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Relative (pre-)anti-flexible algebras

and associated algebraic structures

Mafoya Landry Dassoundo

Abstract. Pre-anti-flexible family algebras are introduced and used to define and describe the
notions of Ωc-relative anti-flexible algebras, left and right pre-Lie family algebras and Ωc-relative
Lie algebras. The notion of Ωc-relative pre-anti-flexible algebras are introduced and also used to
characterize pre-anti-flexible family algebras, left and right pre-Lie family algebras and significant
identities associated to these algebraic structures are provided. Finally, a generalization of the
Rota-Baxter operators defined on an Ωc-relative anti-flexible algebra is introduced and it is
also proved that both Rota-Baxter operators and its generalization provide Ωc-relative pre-anti-
flexible algebras structures and related consequences are derived.

1. Introduction and preliminaries
Anti-flexible algebra, originally derived in the generalization of flexible algebras
(algebras satisfy identity (xy)x = x(yx)) leading to the introduction of several
classes of nonassociative algebras ([23]), is a vector space A equipped with bilinear
product “∗ : A×A→ A” satisfying, for any x, y, z ∈ A,

(x ∗ y) ∗ z + z ∗ (y ∗ x) = (z ∗ y) ∗ x+ x ∗ (y ∗ z), (1a)

equivalently

(x, y, z) = (z, y, x), (1b)

where,

(x, y, z) = (x ∗ y) ∗ z − x ∗ (y ∗ z), (2)

is the associator of the bilinear product ∗ : A × A → A. Anti-flexible algebras
are also known as G4-associative algebras ([15]) and center-symmetric algebras
([19]). Simplicity and semi-simplicity of anti-flexible algebras were investigated
and characterized ([24]). Besides, simple and semisimple (totally) anti-flexible
algebras over splitting fields of characteristic different to 2 and 3 were studied and
classified in [6, 25, 26]. Moreover, the primitive structures and prime anti-flexible

2020 Mathematics Subject Classification: 17A30, 16W99, 05E16
Keywords: Rota-Baxter family operators, Ωc-relative Lie algebra, (pre)anti-flexible family
algebra, Ωc-relative (pre)anti-flexible algebra



32 M. L. Dassoundo

rings were investigated in [7] and it were established that a simple nearly anti-
flexible algebra of characteristic prime to 30 satisfying the identity (x, x, x) = 0 in
which its commutator gives non-nilpotent structure possesses a unity element [10].

A Rota-Baxter operator, originally introduced in [4, 27], is a linear operator
RB : A→ A defined on an associative algebra (A, ·) and satisfying, for any x, y ∈
A,

RB(x) ·RB(y) = RB(RB(x) · y) +RB(x ·RB(y)). (3)

It is well known from [2] that Rota-Baxter operator of weight zero on a given
associative algebra induces a dendriform algebra (introduced by Loday in [20])
structures. More precisely, for a given linear map R : A → A on an associative
algebra (A, ·), the two following bilinear products ≺,�: A × A → A given by, for
any x, y ∈ A,

x � y := R(x) · y, x ≺ y := x ·R(y), (4)

satisfy the following relations, for any x, y, z ∈ A,

(x � y) ≺ z − x � (y ≺ z) = 0, (5a)

(x � y + x ≺ y) � z − x � (y � z) = 0, (5b)

x ≺ (y � z + y ≺ z)− (x ≺ y) ≺ z = 0, (5c)

if and only if R : A → A is a Rota-Baxter operator of weight zero on A, that
is, R satisfies Eq. (3). Similarly, from [8, 9], it is established that for a given a
Rota-Baxter operator of weight zero defined on an anti-flexible algebra (A, ∗), the
bilinear products given by Eq. (4) satisfy, for any x, y, z ∈ A,

(x � y) ≺ z − x � (y ≺ z) = (z � y) ≺ x− z � (y ≺ x), (6a)

(x � y + x ≺ y) � z − x � (y � z) = z ≺ (y � x+ y ≺ x)− (z ≺ y) ≺ x, (6b)

and the algebra (A,≺,�) is known as pre-anti-flexible algebra. More generally,
for a given linear map GRB : A→ A defined on an anti-flexible algebra (A, ∗) and
considering the following bilinear products given by, for any x, y ∈ A,

x �′ y := GRB(x) ∗ y, x ≺′ y := x ∗GRB(y), (7)

then (A,≺′,�′) is a pre-anti-flexible algebra if and only if, for x, y, z ∈ A,

(GRB(GRB(x) ∗ y + x ∗GRB(y))−GRB(x) ∗GRB(y)) ∗ z+
z ∗ (GRB(y) ∗GRB(x)−GRB(GRB(y) ∗ x+ y ∗GRB(x))) = 0. (8)
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A linear map GRB : A → A given on an anti-flexible algebra (A, ∗) satisfying
Eq. (8) is known as a generalization of the Rota-Baxter operator of weight zero.

Besides, dendriform and (di-)tri-algebras were introduced and related to Rota-
Baxter operators and associated consequences were derived ([11]). Moreover, it is
well known (from [16]) that Koszul duality of operad governing (di-)tri-algebras
is corresponding to operad governing variety of (di-)tri-dendriform algebras which
are embedded to zero’s weight Rota-Baxter algebra. Furthermore, it is proved
that a general operadic definition for the notion of splitting algebraic structures are
equivalent with some Manin products of operads which are closely related to Rota-
Baxter operators ([3]). More generally, splitting algebraic operations procedure in
any algebraic operad theory were uniformed and linked to the notion of Rota-
Baxter operators on operads ([22]) and other results established on Rota-Baxter
algebras are surveyed in [18] and the references therein.

The notion of operated semi-group are introduced to build some algebraic
structures on combinatoric elements mainly the binary rooted trees. The most
relevant examples are the construction of free Rota-Baxter algebras in terms of
Motzkin paths and planar rooted trees ([17]) and the use of typed decorated trees
theory for describing combinatorial species ([5]). Given a (non)associative K (field
of characteristic zero) algebra A, a Rota-Baxter family operators of weight λ (λ ∈
K) is a family of linear maps Pω : A→ A, where ω ∈ Ω, satisfying, for any x, y ∈ A
and for any α, β ∈ Ω,

Pα(x)Pβ(y) = Pαβ(xPβ(y)) + Pαβ(Pα(x)y) + λPαβ(xy). (9)

The theory of Rota-Baxter family operators takes its origins in renormalization
theory of quantum field theory ([12, page 591]). Recently, free (non)commutative
Rota-Baxter family is introduced and linked to (tri)dendriform family algebras
([28]). Moreover, it is proved that Rota-Baxter family algebras indexed by an as-
sociative semigroup amounts to an ordinary Rota-Baxter algebra structure on
the tensor product with the semigroup algebra. Similar results are provided
with (tri)dendriform family algebras ([29]), and more generally, the notion of
Ω-dendriform structures are introduced and nonassociative structures on typed
binary trees are unified and generalized ([13]). Similarly, pre-Lie family algebras
and free pre-Lie family algebras, are introduced and related typed decorated trees
are constructed and related generalization are also derived ([21]). In addition, a
general account of family algebras over a finitely presented linear operad are given
and proved that this operad together with its presentation naturally define an
algebraic structure on the set of parameters ([14]).

Throughout this article, Ω is an associative semi-group and Ωc is a commu-
tative associative semi-group, algebras are defined over a field of characteristic
zero. We end this introductory section by describing the content flowchart of this
paper as follows. In section , we introduce the notion of pre-anti-flexible family
algebras, establish their relations with dendriform family algebras and use them
to construct Ωc-relative anti-flexible algebras as well as Ωc-relative Lie algebras,
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left and right pre-Lie family algebras and related consequences are derived. In sec-
tion , the notion of Ωc-relative pre-anti-flexible algebras is introduced and viewed
as a generalization of the Ωc-relative dendriform algebras and used to build Ωc-
relative pre-anti-flexible algebras, Ωc-relative pre-Lie and right pre-Lie algebras,
Ωc-relative Lie algebras and other associated structures are derived. In section , we
prove that a Rota-Baxter family operators of weight zero defined on an Ωc-relative
anti-flexible algebra and its generalization induce an Ωc-relative pre-anti-flexible
algebra structure. Under some assumptions on Ωc-relative anti-flexible algebra,
we prove that a Rota-Baxter family operators defined on a related Ωc-relative Lie
algebra of an Ωc-relative anti-flexible algebra also induces an Ωc-relative pre-anti-
flexible algebra structure.

2. Pre-anti-flexible family algebras
In this section, pre-anti-flexible family algebras are introduced and related con-
sequences are established. Associated family algebras are derived as well as its
Ωc-relative algebraic structures.

Definition 2.1. A pre-anti-flexible family algebra is a quadruple (A,≺ω,�ω,Ωc)
such that A is a vector space equipped with two families of bilinear products
≺α,�α: A × A → A with α ∈ Ωc and satisfying for any x, y, z ∈ A and for any
α, β ∈ Ωc,

(x �α y) ≺β z − x �α (y ≺β z) = (z �β y) ≺α x− z �β (y ≺α x), (10a)

(x �α y + x ≺β y) �αβ z − x �α (y �β z) = (z ≺β y) ≺α x
−z ≺βα (y �β x+ y ≺α x). (10b)

Remark 2.2. If the LHS and the RHS of each Eq. (10a) and Eq. (10b) become
zero, then pre-anti-flexible family algebra is dendriform family algebra ([28, 21,
29]). Consequently, pre-anti-flexible family algebras can be considered as a gener-
alization of dendriform family algebras.

Definition 2.3. An Ωc-relative anti-flexible algebra is a triple (A, ·
α,β
,Ωc) in

which A is a vector space equipped with the family of bilinear products “ ·
α,β

: A×
A→ A” with (α, β) ∈ Ω2

c and satisfying, for any x, y, z ∈ A and any α, β, γ ∈ Ωc,

(x ·
α,β

y) ·
αβ,γ

z + z ·
γ,βα

(y ·
β,α

x)− (z ·
γ,β

y) ·
γβ,α

x− x ·
α,βγ

(y ·
β,γ

z) = 0, (11)

equivalently

(x, y, z)
α,β,γ

= (z, y, x)
γ,β,α

, (12)

where, for any x, y, z ∈ A and for any α, β, γ ∈ Ωc,

(x, y, z)
α,β,γ

:= (x ·
α,β

y) ·
αβ,γ

z − x ·
α,βγ

(y ·
β,γ

z). (13)
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Theorem 2.4. Let (A,≺ω,�ω,Ωc) be a pre-anti-flexible family algebra, the fol-
lowing family of bilinear products given by, for any α, β ∈ Ωc and for any x, y ∈ A,

x ∗
α,β

y = x �α y + x ≺
β
y (14)

is such that (A, ∗α,β ,Ωc) is an Ωc-relative anti-flexible algebra.

Proof. Let x, y, z ∈ A and α, β, γ ∈ Ωc. We have

(x, y, z)
α,β,γ

:= (x ∗
α,β

y) ∗
αβ,γ

z − x ∗
α,βγ

(y ∗
β,γ

z)
= (x �α y + x ≺β y) �

αβ
z + (x �α y + x ≺β y) ≺γ z

− x �α (y �β z + y ≺γ z)− x ≺βγ (y �β z + y ≺γ z)
= {(x �α y + x ≺β y) �

αβ
z − x �α (y �β z}

+ {(x ≺β y) ≺γ z − x ≺βγ (y �β z + y ≺γ z)}
+ {(x �α y) ≺γ z − x �α (y ≺γ z)}
= {(z ≺β y) ≺α x− z ≺βα (y �β x+ y ≺α x)}
+ {(z �γ y + z ≺β y) �

γβ
x− z �γ (y �β x)}

+ {(z �γ y) ≺α x− z �γ (y ≺α x)}
= (z �γ y + z ≺β y) �

γβ
x+ (z �γ y + z ≺β y) ≺α x

− z �γ (y �β x+ y ≺α x)− z ≺βα (y �β x+ y ≺α x)
(x, y, z)

α,β,γ
= (z, y, x)

γ,β,α
.

Therefore, the family of bilinear products given by Eq. (14) satisfies Eq. (12). Thus
(A, ∗

α,β
,Ωc) is an Ωc-relative anti-flexible algebra where, “∗

α,β
: A × A → A” is

derived by Eq. (14).

Theorem 2.5. Let A be a k vector space and consider on A⊗ kΩc, two bilinear
products given by ≺,�: A⊗kΩc×A⊗kΩc → A⊗kΩc. The triple (A⊗kΩc,≺,�)
is a pre-anti-flexible algebra if and only if (A,≺ω,�ω,Ωc) is a pre-anti-flexible
family algebra and for any x, y,∈ A and for any α, β ∈ Ωc,

(x⊗ α) ≺ (y ⊗ β) := (x ≺β y)⊗ αβ, (15a)

(x⊗ α) � (y ⊗ β) := (x �α y)⊗ αβ. (15b)

Proof. Let x, y, z ∈ A and α, β, γ ∈ Ωc. We have

((x⊗ α) � (y ⊗ β)) ≺ (z ⊗ γ)− (x⊗ α) � ((y ⊗ β) ≺ (z ⊗ γ)) =
((x �α y) ≺γ z − x �α (y ≺γ z))⊗ αβγ, (16a)

((x⊗ α) � (y ⊗ β) + (x⊗ α) ≺ (y ⊗ β)) � (z ⊗ γ)
−(x⊗ α) � ((y ⊗ β) � (z ⊗ γ)) = ((x �α y + x ≺β y) �αβ z
−x �α (y �β z))⊗ αβγ. (16b)

Similarly, using the commutativity of Ωc, we have

((z ⊗ γ) � (y ⊗ β)) ≺ (x⊗ α)− (z ⊗ γ) � ((y ⊗ β) ≺ (x⊗ α)) =
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((z �γ y) ≺α x− z �γ (y ≺α x))⊗ αβγ, (17a)

((z ⊗ γ) ≺ (y ⊗ β)) ≺ (x⊗ α)− (z ⊗ γ) ≺ ((y ⊗ β) � (x⊗ α) (17b)
+(y ⊗ β) ≺ (x⊗ α)) = ((z ≺β y) ≺α x− z ≺βα (y �β x+ y ≺α x))⊗ αβγ.

Hence, if (A ⊗ kΩc,≺,�) is a pre-anti-flexible algebra i.e., the RHS of Eq. (16a)
and Eq. (17a) are respectively equal to that of Eq. (16b) and (17b), then (A,≺ω
,�ω,Ωc) is a pre-anti-flexible family algebra.

Conversely, if (A,≺ω,�ω,Ωc) is a pre-anti-flexible family algebra in which “≺ω
,�ω: A×A→ A” are given by Eqs. (15a) and (15b), according to Eqs. (16a), (16b),
(17a) and (17b), we deduce that (A⊗kΩc,≺,�) is a pre-anti-flexible algebra.

Definition 2.6. (cf. [21]) A left pre-Lie family algebra is a triple (A, .ω,Ωc)
in which A is a vector space equipped with the family of bilinear products .ω :
A×A→ A with ω ∈ Ωc, satisfying for any x, y, z ∈ A and for any α, β ∈ Ωc,

(x .α y) .αβ z − x .α (y .β z) = (y .β x) .βα z − y .β (x .α z). (18)

Definition 2.7. A right pre-Lie family algebra is a triple (A, /ω,Ωc) in which A
is a vector space equipped with the family of bilinear products /ω : A × A → A
with ω ∈ Ωc, satisfying for any x, y, z ∈ A and for any α, β ∈ Ωc,

x /αβ (y /β z)− (x /α y) /β z = x /βα (z /α y)− (x /β z) /α y. (19)

Remark 2.8. For a given left pre-Lie family algebra (A, ·α,Ωc), setting for any
x, y ∈ A and for any α ∈ Ωc, x ·oppα y = y ·α x, we have for any x, y, z ∈ A and for
any α, β ∈ Ωc,

x ·oppαβ (y ·oppβ z)− (x ·oppα y) ·oppβ z = (z ·β y) ·αβ x− z ·β (y ·α x)
= (y ·α z) ·βα x− y ·α (z ·β x)
= x ·oppβα (z ·oppα y)− (x ·oppβ z) ·oppα y.

Therefore, (A, ·oppα ,Ωc) is a right pre-Lie family algebra.

Theorem 2.9. Let (A,≺ω,�ω,Ωc) be a pre-anti-flexible family algebra, the two
following families of bilinear products

x .ω y := x �ω y − y ≺ω x, ∀ω ∈ Ωc, (20a)

x /ω y := x ≺ω y − y �ω x, ∀ω ∈ Ωc, (20b)

for any x, y ∈ A and for any α, β ∈ Ωc, are such that (A, .ω,Ω) is a left pre-Lie
family algebra and (A, /ω,Ω) is a right pre-Lie family algebra.
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Proof. Let x, y, z ∈ A and α, β ∈ Ωc. We have

(x .α y) .αβ z − x .α (y . βz) = (x �α y − y ≺α x) .αβ z
− x .α (y �β z − z ≺β y) = (x �α y − y ≺α x) �αβ z
− z ≺αβ (x �α y − y ≺α x)− x �α (y �β z − z ≺β y)
+ (y �β z − z ≺β y) ≺α x = {(x �α y) �αβ z − x �α (y �β z)
− (z ≺β y) ≺α x− z ≺αβ (y ≺α x)} − (y ≺α x) �αβ z − z ≺αβ (x �α y)
+ x �α (z ≺β y) + (y �β z) ≺α x
= −(x ≺β y) �αβ z − z ≺αβ (y �β x)− (y ≺α x) �αβ z
− z ≺αβ (x �α y) + x �α (z ≺β y) + (y �β z) ≺α x
= −(x ≺β y + y ≺α x) �αβ z − z ≺αβ (x �α y + y �β x)
+ (y �β z) ≺α x+ x �α (z ≺β y) = (y .β x) .βα z − y .β (x .α z).

Note that the third equal sign above upwards is due to Eq. (10b) while the last
equal sign one is due to Eq. (10a). Therefore, (A, .ω,Ωc) is a left pre-Lie family
algebra.

Similarly to the above calculations, we prove that (A, /ω,Ωc) is a right pre-Lie
family algebra.

Definition 2.10. An Ωc-relative Lie algebra is a triple (A, [·, ·]
α,β
,Ωc) in which A

is a vector space equipped with a family of bilinear products [·, ·]
α,β

: A⊗ A→ A
with (α, β) ∈ Ωc, and satisfying, for any x, y, z ∈ A, and for any α, β, γ ∈ Ωc,

[x, y]
α,β

+ [y, x]
β,α

= 0, (21a)

[[x, y]
α,β
, z]

αβ,γ
+ [[y, z]

β,γ
, x]

βγ,α
+ [[z, x]

γ,α
, y]

γα,β
= 0. (21b)

Theorem 2.11. Let (A,≺ω,�ω,Ωc) be a pre-anti-flexible family algebra. The
following family of bilinear products given by, for any x, y ∈ A and for any α, β ∈
Ω,

[x, y]
α,β

= x ∗
α,β

y − y ∗
β,α

x = (x �α y + x ≺β y)− (y �β x+ y ≺α x), (22)

is such that (A, [·, ·]
α,β
,Ωc) is an Ωc-relative Lie algebra.

Proof. For any x, y, z ∈ A and for any α, β, γ ∈ Ωc, we have

• Skew symmetric,

[x, y]
α,β

+ [y, x]
β,α

= x ∗
α,β

y − y ∗
β,α

x+ y ∗
β,α

x− x ∗
α,β

y = 0.

Thus, Eq. (21a) is satisfied.

• Family of Jacobi identity,

[[x, y]
α,β
, z]

αβ,γ
+ [[y, z]

β,γ
, x]

βγ,α
+ [[z, x]

γ,α
, y]

γα,β

= (x ∗
α,β

y) ∗
αβ,γ

z − z ∗
γ,αβ

(x ∗
α,β

y)
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− (y ∗
β,α

x) ∗
αβ,γ

z + z ∗
γ,αβ

(y ∗
β,α

x)
+ (y ∗

β,γ
z) ∗

βγ,α
x− x ∗

α,βγ
(y ∗

β,γ
z)

− (z ∗
γ,β

y) ∗
βγ,α

x+ x ∗
α,βγ

(z ∗
γ,β

y)
+ (z ∗

γ,α
x) ∗

γα,β
y − y ∗

β,γα
(z ∗

γ,α
x)

− (x ∗
α,γ

z) ∗
γα,β

y + y ∗
β,γα

(x ∗
α,γ

z)
= (x, y, z)

α,β,γ
+ (y, z, x)

β,γ,α
+ (z, x, y)

γ,α,β

− (z, y, x)
γ,β,α

− (x, z, y)
α,γ,β

− (y, x, z)
β,α,γ

= 0

due to Theorem 2.4 and Eq. (12). Hence, Eq. (21b) is satisfied.

Therefore, (A, [·, ·]
α,β
,Ωc) is an Ωc-relative Lie algebra.

Proposition 2.12. Let (A,≺ω,�ω,Ωc) be a pre-anti-flexible family algebra. The
following family of bilinear products given on A by, for any α, β ∈ Ωc and for any
x, y ∈ A,

[x, y]
α,β

:= x .α y − y .β x, (23)

where, “.” is defined by Eq. (20a), turns A into an Ωc-relative Lie algebra which
is the same as that given in Theorem 2.11.

Proof. Let x, y ∈ A and α, β ∈ Ωc. We have

[x, y]
α,β

:= x .α y − y .β x = x �α y − y ≺α x− y �β x+ x ≺β y
= (x �α y + x ≺β y)− (y �β x+ y ≺α x) = x ∗α,β y − y ∗β,α x

which is the commutator given by Eq. (22).

Theorem 2.13. Let (A,≺ω,�ω,Ωc) be a pre-anti-flexible family algebra. The
following family of bilinear products given by, for any x, y ∈ A and for any α, β ∈
Ωc,

x ◦
α,β

y = x ∗α,β y + y ∗β,α x, (24)

in which “∗α,β : A×A→ A” is given by Eq. (14) is such that, for any x, y, z ∈ A
and for any α, β, γ ∈ Ωc,

(x, y, z)◦α,β,γ
= [y, [x, z]

α,γ
]
β,αγ

, (25)

where,
(x, y, z)◦α,β,γ

= (x ◦α,β y) ◦αβ,γ z − x ◦α,βγ (y ◦β,γ z), (26)

and “[·, ·]
α,β

” is given by Eq. (22).

Proof. Let x, y, z ∈ A, and for all α, β, γ ∈ Ωc, we have

(x, y, z)◦α,β,γ
= (x ◦α,β y) ◦αβ,γ z − x ◦α,βγ (y ◦β,γ z)
= (x ∗α,β y + y ∗β,α x) ∗αβ,γ z + z ∗γ,αβ (x ∗α,β y + y ∗β,α x)
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− x ∗α,βγ (y ∗β,γ z + z ∗γ,β y)− (y ∗β,γ z + z ∗γ,β y) ∗βγ,α x
= {(x ∗α,β y) ∗αβ,γ z − x ∗α,βγ (y ∗β,γ z)}
− {(z ∗γ,β y) ∗βγ,α x− z ∗γ,αβ (y ∗β,α x)}
+ (y ∗β,α x) ∗αβ,γ z + z ∗γ,αβ (x ∗α,β y)
− x ∗α,βγ (z ∗γ,β y)− (y ∗β,γ z) ∗βγ,α x
= (y ∗β,α x) ∗αβ,γ z + z ∗γ,αβ (x ∗α,β y)
− x ∗α,βγ (z ∗γ,β y)− (y ∗β,γ z) ∗βγ,α x
= y ∗β,αγ (x ∗α,γ z) + (z ∗γ,α x) ∗γα,β y
− y ∗β,γα (z ∗γ,α x)− (x ∗α,γ z) ∗αγ,β y = [y, [x, z]

α,γ
]
β,αγ

.

Note that the three last equals sign upwards are due to Eq. (11).

Proposition 2.14. Let (A, ·α,β ,Ωc) be an Ωc-relative anti-flexible algebra. We
have for any x, y, z ∈ A and for any α, β, γ ∈ Ωc,

(x, y, z)◦α,β,γ
+ (z, x, y)◦γ,α,β

+ (y, z, x)◦β,γ,α
= 0, (27)

where, for any x, y, z ∈ A and for any α, β, γ ∈ Ωc, (x, y, z)◦α,β,γ
is given by

Eq. (26) and x ◦α,β y = x ·α,β y + y ·β,α x.

Proof. According to Eq. (26), Theorem 2.11 and Theorem 2.13, Eq. (27) holds.

3. Associated Ωc-relative algebras
In this section, Ωc-relative pre-anti-flexible algebras structures are introduced and
associated Ωc-relative algebras structures are derived. Moreover, Ωc-relative pre-
anti-flexible algebras are viewed as a generalization of pre-anti-flexible family al-
gebras and associated consequences are deduced.

Definition 3.1. An Ωc-relative pre-anti-flexible algebra is a quadruple (A,≺α,β
,�α,β ,Ωc) in which A is a vector space equipped with two families of bilinear
products ≺α,β ;�α,β : A×A→ A for (α, β) ∈ Ω2

c and satisfying for any x, y, z ∈ A
and for any α, β, γ ∈ Ωc,

(x �α,β y) ≺αβ,γ z − x �α,βγ (y ≺β,γ z) = (z �γ,β y) ≺γβ,α x
−z �γ,βα (y ≺β,α x), (28a)

(x ≺α,β y + x �α,β y) �αβ,γ z − x �α,βγ (y �β,γ z) =
(z ≺γ,β y) ≺γβ,α x− z ≺γ,βα (y ≺β,α x+ y �β,α x). (28b)

Remark 3.2. If the LSH and RHS of Eq. (28a) and Eq. (28b) vanish, then the
Ωc-relative pre-anti-flexible algebra (A,≺α,β ,�α,β ,Ωc) is called Ωc-relative dendri-
form algebra ([1]). Hence, Ωc-relative pre-anti-flexible algebras are a generalization
of Ωc-relative dendriform algebras.
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Similarly to Theorem 2.5, we have

Theorem 3.3. Let A be a k vector space and consider the bilinear products given
on A⊗ kΩc by ≺,�: A⊗ kΩc ×A⊗ kΩc → A⊗ kΩc. The triple (A⊗ kΩc,≺,�)
is a pre-anti-flexible algebra if and only if the quadruple (A,≺α,β ,�α,β ,Ωc) is an
Ωc-relative pre-anti-flexible algebra where, for any x, y ∈ A and for any α, β ∈ Ωc,

(x⊗ α) ≺ (y ⊗ β) := (x ≺α,β y)⊗ αβ, (29a)

(x⊗ α) � (y ⊗ β) := (x �α,β y)⊗ αβ. (29b)

Proposition 3.4. Let (A,≺α,β ,�α,β ,Ωc) be an Ωc-relative pre-anti-flexible alge-
bra. The following family of bilinear products given by, for any x, y ∈ A and for
any α, β ∈ Ωc,

x~α,β y = x ≺α,β y + x �α,β y, (30)

turns A into an Ωc-relative anti-flexible algebra.

Proof. Let x, y, z ∈ A and α, β, γ ∈ Ωc. We have

(x, y, z)~α,β,γ = (x �α,β y + x ≺α,β y) �αβ,γ z + (x �α,β y + x ≺α,β y) ≺αβ,γ z
− x �α,βγ (y �β,γ z + y ≺β,γ z)− x ≺α,βγ (y �β,γ z + y ≺β,γ z)
= {(x �α,β y + x ≺α,β y) �αβ,γ z − x �α,βγ (y �β,γ z)}
− {x ≺α,βγ (y �β,γ z + y ≺β,γ z)− (x ≺α,β y) ≺αβ,γ z}
+ {(x �α,β y) ≺αβ,γ z − x �α,βγ (y ≺β,γ z)}
= {(z ≺γ,β y) ≺γβ,α x− z ≺γ,βα (y ≺β,α x+ y �β,α x)}
+ {(z ≺γ,β y + z �γ,β y) �γβ,α x− z �γ,βγ (y �β,α x)}
+ {(z �γ,β y) ≺γβ,α x− z �γ,βα (y ≺β,α x)}
= (z ~γ,β y) ~γβ,α x− z ~γ,βα (y ~β,α x) = (z, y, x)~γ,β,α ,

the third equal sign upwards above is due to Eq. (28a) and Eq. (28b).
Therefore, (A,~

ω1,ω2
,Ωc) is an Ωc-relative anti-flexible algebra.

Definition 3.5. An Ωc-relative pre-Lie (left-symmetric) algebra is a vector space
A equipped with a family of bilinear products ∗

α,β
: A⊗A→ A with (α, β) ∈ Ω2

c ,
such that for any x, y, z ∈ A and for any α, β, γ ∈ Ωc,

(x, y, z)
α,β,γ

= (y, x, z)
β,α,γ

, (31)

or equivalently

(x ∗
α,β

y) ∗
αβ,γ

z − x ∗
α,βγ

(y ∗
β,γ

z)− (y ∗
β,α

x) ∗
βα,γ

z + y ∗
β,αγ

(x ∗
α,γ

z) = 0. (32)

Definition 3.6. An Ωc-relative right-symmetric algebra is a vector space A equip-
ped with a family of bilinear products ∗

α,β
: A⊗A→ A for (α, β) ∈ Ω2

c such that
for any x, y, z ∈ A and for any α, β, γ ∈ Ωc,

(x, y, z)
α,β,γ

= (x, z, y)
α,γ,β

, (33)
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or equivalently

(x ∗
α,β

y) ∗
αβ,γ

z − x ∗
α,βγ

(y ∗
β,γ

z)− (x ∗
α,γ

z) ∗
αγ,β

y + x ∗
α,γβ

(z ∗
γ,β

y) = 0. (34)

Theorem 3.7. Let (A,≺α,β ,�α,β ,Ωc) be an Ωc-relative pre-anti-flexible algebra,
defining for all α, β ∈ Ω and for any x, y ∈ A,

x I
α,β

y = x �α,β y − y ≺β,α x, (35a)

x J
α,β

y = x ≺α,β y − y �β,α x, (35b)

then (A,I
α,β
,Ωc) is an Ωc-relative pre-Lie algebra and (A,J

α,β
,Ωc) is an Ωc-

relative right symmetric algebra.

Proof. Let x, y, z ∈ A and α, β, γ ∈ Ωc. We have

(x, y, z)Iα,β,γ = (x I
α,β

y) I
αβ,γ

z − x I
α,βγ

(y I
β,γ

z)
= (x �α,β y − y ≺β,α x) �αβ,γ z
− z ≺γ,αβ (x �α,β y − y ≺β,α x)
− x �α,βγ (y �β,γ z − z ≺γ,β y)
+ (y �β,γ z − z ≺γ,β y) ≺βγ,α x
= {(x �α,β y) �αβ,γ z − x �α,βγ (y �β,γ z)}
− {(z ≺γ,β y) ≺βγ,α x− z ≺γ,βα (y ≺β,α x)}
+ {(y �β,γ z) ≺βγ,α x+ x �α,βγ (z ≺γ,β y)}
− {(y ≺β,α x) �αβ,γ z + z ≺γ,αβ (x �α,β y)}
= {(x �α,γ z) ≺αγ,β y + y �β,αγ (z ≺γ,α x)}
− {(x �α,β y + y ≺β,α x) �αβ,γ z}
− {z ≺γ,αβ (x �α,β y + y �β,α x)} = (y, x, z)Iβ,α,γ ,

the second equal sign upwards in the above successive relations is due to Eq. (28a)
and Eq. (28b) while the last one is due to Eq. (28a).

Therefore, (A,I
α,β
,Ωc) is an Ωc-relative pre-Lie algebra.

Similarly, we prove that (A,J
α,β
,Ωc) is an Ωc-relative right symmetric algebra.

Moreover, we have

Theorem 3.8. Let (A,≺α,β ,�α,β ,Ωc) be an Ωc-relative pre-anti-flexible algebra.
There is an Ωc-relative Lie algebra structure on A given by for any x, y ∈ A and
for any α, β ∈ Ωc,

[x, y]
α,β

:= (x �α,β y + x ≺α,β y)− (y �β,α x+ y ≺β,α x). (36)

Proof. Let x, y, z ∈ A and α, β, γ ∈ Ωc. In view of Eq. (36) and Eq. (30) we have

[x, y]
α,β

+ [y, x]
β,α

= x~
α,β

y − y ~
β,α

x+ y ~
β,α

x− x~
α,β

y = 0.
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In addition, we have

[[x, y]
α,β
, z]

αβ,γ
+ [[y, z]

β,γ
, x]

βγ,α
+ [[z, x]

γ,α
, y]

γα,β

= (x, y, z)~α,β,γ + (y, z, x)~β,γ,α + (z, x, y)~γ,α,β
−(z, y, x)~γ,β,α − (x, z, y)~α,γ,β − (y, x, z)~β,α,γ .

According to Proposition 3.4, we deduce the Ωc-relative Jacobi identity. Therefore,
A contains an Ωc-relative Lie algebra structure.

Theorem 3.9. Let (A,≺α,β ,�α,β ,Ωc) be an Ωc-relative pre-anti-flexible algebra
such that its related Ωc-relative anti-flexible algebra derived in Proposition 3.4 is
(A,~

ω1,ω2
,Ωc). The family of bilinear products given by, for any x, y ∈ A and for

any α, β ∈ Ωc,

x}
α,β

y = x~
α,β

y + y ~
β,α

x, (37)

satisfies the following relation, for any x, y, z ∈ A and for any α, β, γ ∈ Ωc,

(x, y, z)}α,β,γ = [y, [x, z]α,γ ]
β,αγ

, (38)

where (x, y, z)}α,β,γ = (x}
α,β

y)}
αβ,γ

z− x}
α,βγ

(y}
β,γ

z) and [x, y]
α,β

= x~
α,β

y − y ~
β,α

x.

Proof. Let x, y, z ∈ A and α, β, γ ∈ Ωc. We have

(x, y, z)}α,β,γ = (x}
α,β

y) }
αβ,γ

z − x}
α,βγ

(y }
β,γ

z)
= (x~

α,β
y) ~

αβ,γ
z + (y ~

β,α
x) ~

βα,γ
z

+ z ~
γ,αβ

(x~
α,β

y) + z ~
γ,αβ

(y ~
β,α

x)
− x~

α,βγ
(y ~

β,γ
z)− x~

α,βγ
(z ~

γ,β
y)

− (y ~
β,γ

z) ~
βγ,α

x− (z ~
γ,β

y) ~
βγ,α

x
= (y ~

β,α
x) ~

βα,γ
z + z ~

γ,αβ
(x~

α,β
y)

− x~
α,βγ

(z ~
γ,β

y)− (y ~
β,γ

z) ~
βγ,α

x
= y ~

β,αγ
(x~α,γ z) + (z ~γ,α x) ~

γα,β
y

− (x~α,γ z) ~αγ,β
y − y ~

β,γα
(z ~γ,α x) = [y, [x, z]α,γ ]

β,αγ
.

The second and third equal sign upward are due to Proposition 3.4.

Proposition 3.10. Let (A,≺α,β ,�α,β ,Ωc) be an Ωc-relative pre-anti-flexible alge-
bra. Consider the algebra (A,}

α,β
,Ωc) derived above. We have for any x, y, z ∈ A

and for any α, β, γ ∈ Ωc,

(x, y, z)}α,β,γ + (z, x, y)}γ,α,β + (y, z, x)}β,γ,α = 0. (39)

Proof. According to Theorem 3.8 and Proposition 3.4 and Theorem 3.9, the above
equation is satisfied.
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Proposition 3.11. Let (A,≺ω1,ω2 ,�ω1,ω2 ,Ωc) be an Ωc-relative pre-anti-flexible
algebra. Suppose for any ω1, ω2 ∈ Ωc the family of bilinear operations ≺ω1,ω2 :
A ⊗ A → A is independent of ω1 and �ω1,ω2

: A ⊗ A → A is independent of ω2.
Then A possesses:

(1) a pre-anti-flexible family algebra structure which is (A,≺ω2
,�ω1

,Ωc). Con-
versely, if the quadruple (A,≺ω,�ω,Ωc) is a pre-anti-flexible family algebra,
then it can be regarded as an Ωc-relative pre-anti-flexible algebra (A,≺ω1,ω2

,�ω1,ω2 ,Ωc) in which for any ω1, ω2 ∈ Ωc “≺ω1,ω2” is independent of ω1 and
“�′′

ω1,ω2
is independent of ω2.

(2) a left pre-Lie family algebra structure and conversely, if A possesses a left
pre-Lie family algebra structure, then it can be regarded as an Ωc-relative pre-
Lie algebra structure (given in Theorem 3.7) in which for any ω1, ω2 ∈ Ωc,
“≺ω1,ω2

” is independent of ω1 and “�ω1,ω2
” is independent of ω2.

(3) similarly to (3.11), a right pre-Lie family algebra structure and conversely, if
A possesses a right pre-Lie family algebra structure (given in Theorem 3.7),
then it can be viewed as an Ωc-relative right-symmetric algebra in which, for
any ω1, ω2 ∈ Ωc , “≺ω1,ω2

” is independent of ω1 and “�ω1,ω2
” is independent

of ω2.

Proof. Under divers assumptions, Eq. (10a) is expressed by Eq. (28a) and Eq. (10b)
is translated by Eq. (28b).

4. Rota-Baxter operators

This section deals with the use of the Rota-Baxter operators defined on Ωc-relative
anti-flexible and Lie algebras to build Ωc-relative pre-anti-flexible algebras. It is
proved that a Rota-Baxter operator define the Ωc-relative Lie algebra derived from
a given Ωc-relative anti-flexible algebra induces an Ωc-relative pre-anti-flexible al-
gebra.

Definition 4.1. Let (A, ·α,β ,Ωc) be an Ωc-relative anti-flexible algebra. A Rota-
Baxter operator on A is a family of linear operators RBα : A → A, with α ∈ Ωc,
satisfying for any x, y ∈ A and any α, β ∈ Ωc,

RBα(x) ·α,β RBβ (y) = RBαβ (RBα(x) ·α,β y + x ·α,β RBβ (y)). (40)

Definition 4.2. Let (A, ·α,β ,Ωc) be an Ωc-relative anti-flexible algebra. A gener-
alized Rota-Baxter operator on A is a family of linear operators GRBα : A → A,
with α ∈ Ωc, satisfying for any α, β, γ ∈ Ωc and any x, y, z ∈ A,

0 = (GRBαβ (GRBα(x) ·α,β y + x ·α,β GRBβ (y))−GRBα(x) ·α,β GRBβ (y)) ·αβ,γ z
+z ·γ,βα (GRBβ (y) ·β,α GRBα(x)−GRBβα(GRBβ (y) ·β,α x+ y ·β,α GRBα(x))). (41)
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Proposition 4.3. Let (A, ·α,β ,Ωc) be an Ωc-relative anti-flexible algebra and
GRBα : A→ A a generalized Rota-Baxter operator. Defining for any x, y ∈ A and
any α, β ∈ Ωc,

x ≺α,β y := x ·α,β GRBβ (y), x �α,β y := GRBα(x) ·α,β y, (42)

then, (A,≺α,β ,�α,β ,Ωc) is turns to an Ωc-relative pre-anti-flexible algebra. The
converse is true.

Proof. Let x, y, z ∈ A and α, β, γ ∈ Ωc. In view of Eq. (42) we have

(x �α,β y) ≺αβ,γ z − x �α,βγ (y ≺α,β z) = (GRBα(x), y,GRBγ (z))
α,β,γ

,

(z �γ,β y) ≺γβ,α x− z �γ,βα (y ≺β,α x) = (GRBγ (z), y,GRBα(x))γ,β,α,

(x ≺α,β y + x �α,β y) �αβ,γ z − x �α,βγ (y �β,γ z) = (z,GRBβ (y), GRBα(x))γ,β,α
+(GRBαβ (GRBα(x) ·α,β y + x ·α,β GRBβ (y))− (GRBα(x) ·α,β GRBβ (y))) ·αβ,γ z,

(z ≺γ,β y) ≺γβ,α x− z ≺γ,βα (y �β,α x+ y ≺β,α x) = (GRBα(x), GRBβ (y), z)
α,β,γ

+z ·γ,βα (GRBβ (y) ·β,α GRBα(x)−GRBβα(GRBβ (y) ·β,α x+ y ·β,α GRBα(x))).

Therefore, Eq.(42) turns A into an Ωc-relative pre-anti-flexible algebra if and only
if GRBα satisfy Eq. (41).

Corollary 4.4. Any Rota-Baxter operator on an Ωc-relative anti-flexible algebra
induces an Ωc-relative pre-anti-flexible algebra.

In the sequel of this section, we consider the Ωc-relative anti-flexible algebra
(A, ·ω1,ω2

,Ωc) in which for any α ∈ Ωc, the linear map ϕ
α

: A→ A is is such that
the elements

ϕ
α

(x) ·
α,β

ϕ
β
(y)− ϕ

αβ
(x ·

α,β
ϕ
β
(y) + ϕ

α
(x) ·

α,β
y), ∀x, y ∈ A, ∀α, β ∈ Ωc, (43)

satisfy the following, for any α, β, γ ∈ Ωc and for any x, y, z ∈ A,

z ·
γ,βα

(ϕ
α

(x) ·
α,β

ϕ
β
(y)− ϕ

αβ
(x ·

α,β
ϕ
β
(y) + ϕ

α
(x) ·

α,β
y)) =

(ϕ
αβ

(x ·
α,β

ϕ
β
(y) + ϕ

α
(x) ·

α,β
y)− ϕ

α
(x) ·

α,β
ϕ
β
(y)) ·

αβ,γ
z. (44)

Definition 4.5. By a Rota-Baxter operator on an Ωc-relative Lie algebra
(A, [·, ·]

α,β
,Ωc) we mean a family of linear operators RBα : A → A with α ∈ Ωc,

satisfying for any x, y ∈ A, and for any α, β ∈ Ωc,

[RBα(x), RBβ (y)]
α,β

= RBαβ ([x,RBβ (y)]
α,β

+ [RBα(x), y]
α,β

). (45)
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Proposition 4.6. Let (A, ·α,β ,Ωc) be an Ωc-relative anti-flexible algebra equipped
with a family of linear maps ϕα : A → A, with α ∈ Ωc, in which the elements as
the form given in Eq. (43) satisfy Eq. (44). The family linear products given by,
for any x, y ∈ A and any α, β ∈ Ωc,

x ≺α,β y = x ·
α,β

ϕ
β
(y); x �α,β y = ϕ

α
(x) ·

α,β
y (46)

defines an Ωc-relative pre-anti-flexible structures on A if and only if the fam-
ily of linear maps “ϕα” is a Rota-Baxter operator on the Ωc-relative Lie alge-
bra (A, [·, ·]

α,β
,Ωc), where for any x, y ∈ A and for any α, β ∈ Ωc, [x, y]

α,β
=

x ·
β,α

y − y ·
β,α

x.

Proof. According to Proposition 4.3, the family of linear maps ϕα satisfy Eq. (41)
and Eq. (44) if and only if any x, y, z ∈ A and any α, β, γ ∈ Ωc,

z ·
γ,αβ

([ϕ
α

(x), ϕ
β
(y)]

α,β
− ϕ

αβ
([x, ϕ

β
(y)]

α,β
+ [ϕ

α
(x), y]

α,β
)) = 0. (47)

Therefore, ϕα is a Rota-Baxter operator on the Ωc-relative Lie algebra
(A, [·, ·]

α,β
,Ωc), where for any x, y ∈ A and for any α, β ∈ Ωc, [x, y]

α,β
= x ·

β,α
y−

y ·
β,α

x.
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