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Weak multiplication semimodule
Sunil Kumar Maity, Mridul Kanti Sen and Sabnam Swomin

Abstract. The objective of this article is to introduce the concept of weak mutiplication semi-
module and study several properties which are generalization of corresponding results for multi-
plication modules. We characterize full prime subsemimodules and full maximal subsemimodules
and finally it is shown that in a finitely generated faithful weak multiplication semimodule, every

proper full subsemimodule is contained in a maximal full subsemimodule.

1. Introduction

In 1988, EI-Bast [1] investigated some useful properties of multiplication module.
The study of the multiplication semimodule has been carried out by many authors.
Semimodules over semirings appear in many areas of mathematics and it has many
applications in the area of computer science as well as in cryptography (see [5]).
In this paper, we consider inverse semimodule over a semiring R such that R is a
distributive lattice of rings. Let M be an R-semimodule such that (Rm : M) # 0
for all m € M. Then M is called a weak multiplication semimodule if for each full
subsemimodule N of M there exists a full ideal I of R such that N = IM. Some
basic definitions and preliminaries are discussed in Section 2 and finally in Section
3, we study some properties of finitely generated faithful weak multiplication R-
semimodules.

2. Definitions and preliminaries

A semiring (R,+,-) is a type (2,2) algebra whose semigroup reducts (R, +) and
(R, ) are connected by distributivity, i.e., a(b+¢) = ab+ac and (b+c)a = ba+ca
for all a,b,c € R. We call a semiring (R, +, ) additive regular if for every element
a € R there exists an element « € R such that a + « + a = a. Additive regular
semirings were first studied by J. Zeleznekow [12] in 1981. We call a semiring
(R,+,-) an additive inverse semiring if (R,+) is an inverse semigroup, i.e., for
each a € R there exists a unique element a’ € R such that a + a’ + a = a and
a +a+a = a. Additive inverse semirings were first studied by Karvellas [3]
in 1974. Throughout the paper, E1(R) will always denote the set of all additive
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idempotents of the semiring R. A subsemiring I of a semiring (R, +, ) is called
an ideal of R if RI, IR C I. An ideal I of a semiring R is called a full ideal if
E*(R) C I. For each ideal I of a semiring R, the k-closure I of I is defined by
I={a€R:a+a; = ay for some ay, az € I} and is an ideal of R satisfying I C T
and I = I. An ideal I of a semiring R is called a k-ideal of R if and only if I = I
holds.

Let (M, +) be a commutative semigroup and (R, +, -) be a semiring with iden-
tity. Then M is called a left R-semimodule or simply an R-semimodule if there
exists a mapping R x M — M, written as (r,a) — ra, for all r € R and for
all a € M, satisfying (i) r(m +n) = rm + rn, (ii) (r + s)m = rm + sm, (iii)
r(sm) = (rs)m and (iv) Im = m for all r,s € R and m,n € M. An R-semimodule
M is said to be an inverse semimodule [11], if M is an inverse semigroup. A
subset S of an R-semimodule M is said to be a k-set if a,a + b € S implies
that b € S. A subsemimodule N of an R-semimodule M is said to be full if
E(M) C N, where E(M) is the set of all idempotents of the semigroup M. A
subsemimodule N of an R-semimodule M is said to be a k-subsemimodule of
M if for a,a + b € N for some b € M imply that b € N. For any subsemi-
module N of an R-semimodule M, the k-closure of N, denoted by N, is defined
by N={m € M : m+n, = n, forsomen,,n, € N}. One can easily prove
that a subsemimodule N of an R-semimodule M is a k-subsemimodule if and
only if N = N. Let N and K be two subsemimodules of M. Then the set
{a € R:aK C N} is denoted by (N : K). It is easy to verify that (N : K) is
an ideal of R. Thus (E(M) : M) is a full ideal of R. An R-semimodule M is
said to be faithful if (F(M) : M) = E*(R). A proper subsemimodule N of M
is said to be a prime subsemimodule if for any r € R, m € M, rm € N implies
either m € N or r € (N : M). A proper subsemimodule N of M is said to be a
maximal subsemimodule if it is not properly contained in any other proper sub-
semimodule of M. A semimodule M is said to be a multiplication semimodule if
every subsemimodule of M is of the form IM, for some ideal I of R. Let M an
R-semimodule such that (Rm : M) # () for all m € M. Then M is called a weak
multiplication semimodule if for each full subsemimodule N of M there exists a
full ideal I of R such that N = I M.

We need the following results.

Theorem 2.1. (cf. [4]) A semiring R is a distributive lattice of skew-rings if and
only if R is an additive inverse semiring satisfying the following conditions:
(1) a+d =d +a,
(1) ala+d)=a+d,
(t73) a(b+b) = (b+V)a,
(iv) a+alb+?¥)=a, for all a,b € R.
Theorem 2.2. (cf. [6]) Let M be an inverse R-semimodule. Then

(i) (ra) =rd for allr € R and for alla € M.
(it) ea € E(M) for all e € ET(R) and for all a € M.
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(#i1) ra € E(M) implies that ra = ru for some u € E(M).
If moreover, R is such that (R,+) is an inverse semigroup, then
(i) (ra) =r'a and ra =1r'a’ for all v € R and for all a € M.
(v) ra € E(M) implies that ra = eu for some e € ET(R), u € E(M).

Furthermore, if M is an inverse R-semimodule, then
EM)={m+m':me M}
and for all m,n € M, m= (m'), (m+n) =n"+m'.

Example 2.3. Let S be a ring and D be a distributive lattice. With respect to
component wise addition and multiplication R = S x D is an additive commutative
additive inverse semiring satisfying conditions (i3), (i74) and (iv) of Theorem 2.1
and (R, +) is an inverse R-semimodule.

Throughout this paper, all semirings are assumed to be additive as well as
multiplicative commutative which are distributive lattices of rings. This means R
denotes an additive commutative and multiplicative commutative additive inverse
semiring satisfying the conditions (i7) and (iv) of Theorem 2.1. Also, assume that
R contains an identity element 1 such that 1 ¢ ET(R) and all semimodules are
inverse semimodules with M # E(M).

3. Weak-multiplication semimodule

An R-module M is said to be a multiplication module [1] if every submodule N of

M is of the form N = IM for some ideal I of R. Multiplication modules play an

important role in the study of modules theory. Similar to module theory, in [10],

the authors defined multiplication semimodule and studied some of its properties.
First we recall the definition of multiplication semimodule from [10].

Definition 3.1. An R-semimodule M is said to be a multiplication semimodule if
for each subsemimodule N of M there exists an ideal I of R such that N = I M.

Theorem 3.2. (cf. [10]) An R-semimodule M is a multiplication semimodule if
and only if for each m € M there exists an ideal I of R such that Rm = I M.

Recall that a subsemimodule N of an R-semimodule M is said to be full if
E(M) C N. For an R-semimodule M, let .Z (M) denote the set of all full subsemi-
modules of M. In [8], we proved that £ (M) forms a modular lattice. Therefore,
to study the structure of an R-semimodule, full subsemimodules play a crucial
role.

Definition 3.3. Let M be an R-semimodule satisfying the property (Rm : M) # ()
for all m € M. Then M is said to be a weak multiplication semimodule if for each
full subsemimodule N of M, there exists a full ideal I of R such that N = IM.
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Remark 3.4. Let M be a multiplication R-semimodule. Then for every m € M,
we have Rm is a subsemimodule of M and hence there is an ideal I of R such
that Rm = IM. This implies I C (IM : M) = (Rm : M) and thus (Rm : M) # ()
for all m € M. Moreover, for any full subsemimodule N of M, there exists an
ideal J of R such that N = JM and thus J + ET(R) is a full ideal of R such that
N = (J+ ET(R))M. Therefore, it follows that every multiplication semimodule
is a weak multiplication semimodule. But the converse is not true in general. This
follows from the following example.

Example 3.5. We consider the set R = {0,1,a,b}. Then (R,+,-) is a semiring,
where addition and multiplication are defined by the following Cayley tables :

>~ = O+
Q= OO
— = O | =
> O~ Q2
S O = o o
Q= O

o O O OO
QR Ol
O O Ol
> O o Ol

Now, it is easy to verify that M = {0,a,b} is a subsemimodule of the R-
semimodule R and thus M is an R-semimodule with E(M) = {0,b}. Also, it
is easy to check that (Rm : M) # 0 for all m € M. Clearly, N = {0,a} is a
subsemimodule of M. One can easily verify that there is no ideal I of R such
that N = IM. Hence M is not a multiplication semimodule. Now, E(M) and
M itself are only two full subsemimodules of M. Moreover, E(M) = {0,b}M
and M = RM. Therefore, M is a weak multiplication R semimodule but not a
multiplication semimodule.

Theorem 3.6. Let M be an R-semimodule such that (Rm : M) # 0 for all
m € M. Then M is a weak multiplication semimodule if and only if for each
m € M there exists a full ideal I of R such that Rm + E(M) =IM + E(M).

Proof. First suppose that an R-semimodule M is a weak multiplication semimod-
ule. Now, for each m € M, we have Rm + E(M) is a subsemimodule of M. We
first prove that Rm + FE(M) is full. For this, let x € F(M). Since (Rm : M) # 0,
letr € (Rm:M). Thenz =12 = (1+r+r)z =z+(r+r)z. Alsor € (Rm: M)
implies rz = sm for some s € R and so (rz)’ = (sm)’. Then by Theorem 2.2, we
have 'z = s'm. Therefore, x = z+ (s + s)m = (s + s')m +x € Rm + E(M).
Hence E(M) C Rm+ E(M) and thus Rm + E(M) is a full subsemimodule of M.
Consequently, there exists a full ideal I of R such that Rm + E(M) = IM. Now
Rm+EM)=IM CIM+EM)C Rm+EM)+E(M)=Rm+ E(M) implies
Rm+ E(M)=1IM+ E(M).

Conversely, suppose that the given condition holds. To show M is a weak
multiplication semimodule, let N be a full subsemimodule of M. Then for each
m € N, there exists a full ideal I,,, of R such that Rm + E(M) = I, M + E(M).
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Let I = Z I,,. Then I is a full ideal of R such that N = IM. Consequently, M

meN
is a weak multiplication semimodule. O

Lemma 3.7. Let M be a weak multiplication R-semimodule. If N is a full sub-
semimodule of M, then N = (N : M)M.

Proof. Let N be a full subsemimodule of M. Then N = IM, for some full ideal
I of R. Let r € I. Then for any m € M, we have rm € IM = N and so
r € (N : M). This implies I C (N : M). Therefore N =IM C (N : M)M C N.
Hence N = (N : M)M. O

Lemma 3.8. Homomorphic image of a weak multiplication semimodule is again
a weak multiplication semimodule.

Proof. Let M and M’ be R-semimodules and f : M — M’ be an R-epimorphism.
Also, let M be a weak multiplication R-semimodule. To show M’ is a weak
multiplication R-semimodule, we prove that M’ satisfies the property (Rz : M') #
0 for all z € M'. If 2 € M’, we have z = f(x) for some x € M. Since M
is a weak multiplication semimodule, by definition we have (Rz : M) # (). Let
r € (Rx: M) and so rM C Rzx. Then f(rM) C f(Rx) implies rf(M) C Rf(x).
Thus rM' = rf(M) C Rf(x) = Rz. Hence r € (Rz : M’). Consequently,
(Rz : M') # () for all z € M’. The remaining part of this proof is trivially
holds. O

Definition 3.9. Let M be an R-semimodule and I be an ideal of R. We define
Ty(M) = {m € M: there exists r € I such that (1+7")m € E(M)}.

Remark 3.10. One can easily prove that T7(M) is a subsemimodule of M.

Lemma 3.11. Let M be a weak multiplication R-semimodule. Then for every
mazximal ideal P of R either M = Tp(M) or there exist g € P and m € M such
that (14 ¢ )M C Rm + E(M).

Proof. Clearly PM is a subsemimodule of M. First let M = PM. In this case,
we show that M = Tp(M). For this, let m € M. Now, from the proof of Theorem
3.6, it follows that Rm + E(M) is a full subsemimodule of M. Since M is a weak
multiplication semimodule, so there exists a full ideal A of R such that Rm +
E(M)= AM. Then Rm+ E(M) =AM = APM = PAM = P(Rm+ E(M)) C
Pm+ E(M) and thus m = pm+m, for some p € P and m; € E(M). This implies
(I+p)m=(p+p)m+mi € E(M) and thus m € Tp(M). Hence M = Tp(M).
On the other hand, if M # PM, then there exists an element x € M such that
x ¢ PM. Now, for the full subsemimodule Rx+ E(M), from the definition of weak
multiplication semimodule, there is a full ideal B of R such that Rx+FE (M) = BM.
Then B SZ P, otherwise BM C PM and so « € Rx + E(M) = BM C PM which
is not possible. Now B + P is an ideal of R such that for all p, € P, we have
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p, = (p, +P') +p, € B+ P, since B is a full ideal of R. Hence P C B + P. We
claim that P # B + P. On the contrary if P = B + P, then for all b € B, we
have b = b+ b(p, +p.,) € B+ P = P for any p, € P and thus B C P which is a
contradiction. Since P is maximal, we must have B+ P = R and hence 1 = b+ ¢
for some b € B and ¢ € P. This implies 1+ ¢ =b+q+¢ € B+ ET(R) and thus
(1+¢)M C BM + ET(R)M = Rx + E(M). O

Definition 3.12. An R-semimodule M is said to be faithful if (E(M) : M) =
E*(R).

Lemma 3.13. Let M be a faithful weak multiplication R-semimodule such that
E(M) is a k-set. Then IMNJM = (INJ)M for any two full k-ideals I,J of R.

Proof. Clearly, INJ)M C IMNJM. For the reverse inclusion, let z € IMNJM
and x ¢ (INJ)M. We consider K = {r ¢ R:rz € (INJ)M}. Then 1 ¢ K
and thus K is a proper ideal of R. Then there exists a maximal ideal P of R such
that K C P. We claim that « ¢ Tp(M). Otherwise there exists p € P such that
(14+pYx e E(M) C(INJ)M andso 1+p’ € K C Pimplies1 =1+p+p’ € P and
thus P = R, which is a contradiction. Then by Lemma 3.11, there exist elements
m € M and p, € P such that (14 p/)M C Rm + E(M). Now z € IM implies
r=rm +r,m,+---+r,m,, wherer €I and m, € M. Then (1+p/)z = (1+
p;)(rlm1 +rym,+- '+Tkmk) = T1(1+pll)m1 —|—7’2(1+p’1)m2 +.. '+rk(1+p/1)mk =
ro(sym4t)+r,(s,m4t,)+.. .41 (s,m+t,) =r, s,;m+r,s,m+...+r, s, m+n €
Im + E(M), where s; € R and n = r,t, +r,t, +...+r.t, € E(M). Similarly,
(14+p))x € Jm+E(M). So (1+p) )z = aym+ny = agm+ng, where a; € I,az € J
and ni,ny € E(M). Then (a1 + aj)m +ny = (a, +a,)m +n, € E(M). Since
E(M) is a k-set, it follows that (a1 + ay)m € E(M). Now (1+p!)(a1 +a5)M =
(a1 + az)(1+p )M C (a1 + ap)(Rm + E(M)) € E(M). So (1+p)(a1 +a5) €
(E(M) : M) = ET(R) C J. Therefore (1+p/)a; + (14 p/)(az + ay) = (1 +
P’ )(ar + ay) + (1 4 p!)ag € J. This implies (1 +p/)ay € J as J is a k-ideal. So
(1+p)z=Q0+p)(am+n) e INJ)M+ EM) C (INJ)M and therefore,
1+ p’l)2 € K C P and hence 1 € P, which is a contradiction. Therefore,
IMNJM C(INJ)M and thus IMNJM = (INJ)M. O

Theorem 3.14. Let M be a finitely generated weak multiplication R-semimodule.
Then for every maximal ideal P of R, there exist m € M, ¢ € P+ ET(R) such
that (1+¢ )M C Rm + E(M).

Proof. Since M is finitely generated, there exists a positive integer n and elements
m; € M such that M = Rmi + Rmg + --- + Rm,,. Let P be a maximal ideal
of R. Then by Lemma 3.11, we have either M = Tp(M) or there exist ¢ € P,
m € M such that (1 + ¢')M C Rm + E(M). Suppose M = Tp(M). Then
for each ¢ = 1,2,...,n, there exists p; € P such that (1 + p})m; € E(M). Let
q=1+[1+p})---(1+p))) =141 +p, for some p, € P. Then q € P+ E*(R).
Now (1+¢)m;=[1+1 4+ 1 +p)) (14 pl,)]m; implies

(1+¢)M =(1+¢')(Rm1+ Rma + -+ Rm,,) € E(M) C Rm + E(M),
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for any m. Thus, there exist m € M, g € P + ET(R) such that (1+ ¢')M C
Rm + E(M). O

Lemma 3.15. Let M be a faithful weak multiplication R-semimodule such that
E(M) is a k-set. Then PM is a full prime subsemimodule of M for every full
prime k-ideal P of R such that PM # M.

Proof. Clearly, PM is a full subsemimodule of M. To show PM is prime, let
ar € PM for some a« € R and x € M. Let a ¢ P. We consider the ideal
K ={reR:rze PM}. If K # R, then there exist a maximal ideal @ of R
such that K C (). Note that o ¢ To(M), otherwise, there exist ¢ € @ such that
(1+¢)x e E(M)C PM and so 1+ ¢ € K C @ which is not possible. Then by
Lemma 3.11, there exist ¢ € @ and m € M such that (1+ ¢ )M C Rm + E(M).
Now (1+¢)r € 14+ ¢)M C Rm+ E(M). So (14 ¢')x = sm + my, for some
s € Rand my € E(M). Also (14 ¢')ax € (14 ¢)PM C Pm+ E(M) and so
(14 ¢')ax = pm + my, for some p € P and mg € E(M). Therefore, asm + am; =
pm + mgy. Thus (as +p')m + amy € E(M). Since E(M) is k-set, we must have
(as+p")Ym € E(M). Now we claim that (1 + ¢')(E(M) : m) C (E(M) : M). To
show this, let (1+¢')r € (1+ ¢ )(E(M) : m) for some r € (E(M) : m). Then for
anyu e M, (1+q¢)ue(1+q¢)M C Rm+ E(M). So we have (1+ ¢ )u =tm+w
for some t € R and w € E(M). Then (1+ ¢')ru = r(tm + w) € E(M). Therefore,
(1+¢)E(M):m) C (E(M): M) and hence (14 ¢')(as+p') € (E(M) : M) =
Et(R)CP. Thus (1+¢)as+(14+¢)(p+p') € P and so (1+¢')as € P, since P
is a k-set. Hence s € P and thus (1 + ¢')x € PM which gives (1 + ¢’) € K which
is a contradiction. Thus K = R and so x € PM. Therefore, ax € PM implies
either a € P or x € PM. Consequently, PM is a prime subsemimodule of M. [

Following Lemma 3.7 and Lemma 3.15, we have the following two results.

Theorem 3.16. Let M be a faithful weak multiplication R-semimodule such that
E(M) is a k-set. If P be a full prime k-ideal of R such that PM # M, then
(PM : M)=P.

Theorem 3.17. Let N be a proper full k-subsemimodule of a faithful weak mul-
tiplication R-semimodule M such that E(M) is a k-set. Then the following state-
ments are equivalent :
(i) N is prime.
(i1) (N : M) is full prime k-ideal of R.
(tit) N = PM for some full prime k-ideal P of R with (E(M) : M) C P.

Lemma 3.18. If M s a finitely generated faithful weak multiplication R-semimodule
and A, B are two full ideals of R such that AM C BM. Then A C B.

Proof. To complete the proof, it is enough to prove that A C E;Let a € A be
an element such that a ¢ B. We consider K = {r € R: ra € B}. Then K is
a proper full ideal of R and hence there exists a maximal ideal P of R such that
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K C P. Since M is finitely generated, so by Theorem 3.14, there exist m € M and
p € P+ ET(R) such that (1+p )M C Rm+ E(M). Since K is full, it follows that
p € P. Now (1+p')am € (14 p')AM C (1+p)BM = B(1+p')M C B(Rm +
E(M)) C Bm+ E(M) implies ((14p')a+b")m € E(M) for some b € B and hence
(1+p)a+b € (E(M): m). Now we show that (1+p")(E(M) : m) C (E(M) : M).
For this, let (14 p)r € (14 p')(E(M) : m) for some r € (E(M) : m). Now for
any z € M, (1+p)x € (1+p )M C Rm + E(M) implies (1 + p')z = tm +w
for some w € E(M) and t € R. Then (1 + p)rz = r(tm + w) € E(M) and
hence (1 4 p')r € (E(M) : M). Therefore, (1 4+ p)(E(M) : m) C (E(M) :
M) and thus (1 + p")((1 +p')a+ V') € (E(M) : M) = ET(R) C B. Hence
(1+p)2a+ (1+p)(b+V) € B. This implies (1+p')%a € B,so (1+p')2 € K C P
and 1+ p’ € P, a contradiction. This contradiction ensures that ¢ € B and hence
A C B. Consequently, A C B. O

Lemma 3.19. Let M be a finitely generated faithful weak multiplication R-semi-

module. If I is a full ideal of R, then (IM : M) = 1I.

Proof. Clearly, I C (IM : M). For the reverse inclusion, let (IM : ) Q. Then
QM C IM and hence by Lemma 3.18, we have (IM : M) = @ C I. Consequently,
(IM : M) =T1. O

Theorem 3.20. Let M be a finitely generated faithful weak multiplication R-
semimodule and K be a proper subset of M. Then K is a full mazimal subsemi-
module of M if and only if there exists a full maximal ideal P of R such that
K=PM.

Proof. First suppose that there exists a full maximal ideal P of R such that K =
PM. Then clearly K is a full subsemimodule of M. To show K is maximal, let
N be any other proper subsemimodule of M such that K C N. As M is a weak
multiplication R-semimodule, we have N = I M, for some full ideal I of R. Since
N # M, it follows that I # R. Now, K C N implies PM C IM and hence
by Lemma 3.18, we have P C P C I. Now we prove that I # R. Otherwise
l1€Tlandsol+aclforsomeac I. This gives 1 =1+ a+a € I and thus
I = R, a contradiction. Since P is a full maximal ideal of R, it follows that P = I.
Therefore N = IM C IM = PM = Kand hence K = N. Consequently, K is a
full maximal subsemimodule of M.

Conversely, let K be a full maximal subsemimodule of M. Then by Lemma 3.7,
it follows that K = (K : M)M. Let @ = (K : M). Then @ is a full ideal of R. To
complete the proof, it remains to show that @ is a full maximal ideal of R. For this,
let @, be any other proper full ideal of R such that Q C Q,. Then (K : M) C Q,.
This gives K € Q,M. If QM = M, then (Q,M : M) = (M : M) = R.
This implies R = (Q, M : M) C (Q M : M) C @,, by Lemma 3.19 and hence
@, = R. This implies 1 € Q,, , 14+¢q € @, for some q, € Q,. Therefore,
1=1+¢, +q¢ €Q, and thus Ql = R, a contradiction. This contradiction ensures
that @, M is a proper full subsemimodule of M such that K C Q, M. Since K
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is a full maximal subsemimodule of M, we must have K = @, M. From this it
follows that @, C (Q1M : M) = (K : M) = @ and thus Q = @,. Hence Q is a
full maximal ideal of R. Consequently, K = QM , where @ is a full maximal ideal
of R. O

Theorem 3.21. Let M be a finitely generated faithful weak multiplication R-
semimodule. Then every proper full subsemimodule of M is contained in a mazximal

Sfull subsemimodule of M.

Proof. Let N be a proper full subsemimodule of M. Then by Lemma 3.7, we
have N = (N : M)M. Let I = (N : M). Then I is a full ideal of R and hence
contained in a maximal ideal P of R. By Theorem 3.20, it follows that PM is a
full maximal subsemimodule of M and N = IM C PM. Hence every proper full
subsemimodule of M is contained in a full maximal subsemimodule of M. O

Theorem 3.22. Let M be an R-semimodule such that (Rm : M) # ( for all
m € M. Then every full maximal subsemimodule of M is a prime subsemimodule

of M.

Proof. Let N be a full maximal subsemimodule of M. To show N is prime, let
rz € N for some r € R, z € M such that x ¢ N. Now we show that N C N + (z).
For this, let y € N. Since (Rm : M) # () for all m € M, let s € (Rx : M). Then
y=1l-y=1+s+s)y=y+(s+s")y. Also, s € (Rx : M) implies sy = tx for
some t € R and so s’y = t’x. Then we have y = y+ (t+t')z € N + (x). Therefore,
N C N+ (z). Again,z =z +2'+x € N+ (x) and ¢ N. Consequently, N is
properly contained in N + (z). Since N is a maximal subsemimodule of M, we
have N + (x) = M. Therefore, rN + r(xz) = rM. Since rx € N, it follows that
rM C N and hence r € (N : M). Consequently, N is a prime subsemimodule of
M. O
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