ $\left., \succ_{\alpha, \beta}, \Omega_{c}\right)$ in which A is a vector space equipped with two families of bilinear products $\prec_{\alpha, \beta} ; \succ_{\alpha, \beta}: A \times A \rightarrow A$ for $(\alpha, \beta) \in \Omega_{c}^{2}$ and satisfying for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{align*}
&\left(x \succ_{\alpha, \beta} y\right) \prec_{\alpha \beta, \gamma} z-x \succ_{\alpha, \beta \gamma}\left(y \prec_{\beta, \gamma} z\right)=\left(z \succ_{\gamma, \beta} y\right) \prec_{\gamma \beta, \alpha} x \\
&-z \succ_{\gamma, \beta \alpha}\left(y \prec_{\beta, \alpha} x\right), \tag{28a}\\
&\left(x \prec_{\alpha, \beta} y+x \succ_{\alpha, \beta} y\right) \succ_{\alpha \beta, \gamma} z-x \succ_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z\right)= \\
&\left(z \prec_{\gamma, \beta} y\right) \prec_{\gamma \beta, \alpha} x-z \prec_{\gamma, \beta \alpha}\left(y \prec_{\beta, \alpha} x+y \succ_{\beta, \alpha} x\right) . \tag{28b}
\end{align*}
$$

Remark 3.2. If the LSH and RHS of Eq. (28a) and Eq. (28b) vanish, then the Ω_{c}-relative pre-anti-flexible algebra $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ is called Ω_{c}-relative dendriform algebra ([1]). Hence, Ω_{c}-relative pre-anti-flexible algebras are a generalization of Ω_{c}-relative dendriform algebras.

Similarly to Theorem 2.5, we have
Theorem 3.3. Let A be $a \mathbf{k}$ vector space and consider the bilinear products given on $A \otimes \mathbf{k} \Omega_{c}$ by $\prec, \succ: A \otimes \mathbf{k} \Omega_{c} \times A \otimes \mathbf{k} \Omega_{c} \rightarrow A \otimes \mathbf{k} \Omega_{c}$. The triple $\left(A \otimes \mathbf{k} \Omega_{c}, \prec, \succ\right)$ is a pre-anti-flexible algebra if and only if the quadruple $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative pre-anti-flexible algebra where, for any $x, y \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{align*}
& (x \otimes \alpha) \prec(y \otimes \beta):=\left(x \prec_{\alpha, \beta} y\right) \otimes \alpha \beta \tag{29a}\\
& (x \otimes \alpha) \succ(y \otimes \beta):=\left(x \succ_{\alpha, \beta} y\right) \otimes \alpha \beta . \tag{29b}
\end{align*}
$$

Proposition 3.4. Let $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative pre-anti-flexible algebra. The following family of bilinear products given by, for any $x, y \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
x \circledast_{\alpha, \beta} y=x \prec_{\alpha, \beta} y+x \succ_{\alpha, \beta} y, \tag{30}
\end{equation*}
$$

turns A into an Ω_{c}-relative anti-flexible algebra.
Proof. Let $x, y, z \in A$ and $\alpha, \beta, \gamma \in \Omega_{c}$. We have

$$
\begin{aligned}
(x, y, z)_{\circledast_{\alpha, \beta, \gamma}} & =\left(x \succ_{\alpha, \beta} y+x \prec_{\alpha, \beta} y\right) \succ_{\alpha \beta, \gamma} z+\left(x \succ_{\alpha, \beta} y+x \prec_{\alpha, \beta} y\right) \prec_{\alpha \beta, \gamma} z \\
& -x \succ_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z+y \prec_{\beta, \gamma} z\right)-x \prec_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z+y \prec_{\beta, \gamma} z\right) \\
& =\left\{\left(x \succ_{\alpha, \beta} y+x \prec_{\alpha, \beta} y\right) \succ_{\alpha \beta, \gamma} z-x \succ_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z\right)\right\} \\
& -\left\{x \prec_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z+y \prec_{\beta, \gamma} z\right)-\left(x \prec_{\alpha, \beta} y\right) \prec_{\alpha \beta, \gamma} z\right\} \\
& +\left\{\left(x \succ_{\alpha, \beta} y\right) \prec_{\alpha \beta, \gamma} z-x \succ_{\alpha, \beta \gamma}\left(y \prec_{\beta, \gamma} z\right)\right\} \\
& =\left\{\left(z \prec_{\gamma, \beta} y\right) \prec_{\gamma \beta, \alpha} x-z \prec_{\gamma, \beta \alpha}\left(y \prec_{\beta, \alpha} x+y \succ_{\beta, \alpha} x\right)\right\} \\
& +\left\{\left(z \prec_{\gamma, \beta} y+z \succ_{\gamma, \beta} y\right) \succ_{\gamma \beta, \alpha} x-z \succ_{\gamma, \beta \gamma}\left(y \succ_{\beta, \alpha} x\right)\right\} \\
& +\left\{\left(z \succ_{\gamma, \beta} y\right) \prec_{\gamma \beta, \alpha} x-z \succ_{\gamma, \beta \alpha}\left(y \prec_{\beta, \alpha} x\right)\right\} \\
& =\left(z \circledast_{\gamma, \beta} y\right) \circledast_{\gamma \beta, \alpha} x-z \circledast_{\gamma, \beta \alpha}\left(y \circledast_{\beta, \alpha} x\right)=(z, y, x)_{\circledast_{\gamma, \beta, \alpha}},
\end{aligned}
$$

the third equal sign upwards above is due to Eq. (28a) and Eq. (28b).
Therefore, $\left(A, \circledast_{\omega_{1}, \omega_{2}}, \Omega_{c}\right)$ is an Ω_{c}-relative anti-flexible algebra.
Definition 3.5. An Ω_{c}-relative pre-Lie (left-symmetric) algebra is a vector space A equipped with a family of bilinear products $*_{\alpha, \beta}: A \otimes A \rightarrow A$ with $(\alpha, \beta) \in \Omega_{c}^{2}$, such that for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
(x, y, z)_{\alpha, \beta, \gamma}=(y, x, z)_{\beta, \alpha, \gamma}, \tag{31}
\end{equation*}
$$

or equivalently
$\left(x *_{\alpha, \beta} y\right) *_{\alpha \beta, \gamma} z-x *_{\alpha, \beta \gamma}\left(y *_{\beta, \gamma} z\right)-\left(y *_{\beta, \alpha} x\right) *_{\beta \alpha, \gamma} z+y *_{\beta, \alpha \gamma}\left(x *_{\alpha, \gamma} z\right)=0 .(32$
Definition 3.6. An Ω_{c}-relative right-symmetric algebra is a vector space A equipped with a family of bilinear products $*_{\alpha, \beta}: A \otimes A \rightarrow A$ for $(\alpha, \beta) \in \Omega_{c}^{2}$ such that for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
(x, y, z)_{\alpha, \beta, \gamma}=(x, z, y)_{\alpha, \gamma, \beta}, \tag{33}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left(x *_{\alpha, \beta} y\right) *_{\alpha \beta, \gamma} z-x *_{\alpha, \beta \gamma}\left(y *_{\beta, \gamma} z\right)-\left(x *_{\alpha, \gamma} z\right) *_{\alpha \gamma, \beta} y+x *_{\alpha, \gamma \beta}\left(z *_{\gamma, \beta} y\right)=0 . \tag{34}
\end{equation*}
$$

Theorem 3.7. Let $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative pre-anti-flexible algebra, defining for all $\alpha, \beta \in \Omega$ and for any $x, y \in A$,

$$
\begin{align*}
x \boldsymbol{\rightharpoonup}_{\alpha, \beta} y & =x \succ_{\alpha, \beta} y-y \prec_{\beta, \alpha} x, \tag{35a}\\
x \boldsymbol{\triangleleft}_{\alpha, \beta} y & =x \prec_{\alpha, \beta} y-y \succ_{\beta, \alpha} x, \tag{35b}
\end{align*}
$$

then $\left(A, \boldsymbol{\wedge}_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative pre-Lie algebra and $\left(A, \boldsymbol{⿶}_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c} relative right symmetric algebra.

Proof. Let $x, y, z \in A$ and $\alpha, \beta, \gamma \in \Omega_{c}$. We have

$$
\begin{aligned}
(x, y, z)_{\alpha, \beta, \gamma} & =\left(x \downarrow_{\alpha, \beta} y\right){ }_{\alpha \beta, \gamma} z-x \prec_{\alpha, \beta \gamma}\left(y{ }_{\beta, \gamma} z\right) \\
& =\left(x \succ_{\alpha, \beta} y-y \prec_{\beta, \alpha} x\right) \succ_{\alpha \beta, \gamma} z \\
& -z \prec_{\gamma, \alpha \beta}\left(x \succ_{\alpha, \beta} y-y \prec_{\beta, \alpha} x\right) \\
& -x \succ_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z-z \prec_{\gamma, \beta} y\right) \\
& +\left(y \succ_{\beta, \gamma} z-z \prec_{\gamma, \beta} y\right) \prec_{\beta \gamma, \alpha} x \\
& =\left\{\left(x \succ_{\alpha, \beta} y\right) \succ_{\alpha \beta, \gamma} z-x \succ_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z\right)\right\} \\
& -\left\{\left(z \prec_{\gamma, \beta} y\right) \prec_{\beta \gamma, \alpha} x-z \prec_{\gamma, \beta \alpha}\left(y \prec_{\beta, \alpha} x\right)\right\} \\
& +\left\{\left(y \succ_{\beta, \gamma} z\right) \prec_{\beta \gamma, \alpha} x+x \succ_{\alpha, \beta \gamma}\left(z \prec_{\gamma, \beta} y\right)\right\} \\
& -\left\{\left(y \prec_{\beta, \alpha} x\right) \succ_{\alpha \beta, \gamma} z+z \prec_{\gamma, \alpha \beta}\left(x \succ_{\alpha, \beta} y\right)\right\} \\
& =\left\{\left(x \succ_{\alpha, \gamma} z\right) \prec_{\alpha, \beta} y+y \succ_{\beta, \alpha \gamma}\left(z \prec_{\gamma, \alpha} x\right)\right\} \\
& -\left\{\left(x \succ_{\alpha, \beta} y+y \prec_{\beta, \alpha} x\right) \succ_{\alpha \beta, \gamma} z\right\} \\
& -\left\{z \prec_{\gamma, \alpha \beta}\left(x \succ_{\alpha, \beta} y+y \succ_{\beta, \alpha} x\right)\right\}=(y, x, z)_{\gtrless_{\beta, \alpha, \gamma}},
\end{aligned}
$$

the second equal sign upwards in the above successive relations is due to Eq. (28a) and Eq. (28b) while the last one is due to Eq. (28a).

Therefore, $\left(A,{ }_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative pre-Lie algebra.
Similarly, we prove that $\left(A, \boldsymbol{⿶}_{\alpha, \beta}, \Omega_{c}\right)$ is an Ω_{c}-relative right symmetric algebra.
Moreover, we have
Theorem 3.8. Let $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative pre-anti-flexible algebra. There is an Ω_{c}-relative Lie algebra structure on A given by for any $x, y \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
[x, y]_{\alpha, \beta}:=\left(x \succ_{\alpha, \beta} y+x \prec_{\alpha, \beta} y\right)-\left(y \succ_{\beta, \alpha} x+y \prec_{\beta, \alpha} x\right) . \tag{36}
\end{equation*}
$$

Proof. Let $x, y, z \in A$ and $\alpha, \beta, \gamma \in \Omega_{c}$. In view of Eq. (36) and Eq. (30) we have

$$
[x, y]_{\alpha, \beta}+[y, x]_{\beta, \alpha}=x \circledast_{\alpha, \beta} y-y \circledast_{\beta, \alpha} x+y \circledast_{\beta, \alpha} x-x \circledast_{\alpha, \beta} y=0 .
$$

In addition, we have

$$
\begin{aligned}
& {\left[[x, y]_{\alpha, \beta}, z\right]_{\alpha \beta, \gamma}+\left[[y, z]_{\beta, \gamma}, x\right]_{\beta \gamma, \alpha}+\left[[z, x]_{\gamma, \alpha}, y\right]_{\gamma \alpha, \beta}} \\
& =(x, y, z)_{\circledast_{\alpha, \beta, \gamma}}+(y, z, x)_{\circledast_{\beta, \gamma, \alpha}+(z, x, y)_{\circledast_{\gamma, \alpha, \beta}}}=(z, y, x)_{\circledast_{\gamma, \beta, \alpha}}-(x, z, y)_{\circledast_{\alpha, \gamma, \beta}}-(y, x, z)_{\circledast_{\beta, \alpha, \gamma}} .
\end{aligned}
$$

According to Proposition 3.4, we deduce the Ω_{c}-relative Jacobi identity. Therefore, A contains an Ω_{c}-relative Lie algebra structure.

Theorem 3.9. Let $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative pre-anti-flexible algebra such that its related Ω_{c}-relative anti-flexible algebra derived in Proposition 3.4 is $\left(A, \circledast_{\omega_{1}, \omega_{2}}, \Omega_{c}\right)$. The family of bilinear products given by, for any $x, y \in A$ and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
x \odot_{\alpha, \beta} y=x \circledast_{\alpha, \beta} y+y \circledast_{\beta, \alpha} x, \tag{37}
\end{equation*}
$$

satisfies the following relation, for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
(x, y, z)_{\odot_{\alpha, \beta, \gamma}}=\left[y,[x, z]_{\alpha, \gamma}\right]_{\beta, \alpha \gamma}, \tag{38}
\end{equation*}
$$

where $(x, y, z)_{\odot_{\alpha, \beta, \gamma}}=\left(x \odot_{\alpha, \beta} y\right) \odot_{\alpha \beta, \gamma} z-x \odot_{\alpha, \beta \gamma}\left(y \odot_{\beta, \gamma} z\right)$ and $[x, y]_{\alpha, \beta}=x \circledast_{\alpha, \beta}$ $y-y \circledast_{\beta, \alpha} x$.

Proof. Let $x, y, z \in A$ and $\alpha, \beta, \gamma \in \Omega_{c}$. We have

$$
\begin{aligned}
(x, y, z)_{\odot_{\alpha, \beta, \gamma}} & =\left(x \circledast_{\alpha, \beta} y\right) \oplus_{\alpha \beta, \gamma} z-x \circledast_{\alpha, \beta \gamma}\left(y \circledast_{\beta, \gamma} z\right) \\
& =\left(x \circledast_{\alpha, \beta} y\right) \circledast_{\alpha \beta, \gamma} z+\left(y \circledast_{\beta, \alpha} x\right) \circledast_{\beta \alpha, \gamma} z \\
& +z \circledast_{\gamma, \alpha \beta}\left(x \circledast_{\alpha, \beta} y\right)+z \circledast_{\gamma, \alpha \beta}\left(y \circledast_{\beta, \alpha} x\right) \\
& -x \circledast_{\alpha, \beta \gamma}\left(y \circledast_{\beta, \gamma} z\right)-x \circledast_{\alpha, \beta \gamma}\left(z \circledast_{\gamma, \beta} y\right) \\
& -\left(y \circledast_{\beta, \gamma} z\right) \circledast_{\beta \gamma, \alpha} x-\left(z \circledast_{\gamma, \beta} y\right) \circledast_{\beta \gamma, \alpha} x \\
& =\left(y \circledast_{\beta, \alpha} x\right) \circledast_{\beta \alpha, \gamma} z+z \circledast_{\gamma, \alpha \beta}\left(x \circledast_{\alpha, \beta} y\right) \\
& -x \circledast_{\alpha, \beta \gamma}\left(z \circledast_{\gamma, \beta} y\right)-\left(y \circledast_{\beta, \gamma} z\right) \circledast_{\beta \gamma, \alpha} x \\
& =y \circledast_{\beta, \alpha \gamma}\left(x \circledast_{\alpha, \gamma} z\right)+\left(z \circledast_{\gamma, \alpha} x\right) \circledast_{\gamma \alpha, \beta} y \\
& -\left(x \circledast_{\alpha, \gamma} z\right) \circledast_{\alpha \gamma, \beta} y-y \circledast_{\beta, \gamma \alpha}\left(z \circledast_{\gamma, \alpha} x\right)=\left[y,[x, z]_{\alpha, \gamma}\right]_{\beta, \alpha \gamma} .
\end{aligned}
$$

The second and third equal sign upward are due to Proposition 3.4.
Proposition 3.10. Let $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative pre-anti-flexible algebra. Consider the algebra $\left(A, \odot_{\alpha, \beta}, \Omega_{c}\right)$ derived above. We have for any $x, y, z \in A$ and for any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
(x, y, z)_{\odot_{\alpha, \beta, \gamma}}+(z, x, y)_{\odot_{\gamma, \alpha, \beta}}+(y, z, x)_{\odot_{\beta, \gamma, \alpha}}=0 . \tag{39}
\end{equation*}
$$

Proof. According to Theorem 3.8 and Proposition 3.4 and Theorem 3.9, the above equation is satisfied.

Proposition 3.11. Let $\left(A, \prec_{\omega_{1}, \omega_{2}}, \succ_{\omega_{1}, \omega_{2}}, \Omega_{c}\right)$ be an Ω_{c}-relative pre-anti-flexible algebra. Suppose for any $\omega_{1}, \omega_{2} \in \Omega_{c}$ the family of bilinear operations $\prec_{\omega_{1}, \omega_{2}}$: $A \otimes A \rightarrow A$ is independent of ω_{1} and $\succ_{\omega_{1}, \omega_{2}}: A \otimes A \rightarrow A$ is independent of ω_{2}. Then A possesses:
(1) a pre-anti-flexible family algebra structure which is $\left(A, \prec_{\omega_{2}}, \succ_{\omega_{1}}, \Omega_{c}\right)$. Conversely, if the quadruple $\left(A, \prec_{\omega} \succ_{\omega}, \Omega_{c}\right)$ is a pre-anti-flexible family algebra, then it can be regarded as an Ω_{c}-relative pre-anti-flexible algebra $\left(A, \prec_{\omega_{1}, \omega_{2}}\right.$, $\succ_{\omega_{1}, \omega_{2}}, \Omega_{c}$) in which for any $\omega_{1}, \omega_{2} \in \Omega_{c}$ " $\prec_{\omega_{1}, \omega_{2}}$ " is independent of ω_{1} and " $\succ_{\omega_{1}, \omega_{2}}^{{ }^{1}}{ }^{\prime}$ is independent of ω_{2}.
(2) a left pre-Lie family algebra structure and conversely, if A possesses a left pre-Lie family algebra structure, then it can be regarded as an Ω_{c}-relative preLie algebra structure (given in Theorem 3.7) in which for any $\omega_{1}, \omega_{2} \in \Omega_{c}$, " $\prec_{\omega_{1}, \omega_{2}}$ " is independent of ω_{1} and " $\succ_{\omega_{1}, \omega_{2}}$ " is independent of ω_{2}.
(3) similarly to (3.11), a right pre-Lie family algebra structure and conversely, if A possesses a right pre-Lie family algebra structure (given in Theorem 3.7), then it can be viewed as an Ω_{c}-relative right-symmetric algebra in which, for any $\omega_{1}, \omega_{2} \in \Omega_{c}$, " $\prec_{\omega_{1}, \omega_{2}}$ " is independent of ω_{1} and " $\succ_{\omega_{1}, \omega_{2}}$ " is independent of ω_{2}.

Proof. Under divers assumptions, Eq. (10a) is expressed by Eq. (28a) and Eq. (10b) is translated by Eq. (28b).

4. Rota-Baxter operators

This section deals with the use of the Rota-Baxter operators defined on Ω_{c}-relative anti-flexible and Lie algebras to build Ω_{c}-relative pre-anti-flexible algebras. It is proved that a Rota-Baxter operator define the Ω_{c}-relative Lie algebra derived from a given Ω_{c}-relative anti-flexible algebra induces an Ω_{c}-relative pre-anti-flexible algebra.

Definition 4.1. Let $\left(A,{ }_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative anti-flexible algebra. A RotaBaxter operator on A is a family of linear operators $R_{B_{\alpha}}: A \rightarrow A$, with $\alpha \in \Omega_{c}$, satisfying for any $x, y \in A$ and any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
R_{B_{\alpha}}(x) \cdot{ }_{\alpha, \beta} R_{B_{\beta}}(y)=R_{B_{\alpha \beta}}\left(R_{B_{\alpha}}(x) \cdot \alpha, \beta=x \cdot \alpha, \beta R_{B_{\beta}}(y)\right) \tag{40}
\end{equation*}
$$

Definition 4.2. Let $\left(A,{ }_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative anti-flexible algebra. A generalized Rota-Baxter operator on A is a family of linear operators $G_{R B_{\alpha}}: A \rightarrow A$, with $\alpha \in \Omega_{c}$, satisfying for any $\alpha, \beta, \gamma \in \Omega_{c}$ and any $x, y, z \in A$,

$$
\begin{align*}
0 & =\left(G _ { R B _ { \alpha \beta } } \left(G_{R B_{\alpha}}(x) \cdot \alpha, \beta\right.\right. \\
& +z \cdot x \cdot \alpha \cdot \alpha, \beta \tag{41}\\
& \left.\left.G_{R B_{\beta}}(y)\right)-G_{R B_{\alpha}}(x) \cdot{ }_{\alpha, \beta} G_{R B_{\beta}}(y)\right) \cdot \alpha \beta, \gamma \\
R B_{\beta} & \left.(y) \cdot{ }_{\beta, \alpha} G_{R B_{\alpha}}(x)-G_{R B_{\beta \alpha}}\left(G_{R B_{\beta}}(y) \cdot{ }_{\beta, \alpha} x+y \cdot y \cdot{ }_{\beta, \alpha} G_{R B_{\alpha}}(x)\right)\right) .
\end{align*}
$$

Proposition 4.3. Let $\left(A,{ }_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative anti-flexible algebra and $G_{R B_{\alpha}}: A \rightarrow A$ a generalized Rota-Baxter operator. Defining for any $x, y \in A$ and any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
x \prec_{\alpha, \beta} y:=x \cdot{ }_{\alpha, \beta} G_{R B_{\beta}}(y), \quad x \succ_{\alpha, \beta} y:=G_{R B_{\alpha}}(x) \cdot{ }_{\alpha, \beta} y, \tag{42}
\end{equation*}
$$

then, $\left(A, \prec_{\alpha, \beta}, \succ_{\alpha, \beta}, \Omega_{c}\right)$ is turns to an Ω_{c}-relative pre-anti-flexible algebra. The converse is true.

Proof. Let $x, y, z \in A$ and $\alpha, \beta, \gamma \in \Omega_{c}$. In view of Eq. (42) we have

$$
\begin{gathered}
\left(x \succ_{\alpha, \beta} y\right) \prec_{\alpha \beta, \gamma} z-x \succ_{\alpha, \beta \gamma}\left(y \prec_{\alpha, \beta} z\right)=\left(G_{R B_{\alpha}}(x), y, G_{R B_{\gamma}}(z)\right)_{\alpha, \beta, \gamma}, \\
\left(z \succ_{\gamma, \beta} y\right) \prec_{\gamma \beta, \alpha} x-z \succ_{\gamma, \beta \alpha}\left(y \prec_{\beta, \alpha} x\right)=\left(G_{R B_{\gamma}}(z), y, G_{R B_{\alpha}}(x)\right)_{\gamma, \beta, \alpha}, \\
\left(x \prec_{\alpha, \beta} y+x \succ_{\alpha, \beta} y\right) \succ_{\alpha \beta, \gamma} z-x \succ_{\alpha, \beta \gamma}\left(y \succ_{\beta, \gamma} z\right)=\left(z, G_{R B_{\beta}}(y), G_{R B_{\alpha}}(x)\right)_{\gamma, \beta, \alpha} \\
+\left(G_{R B_{\alpha \beta}}\left(G_{R B_{\alpha}}(x) \cdot_{\alpha, \beta} y+x \cdot_{\alpha, \beta} G_{R B_{\beta}}(y)\right)-\left(G_{R B_{\alpha}}(x) \cdot_{\alpha, \beta} G_{R B_{\beta}}(y)\right)\right) \cdot_{\alpha \beta, \gamma} z, \\
\left(z \prec_{\gamma, \beta} y\right) \prec_{\gamma \beta, \alpha} x-z \prec_{\gamma, \beta \alpha}\left(y \succ_{\beta, \alpha} x+y \prec_{\beta, \alpha} x\right)=\left(G_{R B_{\alpha}}(x), G_{R B_{\beta}}(y), z\right)_{\alpha, \beta, \gamma}, \\
\quad+z \cdot_{\gamma, \beta \alpha}\left(G_{R B_{\beta}}(y) \cdot{ }_{\beta, \alpha} G_{R B_{\alpha}}(x)-G_{R B_{\beta \alpha}}\left(G_{R B_{\beta}}(y) \cdot{ }_{\beta, \alpha} x+y \cdot{ }_{\beta, \alpha} G_{R B_{\alpha}}(x)\right)\right) .
\end{gathered}
$$

Therefore, Eq.(42) turns A into an Ω_{c}-relative pre-anti-flexible algebra if and only if $G_{R B_{\alpha}}$ satisfy Eq. (41).

Corollary 4.4. Any Rota-Baxter operator on an Ω_{c}-relative anti-flexible algebra induces an Ω_{c}-relative pre-anti-flexible algebra.

In the sequel of this section, we consider the Ω_{c}-relative anti-flexible algebra $\left(A,{ }_{\omega_{1}, \omega_{2}}, \Omega_{c}\right.$) in which for any $\alpha \in \Omega_{c}$, the linear map $\varphi_{\alpha}: A \rightarrow A$ is is such that the elements

$$
\begin{equation*}
\varphi_{\alpha}(x) \cdot_{\alpha, \beta} \varphi_{\beta}(y)-\varphi_{\alpha \beta}\left(x \cdot_{\alpha, \beta} \varphi_{\beta}(y)+\varphi_{\alpha}(x) \cdot_{\alpha, \beta} y\right), \quad \forall x, y \in A, \forall \alpha, \beta \in \Omega_{c}, \tag{43}
\end{equation*}
$$

satisfy the following, for any $\alpha, \beta, \gamma \in \Omega_{c}$ and for any $x, y, z \in A$,

$$
\begin{align*}
& z \cdot_{\gamma, \beta \alpha}\left(\varphi_{\alpha}(x) \cdot_{\alpha, \beta} \varphi_{\beta}(y)-\varphi_{\alpha \beta}\left(x \cdot_{\alpha, \beta} \varphi_{\beta}(y)+\varphi_{\alpha}(x) \cdot_{\alpha, \beta} y\right)\right)= \\
& \quad\left(\varphi_{\alpha \beta}\left(x \cdot_{\alpha, \beta} \varphi_{\beta}(y)+\varphi_{\alpha}(x) \cdot_{\alpha, \beta} y\right)-\varphi_{\alpha}(x) \cdot_{\alpha, \beta} \varphi_{\beta}(y)\right) \cdot{ }_{\alpha \beta, \gamma} z . \tag{44}
\end{align*}
$$

Definition 4.5. By a Rota-Baxter operator on an Ω_{c}-relative Lie algebra $\left(A,[\cdot, \cdot]_{\alpha, \beta}, \Omega_{c}\right)$ we mean a family of linear operators $R_{B_{\alpha}}: A \rightarrow A$ with $\alpha \in \Omega_{c}$, satisfying for any $x, y \in A$, and for any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
\left[R_{B_{\alpha}}(x), R_{B_{\beta}}(y)\right]_{\alpha, \beta}=R_{B_{\alpha \beta}}\left(\left[x, R_{B_{\beta}}(y)\right]_{\alpha, \beta}+\left[R_{B_{\alpha}}(x), y\right]_{\alpha, \beta}\right) \tag{45}
\end{equation*}
$$

Proposition 4.6. Let $\left(A, \cdot{ }_{\alpha, \beta}, \Omega_{c}\right)$ be an Ω_{c}-relative anti-flexible algebra equipped with a family of linear maps $\varphi_{\alpha}: A \rightarrow A$, with $\alpha \in \Omega_{c}$, in which the elements as the form given in Eq. (43) satisfy Eq. (44). The family linear products given by, for any $x, y \in A$ and any $\alpha, \beta \in \Omega_{c}$,

$$
\begin{equation*}
x \prec_{\alpha, \beta} y=x \cdot_{\alpha, \beta} \varphi_{\beta}(y) ; \quad x \succ_{\alpha, \beta} y=\varphi_{\alpha}(x) \cdot_{\alpha, \beta} y \tag{46}
\end{equation*}
$$

defines an Ω_{c}-relative pre-anti-flexible structures on A if and only if the family of linear maps " φ_{α} " is a Rota-Baxter operator on the Ω_{c}-relative Lie algebra $\left(A,[\cdot, \cdot]_{\alpha, \beta}, \Omega_{c}\right)$, where for any $x, y \in A$ and for any $\alpha, \beta \in \Omega_{c},[x, y]_{\alpha, \beta}=$ $x{ }_{\beta, \alpha} y-y{ }_{\beta, \alpha} x$.

Proof. According to Proposition 4.3, the family of linear maps φ_{α} satisfy Eq. (41) and Eq. (44) if and only if any $x, y, z \in A$ and any $\alpha, \beta, \gamma \in \Omega_{c}$,

$$
\begin{equation*}
z \cdot_{\gamma, \alpha \beta}\left(\left[\varphi_{\alpha}(x), \varphi_{\beta}(y)\right]_{\alpha, \beta}-\varphi_{\alpha \beta}\left(\left[x, \varphi_{\beta}(y)\right]_{\alpha, \beta}+\left[\varphi_{\alpha}(x), y\right]_{\alpha, \beta}\right)\right)=0 . \tag{47}
\end{equation*}
$$

Therefore, φ_{α} is a Rota-Baxter operator on the Ω_{c}-relative Lie algebra $\left(A,[\cdot, \cdot]_{\alpha, \beta}, \Omega_{c}\right)$, where for any $x, y \in A$ and for any $\alpha, \beta \in \Omega_{c},[x, y]_{\alpha, \beta}=x \cdot_{\beta, \alpha} y-$ $y{ }_{\beta, \alpha} x$.

Acknowledgments. This work is supported the LPMC of Nankai University and Nankai ZhiDe Foundation.

References

[1] M. Aguiar, Dendriform algebras relative to a semigroup, SIGMA 16 (2020), 1-15.
[2] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys., 54 (2000), 263 - 277.
[3] C. Bai, O. Bellier, L. Guo, X. Ni, Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not., 2013 (2013), $485-524$.
[4] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10 (1960), 731 - 742.
[5] F. Bergeron, G. Labelle, P. Leroux, Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, 67 Cambridge University Press, 1998.
[6] M.C. Bhandari, On the classification of simple anti-flexible algebras, Trans. Amer. Math. Soc., 173 (1972), 159 - 181.
[7] H.A. Çelik, On primitive and prime anti-flexible ring, J. Algebra, 20 (1972) 428 440.
[8] M.L. Dassoundo, Pre-anti-flexible bialgebras, Commun. Algebra, 49 (2021), $4050-4078$.
[9] M.L. Dassoundo, C. Bai, M.N. Hounkonnou, Anti-flexible bialgebras, J. Algebra and Its Appl., (2021), https://doi.org/10.1142/S0219498822502127.
[10] L.W. Davis, D.J. Rodabaugh, Simple nearly anti-flexible algebras have unity elements, London Math. Soc. Stud. Texts, 2 (1969) $69-72$.
[11] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 61 (2002), $139-147$.
[12] K. Ebrahimi-Fard, J.M. Gracia-Bondía, F. Patras, A Lie theoretic approach to renormalization, Commun. Math. Phys., 276 (2007), $519-549$.
[13] L. Foissy, Typed binary trees and generalized dendriform algebras, J. Algebra, $\mathbf{5 8 6}$ (2021), 1 - 61.
[14] L. Foissy, D. Manchon and Y. Zhang, Families of algebraic structures, (2020), ArXiv:2005.05116v1.
[15] M. Goze, E. Remm, Lie-admissible algebras and operads, J. Algebra, 273 (2004), 129-152.
[16] V.Yu. Gubarev, P.S. Kolesnikov, Embedding of dendriform algebras into RotaBaxter algebras, Cent. Eur. J. Math., 11 (2013), 226 - 245.
[17] L. Guo, Operated semigroups, Motzkin paths and rooted trees, J. Algebr. Comb., 29 (2009), $35-62$.
[18] L. Guo, An introduction to Rota-Baxter Algebras, Surveys of Modern Mathematics 4. Somerville: International Press; Beijing: Higher Education Press, 2012.
[19] M.N. Hounkonnou, M.L. Dassoundo, Center-symmetric algebras and bialgebras: Relevant properties and consequences. Geometric Methods in Physics. Trends in Math., Birkhäuser, Cham. (2016), 281 - 293.
[20] J.-L. Loday, Dialgebras and related operads, Lecture Notes Math. 1763, Springer, Berlin 2001, $7-66$.
[21] D. Manchon and Y. Zhang, Free pre-Lie family algebras, (2020), arXiv:2003.00917.
[22] J. Pei, C. Bai and L. Guo, Splitting of operads and Rota-Baxter operators on operads, Appl. Cate. Stru., 25 (2017), $505-538$.
[23] D.J. Rodabaugh, A generalization of the flexible law, Trans. Amer. Math. Soc., 114 (1965), 468 - 487.
[24] D.J. Rodabaugh, On semisimple antiflexible algebras, Portugal. Math., 6 (1967), 261-271.
[25] D.J. Rodabaugh, On anti-flexible algebras, Trans. Amer. Math. Soc., 169 (1972), 219-235.
[26] D.J. Rodabaugh, A theorem of semisimple anti-flexible algebras, Comm. Algebra, 6 (1978), 1081 - 1090.
[27] G.-C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc., 75 (1969), $325-334$.
[28] Y. Zhang, X. Gao, Free Rota-Baxter family algebras and (tri)dendriform family algebras, Pacific J. Math., 301 (2019), 742 - 766.
[29] Y. Zhang, X. Gao and D. Manchon, Free (tri)dendriform family algebras, J. Algebra, 547 (2020), 456 - 493.

Received July 14, 2021
Chern Institute of Mathematics \& LPMC, Nankai University, Tianjin 300071, China
E-mail: dassoundo@yahoo.com

[^0]: 2020 Mathematics Subject Classification: 17A30, 16W99, 05E16
 Keywords: Rota-Baxter family operators, Ω_{c}-relative Lie algebra, (pre)anti-flexible family algebra, Ω_{c}-relative (pre)anti-flexible algebra

