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Semirings which are union

of principal left k-radicals

Tapas Kumar Mondal

Abstract. Here we study the principal left k-radicals of a semiring with semilattice additive
reduct and characterize the semirings which are disjoint union of principal left k-radicals via the

transitive closure
l

−→∞ of the relation l−→ on a semiring S, given by for a, b ∈ S, a
l−→ b⇔ bn ∈

Sa for some n ∈ N.

1. Introduction

The notion of principal left k-radical plays a vital role in providing the decomposi-
tion of semirings with semilattice additive reduct. The distributive lattice decom-
position of semirings is one of the elegant techniques for giving the structure of
such semirings, and has been given in [1, 6, 7]. In [7], while giving the decompo-
sitions of semirings, the simpler components are found to be left k-Archimedean
subsemirings, and that too, via k-radicals of left k-ideals. The notion of principal
left k-radicals was introduced in [6] following the ideas of Ćirić and Bogdanović
[2], and studied its important characteristics. Also, the very notion of principal
left k-radicals induces an equivalence relation λ which was found to be the least
distributive lattice congruence on a semiring through which those semirings were
characterized which are distributive lattices of λ-simple subsemirings. In terms
of principal left k-radical, the semirings in which the principal left k-radicals are
the least completely semiprime k-ideals, have been decomposed into λ-simple sub-
semirings. In this paper, we continue to study the class of semirings with semilat-
tice additive reduct, pick up the notion of principal left k-radicals, and show that a
semiring S which is a distributive lattices of left k-Archimedean semirings, can be

expressed as a union of principal k-radicals if and only if the relation
l

−→∞ is sym-
metric on S. During this decomposition we find that the principal left k-radicals
becomes the least completely semiprime left k-ideals of S. The preliminaries and
prerequisites for this article have been discussed in section 2. In section 3, we
study principal left k-radicals Λ(a), and show that they are the least completely
semiprime left k-ideals of a semiring S containing a, where S is a distributive lat-
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tice of left k-Archimedean semirings. Finally, we characterize the semirings which

are the disjoint union of principal left k-radicals via the transitive relation
l

−→∞.

2. Preliminaries and prerequisites

A semiring (S,+, ·) is an algebra with two binary operations + and · such that
both the additive reduct (S,+) and the multiplicative reduct (S, ·) are semigroups
and such that the following distributive laws hold: for x, y ∈ S,

x(y + z) = xy + xz and (x+ y)z = xz + yz.

Thus the semirings can be viewed as a common generalization of both rings and
distributive lattices. Throughout this paper, unless otherwise stated, the author
studies the semirings (S,+, ·) such that (S,+) is a semilattice. If A is a nonempty
subset of a semiring S, then A is called completely semiprime if for x ∈ S, x2 ∈ A
implies x ∈ A. Let S be a semiring and φ 6= A ⊆ S. Then the k-closure of A,
denoted by A, and is defined by A = {x ∈ S | x+ a1 = a2 for some ai ∈ A}, and
the k-radical of A by

√
A = {x ∈ S | (∃ n ∈ N) xn ∈ A}. Then by definition,

one has A ⊆
√
A, and also A ⊆ A since the additive reduct (S,+) is a semilattice.

Moreover, if (A,+) is a subsemigroup of (S,+) then A = {x ∈ S | x + a = a
for some a ∈ A}. An ideal A of S is said to be a k-ideal of S if and only if
A = A. An equivalence relation ρ on a semiring is said to be a congruence
on S if ρ is compatible with both the operations, that is, for a, b, c ∈ S, aρb
implies (a+ c)ρ(b+ c), acρbc, and caρcb, or equivalently, for a, b, c, d ∈ S, aρb and
cρd imply (a + c)ρ(b + d), acρbd. A congruence ρ on a semiring S is said to be
rectangular idempotent congruence if for all a, b ∈ S, a2ρa and abaρa, and right
zero idempotent congruence if for all a, b ∈ S, abρb. A semiring S is said to be a
right zero idempotent semiring if for all a, b ∈ S one has ab = b. In particular,
a2 = a for every a ∈ S. Let C be a class of semirings, and we refer to semirings in
C as C-semirings. A semiring S is called a right zero idempotent of C-semirings if
there exists a congruence ρ on S such that the quotient semiring S/ρ is right zero
idempotent, and each ρ-class is a semiring in C.

For information regarding undefined concepts in semigroup theory one can
approach [4], and [3] for undefined notions in semiring theory. Here we state a
lemma which is going to be used frequently throughout the paper.

Lemma 2.1. [7] Let S be a semiring.
(a) For a, b ∈ S the following statements are equivalent:

(i) there are si ∈ S such that b+ s1a = s2a.
(ii) there are s ∈ S such that b+ sa = sa.

(b) If a, b, c ∈ S such that c+ xa = xa and d+ yb = yb for some x, y ∈ S, then
there is some z ∈ S such that c+ za = za and d+ zb = zb.
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3. Union of principal left k-radicals
In this section, we study the principal left k-radicals of a semiring emerging from
left k-radicals. We find the semirings in which the principal left k-radicals are
the least completely semiprime k-ideals, and these are the very semirings which
are distributive lattices of left k-Archimedean subsemirings[7]. We also study the
semirings which are union of principal left k-radicals.

Let S be a semiring. As in [5], the author defined the division relation |l on S by:
a|lb⇔ b ∈ Sa and the relation l−→ on S is defined as: a l−→ b⇔ bn ∈ Sa for some

n ∈ N. For n ∈ N,
l
−→n denotes the nth power of l−→, and a

l
−→∞ b ⇔ a

l
−→n b

for some n ∈ N. In general,
l

−→∞ is not symmetric relation on S. Let S be a
semiring, a ∈ S and n ∈ N. In [6], the following sets have been introduced:

Λ(a) = {x ∈ S | a
l

−→∞ x}, Λn(a) = {x ∈ S | a
l

−→n x}.

For every a ∈ S the set Λ(a) is called a principal left k-radical in S containing a.
Here we state some basic characteristics of the above mentioned sets:

Lemma 3.1. [6] Let S be a semiring and a, b, c ∈ S. Then

1. Λ1(a) =
√
Sa.

2. Λn(a) ⊆
√
SΛn(a) = Λn+1(a), n ∈ N.

3. Λ(a) =
⋃

n∈N Λn(a).

Lemma 3.2. Let S be a semiring.

1. For a, b ∈ S, one has (a+ b)
l−→ a.

2. If x, y, s1, s2, t1, t2, u, v and m,n ∈ N such that xm+s1u = t1u and yn+s2v =
t2v, then there exist k ∈ N and s ∈ S such that xk+su = su and yk+sv = sv.

3. If x, y ∈ Λ(a), then there exists n ∈ N such that a l−→
n

x and a l−→
n

y.

Proof. (1): Since (S,+, ·) is a semilattice, a2 + a2 = a2. Adding ab on both sides
we get a2 + a(a+ b) = a(a+ b) ∈ S(a+ b), whence (a+ b)

l−→ a.
(2): If m = n, then the result follows from Lemma 2.1. Otherwise, suppose
m < n. Then from xm + s1u = t1u, multiplying both sides on the left by xn−m we
get xn + xn−ms1u = xn−mt1u. Now by Lemma 2.1, there exists s ∈ S such that
xn + su = su and yn + sv = sv, the latter arises from the relation yn + s2v = t2v.
(3): Let x, y ∈ Λ(a). Then there are m,n ∈ N such that a l−→

m

x and a l−→
n

y.
If m = n, then we are done. If not, then suppose that m < n. Since the relation
l−→ is reflexive, we have a l−→

m

x
l−→ x

l−→ ....
l−→︸ ︷︷ ︸

(n−m)times

x. This implies a l−→
n

x.
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In the following we give two useful properties of a completely semiprime left
k-ideal of a semiring S.

Lemma 3.3. Let S be a semiring, L a completely semiprime left k-ideal of S and
n ∈ N. Then

1. an ∈ L implies that a ∈ L.

2.
√
L = L.

Proof. (1): The statement is true for n = 1. Also, if a2 ∈ L, then a ∈ L, since L
is completely semiprime. So the statement is true for n = 2. Suppose it is true for
some k(≥ 2) ∈ N, i.e. ak ∈ L implies that a ∈ L. Now let ak+1 ∈ L. Since L is a
left k-ideal, ak−1ak+1 ∈ L, that is, (ak)2 = a2k ∈ L so that ak ∈ L, whence a ∈ L.
Thus by induction, we have (1).
(2): For a completely semiprime left k-ideal L of a semiring S, and a ∈

√
L one

gets an + l = l for some n ∈ N and l ∈ L so that an ∈ L = L, and so a ∈ L,
applying (1). Thus

√
L ⊆ L. The opposite inclusion is always true. Consequently,√

L = L.

In a semiring S, for a, b, c ∈ S, a + b = c implies an + bn = cn for all n ∈ N.
This observation was frequently used in [1]. Here too, we take this opportunity to
make the tasks easy in the following two presentations. In the following lemma
we study all those semirings which are distributive lattices of left k-Archimedean
semirings, and in these semirings, one has ab ∈

√
Sa for any a, b ∈ S[7]. This

equivalent condition we use here in the statement.

Lemma 3.4. Let S be a semiring and ab ∈
√
Sa for every pair a, b ∈ S. Then

Λ(a) is the least completely semiprime left k-ideal of S containing a.

Proof. Let x, y ∈ Λ(a) and s ∈ S such that s + x = y. Then a
l

−→∞ y =

(s + x)
l−→ s, by (1) of Lemma 3.2 yielding a

l
−→∞ s. Consequently s ∈ Λ(a).

Thus Λ(a) is a k-set. Again, by (3) of Lemma 3.2, there exists n ∈ N such that

a
l
−→n x and a

l
−→n y. Then there are xi, yi(i = 1, 2, ..., n − 1) in S such that

a
l−→ x1

l−→ x2
l−→ ...

l−→ xn−2
l−→ xn−1

l−→ x and a l−→ y1
l−→ y2

l−→ ...
l−→

yn−2
l−→ yn−1

l−→ y. Now by (2) of Lemma 3.2, their exist m ∈ N and s ∈ S
such that xm1 + sa = sa, xmi+1 + sxi = sxi(i = 1, 2, ..., n− 2), xm + sxn−1 = sxn−1
and ym1 + sa = sa, ymi+1 + syi = syi(i = 1, 2, ..., n − 2), ym + syn−1 = syn−1. Now
(x+ y)m = ym + ux+ xv +

∑k
i=1 uixvi for some u, v, ui, vi ∈ S. Adding syn−1 on

both sides we get (x+y)m + syn−1 = syn−1 +ux+xv+
∑k

i=1 uixvi. From this we
write (x+y)m+2+(x+y)s(x+yn−1)(x+y) = (x+y)s(x+yn−1)(x+y)+(x+y)u(x+

yn−1)(x+y)+(x+y)(x+yn−1)v(x+y)+
∑k

i=1(x+y)ui(x+yn−1)vi(x+y). Now for
w = (x+y)s+(x+y)+(x+y)u+v(x+y)+

∑k
i=1(x+y)ui+

∑k
i=1 vi(x+y)+x+y

we obtain (x+y)m+2 +w(x+yn−1)w = w(x+yn−1)w since (S,+) is a semilattice.
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By hypothesis, w(x + yn−1)w ∈
√
Sw(x+ yn−1) so that there exists k ∈ N such

that [w(x+ yn−1)w]k ∈ Sw(x+ yn−1), and thus (x+ y)k(m+2) ∈ Sw(x+ yn−1) ⊆
S(x+ yn−1). This shows that (x+ yn−1)

l−→ (x+ y). Applying the same process
one gets (x+a)

l−→ (x+y1)
l−→ (x+y2)

l−→ ...
l−→ (x+yn−2)

l−→ (x+yn−1), and

so (x+a)
l

−→∞ (x+y). Similarly a
l

−→∞ a and a
l

−→∞ x give (a+a)
l

−→∞ (a+x),

i.e. a
l

−→∞ (a + x). Then by transitivity of
l

−→∞ we get a
l

−→∞ (x + y), i.e.

x+y ∈ Λ(a). Let c ∈ S. Then a
l

−→∞ x and since x l−→ cx, one has cx ∈ Λ(a). Let

x ∈ S such that x2 ∈ Λ(a). Then a
l

−→∞ x2
l−→ x implies x ∈ Λ(a). Thus Λ(a) is

a completely semiprime left k-ideal of S containing a, since l−→ is reflexive. Let L
be a completely semiprime left k-ideal of S containing a. Then Sa ⊆ SL ⊆ L, so
Λ1(a) =

√
Sa ⊆

√
L = L, by Lemma 3.3. As an induction hypothesis, we assume

that Λn(a) ⊆ L. Then SΛn(a) ⊆ SL ⊆ L, so Λn+1(a) =
√
SΛn(a) ⊆

√
L = L, by

Lemmas 3.1 and 3.3. Hence by induction Λ(a) =
⋃

n∈N Λn(a) ⊆ L. Consequently,
Λ(a) is the least completely semiprime left k-ideal of S.

The author in [6] introduced the following equivalence relation λ on a semiring
S, which is induced from the principal left k-radicals:

aλb⇔ Λ(a) = Λ(b).

Finally, we are in a position to characterize the semirings which are union of

principal left k-radicals via the relation
l

−→∞, where we see that the decomposition

occurs if and only if
l

−→∞ is symmetric.

Theorem 3.5. Let S be a semiring S such that ab ∈
√
Sa for all a, b ∈ S holds.

Then the following conditions are equivalent on S:

1. λ is a rectangular idempotent congruence on S;

2. λ is a right zero idempotent congruence on S;

3. abc
l

−→∞ ac;

4. aba
l

−→∞ a;

5. ab
l

−→∞ b for all a, b ∈ S;

6. S is a disjoint union of its principal left k-radicals;

7. The relation
l

−→∞ is symmetric on S.
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Proof. (1) ⇒ (3): For a, b, c ∈ S, by hypothesis, one has cλcac. Since λ is
left compatible with multiplication, one gets (ab)cλ(ab)cac. This can be written
as abcλ(abca)cλac, as again by hypothesis, a(bc)aλa. Since λ is transitive, one
has abcλac. Then by definition of λ, we have Λ(abc) = Λ(ac). Consequently,

abc
l

−→∞ ac by the definition of principal left k-radicals.

(3) ⇒ (4): For a, b ∈ S one has aba
l

−→∞ a2
l−→ a, that is, aba

l
−→∞ a, since

l
−→∞ is transitive on S.
(4) ⇒ (5): For a, b ∈ S, bab ∈ Sab implies that ab l−→ bab. Also bab

l
−→∞ b.

Then by transitivity of
l

−→∞, one gets ab
l

−→∞ b.

(5) ⇒ (2): For a ∈ S, by hypothesis, one gets a2
l

−→∞ a. Also a
l

−→∞ a2.
These two relations imply a ∈ Λ(a2) and a2 ∈ Λ(a) so that Λ(a) ⊆ Λ(a2) and
Λ(a2) ⊆ Λ(a) because of the least virtue of Λ(a), for any a ∈ S. Thus one gets
Λ(a2) = Λ(a), whence a2λa.

Now consider a, b ∈ S such that aλb and c ∈ S. By hypothesis, ac
l

−→∞ c so
that one has c ∈ Λ(ac). By Lemma 3.4, Λ(c) is the least completely semiprime left
k-ideal of S, and so c ∈ Λ(ac) implies Λ(c) ⊆ Λ(ac). The opposite inclusion follows
since Λ(c) is a left k-ideal of S, and ac ∈ Λ(c). Thus Λ(ac) = Λ(c). Replacing a

by b in ac
l

−→∞ c, and proceeding as above one gets Λ(bc) = Λ(c). Consequently,
Λ(ac) = Λ(bc), that is, acλbc. Also, Λ(ca) = Λ(a) = Λ(b) = Λ(cb) so that caλcb.

Again, we have Λ(a) = Λ(b) so that a ∈ Λ(b) and b ∈ Λ(a). By definition of

the principal left k-radical, one has b
l

−→∞ a and a
l

−→∞ b. Then there exist

m,n ∈ N such that b
l

−→m a and a
l
−→n b. For the first relation, there are

k ∈ N and s, ai(i = 1, 2, ...,m − 1) ∈ S such that ak1 + sb = sb, akr + sar−1 =
sar−1(r = 2, 3, ...,m − 1), ak + sam−1 = sam−1. Also, (a1 + c)k = ak1 + uc +
cv +

∑q
i=1 uicvi for some u, v, ui, vi ∈ S. Then as in the proof of Lemma 3.4, one

gets (b + c)
l−→ (a1 + c). Similarly, from the remaining equalities we can obtain

(a1 + c)
l−→ (a2 + c), (a2 + c)

l−→ (a3 + c),..., (am−1 + c)
l−→ (a + c). From

these, one obtains (b+ c)
l

−→∞ (a+ c) so that (a+ c) ∈ Λ(b+ c). Then one gets

Λ(a+c) ⊆ Λ(b+c). Similarly, starting with a
l
−→n b one can get (b+c) ∈ Λ(a+c)

so that Λ(b+c) ⊆ Λ(a+c). Thus Λ(a+c) = Λ(b+c). Consequently, (a+c)λ(b+c).
Also, since Λ(b) is the least completely semiprime left k-ideal, for a ∈ S, abλb,

and so Λ(ab) ⊆ Λ(b). Now, by hypothesis, one has ab
l

−→∞ b, yielding b ∈ Λ(ab).
Then Λ(b) ⊆ Λ(ab). Thus we have the equality Λ(ab) = Λ(b) so that abλb. Thus
λ is a right zero idempotent congruence on S.
(2) ⇒ (6): Let S be a right zero idempotent I of semirings Si, i ∈ I, which are
λ-classes of S. Let a ∈ S, then a ∈ Si = λa for some i ∈ I. Let x ∈ λa, c ∈ S.
Then Λ(x) = Λ(a), and so Λ(cx) = Λ(x) = Λ(a) so that cxλa, whence cx ∈ λa.
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Thus λa is a left ideal of S.
Also for x ∈ S and x2 ∈ λa, one has Λ(x) = Λ(x2) = Λ(a), since λ is idem-

potent. This yields xλa so that x ∈ λa. Thus λa is a completely semiprime
left ideal of S containing a. Hence Λ(a) ⊆ λa. The opposite inclusion follows
from the fact that whenever b ∈ λa, aλb implies Λ(a) = Λ(b). Consequently,
S =

⋃
a∈S Λ(a),Λ(a) = Si, and S′is are disjoint.

(6) ⇒ (7): Let S be a disjoint union of its principal left k-radicals, that is,

S =
⋃

a∈S Λ(a), and Λ(a) 6= Λ(b) for a 6= b. Let a, b ∈ S such that a
l

−→∞ b.
Then b ∈ Λ(a), that yields Λ(a) ∩ Λ(b) 6= φ. This implies Λ(a) = Λ(b) so that

a ∈ Λ(b). Then one gets b
l

−→∞ a by the definition of
l

−→∞. Consequently, the

relation
l

−→∞ is symmetric on S.
(7)⇒ (5): Since (S,+, ·) is a semilattice, for a, b ∈ S, one has ab+ ab = ab which

implies ab ∈ Sb then we have b l−→ ab. Since l−→⊆
l

−→∞, one gets b
l

−→∞ ab and

since
l

−→∞ is symmetric, one gets ab
l

−→∞ b.
(2)⇒ (1): Suppose that λ be a right zero idempotent congruence on S. Then, for
a, b ∈ S one has a(ba)λbaλa. Also, a2 = aaλa. Consequently, λ is a rectangular
idempotent congruence on S.

Remark. We see that a semiring which is a distributive lattice of left k-Archimedean
semirings, can also be treated as a semiring which is a right zero idempotent of
principal left k-radicals that follows from the proof of (2)⇒ (6). Since the relation

l
−→∞ is reflexive and transitive on S by definition, the last theorem shows that
the decomposition of semirings into principal left k-radicals makes the relation

l
−→∞ an equivalence relation on S. Moreover, the

l
−→∞-classes are exactly the

λ-classes, and
l

−→∞= λ on S.

References
[1] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings

with a semilattice additive reduct, Semigroup Forum, 80 (2010), 293− 301.

[2] M. Ćirić and S. Bogdanović, Semilattice decompositions of semigroups, Semi-
group Forum, 52 (1996), 119− 132.

[3] U. Hebisch and H.J. Weinert, Semirings: Algebraic theory and applications in
computer science, World Scientific, Singapore, (1998).

[4] J.M. Howie, Fundamentals in semigroup theory, Clarendon, Oxford, (1995).

[5] T.K. Mondal, Semirings which are distributive lattices of weakly left k-
Archimedean semirings, Quasigroups and Related Systems, 27(2) (2019), 309−316.

[6] T.K. Mondal, Distributive lattices of λ-simple semirings, Iranian J. Math. Sci. and
Informatics, accepted.



148 T. K. Mondal

[7] T.K. Mondal and A.K. Bhuniya, On distributive lattices of left k-Archimedean
semirings, Mathematica, 62(85), No. 2 (2020), 179− 188.

Received May 30, 2021
Department of Mathematics
Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya
Hatgobindapur - 713407
Purba Bardhaman, West Bengal
India
E-mail: tapumondal@gmail.com


