Normal subgyrogroups of certain gyrogroups

Soheila Mahdavi, Ali Reza Ashrafi and Mohammad Ali Salahshour

Abstract

Suppose that (T, \star) is a groupoid with a left identity such that each element $a \in$ T has a left inverse. Then T is called a gyrogroup if and only if (i) there exists a function $g y r: T \times T \longrightarrow \operatorname{Aut}(T)$ such that for all $a, b, c \in T, a \star(b \star c)=(a \star b) \star g y r[a, b] c$, where $\operatorname{gyr}[a, b] c=\operatorname{gyr}(a, b)(c)$; and $(i i)$ for all $a, b \in T, \operatorname{gyr}[a, b]=\operatorname{gyr}[a \star b, b]$. In this paper, the structure of normal subgyrogroups of certain gyrogroups are investigated.

1. Introduction

Gyrogroup theory started in 1988 by Ungar [5] in which he proved that the set of all 3-dimensional relativistically admissible velocities possesses a group-like structure in which the group-like operation is given by the standard relativistic velocity composition law. In another paper [6], he has shown that the Thomas rotation, in turn, gives rise to a non-associative group-like structure for the set of relativistically admissible velocities. Nowadays this non-associative group-like structure is known as a gyrogroup. In an algebraic language, if (T, \star) is a groupoid with a left identity such that each element $a \in T$ has a left inverse. Then T is called a gyrogroup if and only if (i) there exists a function $g y r: T \times T \longrightarrow A u t(T)$ such that for all $a, b, c \in T, a \star(b \star c)=(a \star b) \star \operatorname{gyr}[a, b] c$, where $\operatorname{gyr}[a, b] c=\operatorname{gyr}(a, b)(c)$; and (ii) for all $a, b \in T, \operatorname{gyr}[a, b]=\operatorname{gyr}[a \star b, b]$. It is easy to see that it is a generalization of a group by defining the gyroautomorphisms to be the identity automorphism.

Let T be a gyrogroup and let H be a non-empty subset of T. If H is a group under the induced operation of T, then H is called a subgroup of T, and if H is a gyrogroup under the induced operation of T, then we use the term subgyrogroup for H. If H is the kernel of a homomorphism from T to another gyrogroup, then H is called a normal subgyrogroup of T; see [2] for more details.

Suppose that $\left(H^{+}, \oplus\right)$ is a gyrogroup, H^{-}is a non-empty set disjoint from H^{+} such that $\left|H^{+}\right|=\left|H^{-}\right|$and $\varphi: H^{+} \longrightarrow H^{-}$is bijective. Set $G=H^{+} \cup H^{-}$and $a^{-}=\varphi\left(a^{+}\right)$. For arbitrary elements $a^{\varepsilon}, b^{\delta} \in G$, we define:

$$
a^{\epsilon} \otimes b^{\delta}= \begin{cases}a^{+} \oplus b^{+} & \epsilon=\delta=+ \text { or } \epsilon=\delta=- \\ \left(a^{+} \oplus b^{+}\right)^{-} & \epsilon=+, \delta=- \text { or } \epsilon=-, \delta=+\end{cases}
$$

The function gyr $_{G}: G \times G \longrightarrow A u t(G)$ is given by

[^0]\[

\operatorname{gyr}_{G}\left[a^{\epsilon}, b^{\delta}\right]\left(t^{\gamma}\right)=\left\{$$
\begin{array}{ll}
{g y r_{H^{+}}}\left[a^{+}, b^{+}\right]\left(t^{+}\right) & \gamma=+ \\
\left({g y r_{H^{+}}}^{\left.\left[a^{+}, b^{+}\right]\left(t^{+}\right)\right)^{-}}\right. & \gamma=-
\end{array}
$$,\right.
\]

where a^{ϵ}, b^{δ} and t^{γ} are arbitrary elements of G.
The aim of this paper is to prove the following theorem:
Theorem 1.1. A non-empty subset M of G is a normal subgyrogroup if and only if one of the following conditions are satisfied:

1. $M \unlhd H^{+}$;
2. there exists $N^{+} \unlhd H^{+}$and $L^{-} \subseteq H^{-}$such that $M=N^{+} \cup L^{-}$and for each $x, y \in L^{-}, x \otimes y \in N^{+}$. Also, $N^{+} \cap L^{+}=\emptyset$ and $N^{+} \cup L^{+} \unlhd H^{+}$, where $L^{+}=\varphi^{-1}\left(L^{-}\right) ;$
3. $M=N^{+} \cup N^{-}$such that $N^{+} \unlhd H^{+}$and $N^{-}=\varphi\left(N^{+}\right)$.

Throughout this paper, our notations are standard and can be taken mainly from the books [7, 9]. We refer the readers to consult the survey article [8] for a complete history of gyrogroups. Our calculations are checked by the aid of GAP [10].

2. Preliminary results

The following result of Suksumran [2, Theorem 32] is crucial throughout this paper:
Theorem 2.1. Let (T, \star) be a gyrogroup containing a subgyrogroup H. Then H is normal in T if and only if for all $a, b \in T, a \star(H \star b)=(a \star b) \star H=(a \star H) \star b$.

The present authors [1] obtained the structure of the subgyrogroups of G which is important in finding its normal subgyrogroups.

Theorem 2.2. With above notations, (G, \otimes) is a gyrogroup. A non-empty subset B of G is a subgyrogroup of (G, \otimes) if and only if one of the following three conditions hold:
(a) $B \leq H^{+}$;
(b) there exists $A^{+} \leq H^{+}$and $L^{-} \subseteq H^{-}$such that $B=A^{+} \cup L^{-}$and for each $x, y \in L^{-}, x \otimes y \in A^{+}$. Moreover, $A^{+} \cap L^{+}=\emptyset$ and $A^{+} \cup L^{+} \leq H^{+}$, where $L^{+}=\varphi^{-1}\left(L^{-}\right) ;$
(c) $B=A^{+} \cup A^{-}$such that $A^{+} \leq H^{+}$and $A^{-}=\varphi\left(A^{+}\right)$.

Corollary 2.3. The gyrogroup (G, \otimes) satisfies the following conditions:

1. $H^{+} \unlhd G$.
2. If $N^{+} \unlhd H^{+}$, then $N^{+} \unlhd G$

Proof. The case (1) is [1, Theorem 2.10]. To prove (2), we assume that a^{ϵ}, b^{δ} are arbitrary elements of G. We consider two cases as follows:
(i) $\epsilon=\delta=+$ or $\epsilon=\delta=-$. By definition,

$$
\begin{aligned}
& \left(a^{+} \otimes b^{+}\right) \otimes N^{+}=\left(a^{+} \oplus b^{+}\right) \otimes N^{+}=\left(a^{+} \oplus b^{+}\right) \oplus N^{+} \\
& \left(a^{+} \otimes N^{+}\right) \otimes b^{+}=\left(a^{+} \oplus N^{+}\right) \otimes b^{+}=\left(a^{+} \oplus N^{+}\right) \oplus b^{+} \\
& a^{+} \otimes\left(N^{+} \otimes b^{+}\right)=a^{+} \otimes\left(N^{+} \oplus b^{+}\right)=a^{+} \oplus\left(N^{+} \oplus b^{+}\right) \\
& \left(a^{-} \otimes b^{-}\right) \otimes N^{+}=\left(a^{+} \oplus b^{+}\right) \otimes N^{+}=\left(a^{+} \oplus b^{+}\right) \oplus N^{+} \\
& \left(a^{-} \otimes N^{+}\right) \otimes b^{-}=\left(a^{+} \oplus N^{+}\right) \otimes b^{-}=\left(a^{+} \oplus N^{+}\right) \oplus b^{+} \\
& a^{-} \otimes\left(N^{+} \otimes b^{-}\right)=a^{-} \otimes\left(N^{+} \oplus b^{+}\right)^{-}=a^{+} \oplus\left(N^{+} \oplus b^{+}\right)
\end{aligned}
$$

Note that by our assumption, $N^{+} \unlhd H^{+}$and so for all $a^{+}, b^{+} \in H^{+}$,

$$
\left(a^{+} \oplus b^{+}\right) \oplus N^{+}=\left(a^{+} \oplus N^{+}\right) \oplus b^{+}=a^{+} \oplus\left(N^{+} \oplus b^{+}\right)
$$

This shows that

$$
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}=\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right)
$$

(ii) $(\epsilon, \delta)=(+,-)$ or $(-,+)$. By definition,

$$
\begin{aligned}
& \left(a^{+} \otimes b^{-}\right) \otimes N^{+}=\left(a^{+} \oplus b^{+}\right)^{-} \otimes N^{+}=\left(\left(a^{+} \oplus b^{+}\right) \oplus N^{+}\right)^{-} \\
& \left(a^{+} \otimes N^{+}\right) \otimes b^{-}=\left(a^{+} \oplus N^{+}\right) \otimes b^{-}=\left(\left(a^{+} \oplus N^{+}\right) \oplus b^{+}\right)^{-} \\
& a^{+} \otimes\left(N^{+} \otimes b^{-}\right)=a^{+} \otimes\left(N^{+} \oplus b^{+}\right)^{-}=\left(a^{+} \oplus\left(N^{+} \oplus b^{+}\right)\right)^{-} \\
& \left(a^{-} \otimes b^{+}\right) \otimes N^{+}=\left(a^{+} \oplus b^{+}\right)^{-} \otimes N^{+}=\left(\left(a^{+} \oplus b^{+}\right) \oplus N^{+}\right)^{-} \\
& \left(a^{-} \otimes N^{+}\right) \otimes b^{+}=\left(a^{+} \oplus N^{+}\right)^{-} \otimes b^{+}=\left(\left(a^{+} \oplus N^{+}\right) \oplus b^{+}\right)^{-} \\
& a^{-} \otimes\left(N^{+} \otimes b^{+}\right)=a^{-} \otimes\left(N^{+} \oplus b^{+}\right)=\left(a^{+} \oplus\left(N^{+} \oplus b^{+}\right)\right)^{-}
\end{aligned}
$$

By our assumption, $N^{+} \unlhd H^{+}$and so for all $a^{+}, b^{+} \in H^{+}$,

$$
\left(a^{+} \oplus b^{+}\right) \oplus N^{+}=\left(a^{+} \oplus N^{+}\right) \oplus b^{+}=a^{+} \oplus\left(N^{+} \oplus b^{+}\right)
$$

Since ϕ is bijective,

$$
\left(\left(a^{+} \oplus b^{+}\right) \oplus N^{+}\right)^{-}=\left(\left(a^{+} \oplus N^{+}\right) \oplus b^{+}\right)^{-}=\left(a^{+} \oplus\left(N^{+} \oplus b^{+}\right)\right)^{-}
$$

This shows that

$$
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}=\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right)
$$

This proves that $N^{+} \unlhd G$, as desired.

3. Proof of the main result

The aim of this section is to prove the main result of this paper. To do this, we assume that M is a normal subgyrogroup of the gyrogroup G introduced in Section 1. By Theorem 2.1, for each $a^{\epsilon}, b^{\delta} \in G=H^{+} \cup H^{-}$,

$$
\begin{equation*}
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes M=\left(a^{\epsilon} \otimes M\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(M \otimes b^{\delta}\right) \tag{1}
\end{equation*}
$$

By Theorem 2.2, one of the following conditions hold:
(a) $M \leq H^{+}$;
(b) there exists $N^{+} \leq H^{+}$and $L^{-} \subseteq H^{-}$such that $M=N^{+} \cup L^{-}$and for all $x, y \in L^{-}, x \otimes y \in N^{+}$. Also, $N^{+} \cap L^{+}=\emptyset$ and $N^{+} \cup L^{+} \leq H^{+}$, where $L^{+}=\varphi^{-1}\left(L^{-}\right) ;$
(c) $M=N^{+} \cup N^{-}$such that $N^{-}=\varphi\left(N^{+}\right)$.

Suppose that the condition (a) is satisfied. Then by considering $\delta=\varepsilon=+$ in Equation (1), $M \unlhd H^{+}$. If condition (b) is satisfied, then $H^{+} \cap M=\left(H^{+} \cap N^{+}\right) \cup$ $\left(H^{+} \cap L^{-}\right)=H^{+} \cap N^{+}=N^{+}$. Note that by our assumption, M is normal in G and by Corollary $2.3(1), H^{+} \unlhd G$. Hence, by [3, Theorem 2.2], $N^{+} \unlhd G$, which implies that $N^{+} \unlhd H^{+}$. To complete this part, it is enough to prove that $N^{+} \cup L^{+} \unlhd H^{+}$, where $L^{+}=\varphi^{-1}\left(L^{-}\right)$. By our assumption, $M=N^{+} \cup L^{-} \unlhd G$ and by Equation (1), $\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes\left(N^{+} \cup L^{-}\right)=\left(a^{\epsilon} \otimes\left(N^{+} \cup L^{-}\right)\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(\left(N^{+} \cup L^{-}\right) \otimes b^{\delta}\right)$, where a^{ϵ}, b^{δ} are arbitrary elements of G. Therefore,

$$
\begin{align*}
\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}\right) \cup\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes L^{-}\right) & =\left(\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}\right) \cup\left(\left(a^{\epsilon} \otimes L^{-}\right) \otimes b^{\delta}\right) \\
& =\left(a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right)\right) \cup\left(a^{\epsilon} \otimes\left(L^{-} \otimes b^{\delta}\right)\right) . \tag{2}
\end{align*}
$$

We know that $N^{+} \unlhd H^{+}$, and by Corollary $2.3(2), N^{+} \unlhd G$. So for all $a^{\epsilon}, b^{\delta} \in G$,

$$
\begin{equation*}
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}=\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right) \tag{3}
\end{equation*}
$$

Since $N^{+} \cap L^{-}=\emptyset$, by Equations (2) and (3),

$$
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes L^{-}=\left(a^{\epsilon} \otimes L^{-}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(L^{-} \otimes b^{\delta}\right)
$$

In the previous equation, we set $\epsilon=\delta=+$, then

$$
\left(a^{+} \otimes b^{+}\right) \otimes L^{-}=\left(a^{+} \otimes L^{-}\right) \otimes b^{+}=a^{+} \otimes\left(L^{-} \otimes b^{+}\right) .
$$

By definition, $\left(\left(a^{+} \oplus b^{+}\right) \oplus L^{+}\right)^{-}=\left(\left(a^{+} \oplus L^{+}\right) \oplus b^{+}\right)^{-}=\left(a^{+} \oplus\left(L^{+} \oplus b^{+}\right)\right)^{-}$. Since φ is bijective, $\left(a^{+} \oplus b^{+}\right) \oplus L^{+}=\left(a^{+} \oplus L^{+}\right) \oplus b^{+}=a^{+} \oplus\left(L^{+} \oplus b^{+}\right)$. By the last equality and Equation (3), $\left(\left(a^{+} \oplus b^{+}\right) \oplus N\right) \cup\left(\left(a^{+} \oplus b^{+}\right) \oplus L^{+}\right)=\left(\left(a^{+} \oplus N\right) \oplus b^{+}\right) \cup\left(\left(a^{+} \oplus L^{+}\right) \oplus b^{+}\right)$ $=\left(a^{+} \oplus\left(N \oplus b^{+}\right)\right) \cup\left(a^{+} \oplus\left(L^{+} \oplus b^{+}\right)\right)$and hence $\left(a^{+} \oplus b^{+}\right) \oplus\left(N^{+} \cup L^{+}\right)=$ $\left(a^{+} \oplus\left(N^{+} \cup L^{+}\right)\right) \oplus b^{+}=a^{+} \oplus\left(\left(N^{+} \cup L^{+}\right) \oplus b^{+}\right)$. Then $N^{+} \cup L^{+} \unlhd H^{+}$. This
completes the proof of (2). To prove (3), we have to show that $N^{+} \unlhd H^{+}$. By condition (c), $H^{+} \cap M=\left(H^{+} \cap N^{+}\right) \cup\left(H^{+} \cap N^{-}\right)=H^{+} \cap N^{+}=N^{+}$. By our assumption, $M \unlhd G$ and by Corollary 2.3, $H^{+} \unlhd G$. We now apply [3, Theorem $2.2]$ to deduce that $N^{+} \unlhd G$. Therefore, $N^{+} \unlhd H^{+}$, as desired.

Conversely, we assume that M satisfies one of the conditions (1), (2) or (3) in Theorem 1.1. It will be shown that $M \unlhd G$. To do this, the following three cases will be considered:
(A) $M \unlhd H^{+}$. By Corollary $2.3(2), M \unlhd G$.
(B) There exists $N^{+} \unlhd H^{+}$and $L^{-} \subseteq H^{-}$such that $M=N^{+} \cup L^{-}$and for all $x, y \in L^{-}, x \otimes y \in N^{+}$.Also, $N^{+} \cap L^{+}=\emptyset$ and $N^{+} \cup L^{+} \unlhd H^{+}$, where $L^{+}=\varphi^{-1}\left(L^{-}\right)$. Since $N^{+}, N^{+} \cup L^{+} \unlhd H^{+}$, by Corollary 2.3(2), $N^{+}, N^{+} \cup L^{+} \unlhd G$. Then by Theorem 2.1, for all $a^{\epsilon}, b^{\delta} \in G$,

$$
\begin{equation*}
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}=\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right) \tag{4}
\end{equation*}
$$

and $\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes\left(N^{+} \cup L^{+}\right)=\left(a^{\epsilon} \otimes\left(N^{+} \cup L^{+}\right)\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(\left(N^{+} \cup L^{+}\right) \otimes b^{\delta}\right)$. Hence, $\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}\right) \cup\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes L^{+}\right)=\left(\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}\right) \cup\left(\left(a^{\epsilon} \otimes L^{+}\right) \otimes b^{\delta}\right)$ $=\left(a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right)\right) \cup\left(a^{\epsilon} \otimes\left(L^{+} \otimes b^{\delta}\right)\right)$. Since $N^{+} \cap L^{+}=\emptyset$, by Equation (4) and the last equality,

$$
\begin{equation*}
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes L^{+}=\left(a^{\epsilon} \otimes L^{+}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(L^{+} \otimes b^{\delta}\right) \tag{5}
\end{equation*}
$$

Since φ is bijective,

$$
\begin{equation*}
\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes L^{+}\right)^{-}=\left(\left(a^{\epsilon} \otimes L^{+}\right) \otimes b^{\delta}\right)^{-}=\left(a^{\epsilon} \otimes\left(L^{+} \otimes b^{\delta}\right)\right)^{-} . \tag{6}
\end{equation*}
$$

Now, we claim that for all $a^{\epsilon}, b^{\delta} \in G$, the following equality holds:

$$
\begin{equation*}
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes L^{-}=\left(a^{\epsilon} \otimes L^{-}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(L^{-} \otimes b^{\delta}\right) \tag{7}
\end{equation*}
$$

We consider two cases as follows:
(B1) $(\epsilon, \delta)=(+,+)$ or $(-,-)$. By definition,

$$
\begin{aligned}
& \left(a^{+} \otimes b^{+}\right) \otimes L^{-}=\left(a^{+} \oplus b^{+}\right) \otimes L^{-}=\left(\left(a^{+} \oplus b^{+}\right) \oplus L^{+}\right)^{-} \\
& \left(a^{+} \otimes L^{-}\right) \otimes b^{+}=\left(a^{+} \oplus L^{+}\right)^{-} \otimes b^{+}=\left(\left(a^{+} \oplus L^{+}\right) \oplus b^{+}\right)^{-} \\
& a^{+} \otimes\left(L^{-} \otimes b^{+}\right)=a^{+} \otimes\left(L^{+} \oplus b^{+}\right)^{-}=\left(a^{+} \oplus\left(L^{+} \oplus b^{+}\right)\right)^{-} \\
& \left(a^{-} \otimes b^{-}\right) \otimes L^{-}=\left(a^{+} \oplus b^{+}\right) \otimes L^{-}=\left(\left(a^{+} \oplus b^{+}\right) \oplus L^{+}\right)^{-} \\
& \left(a^{-} \otimes L^{-}\right) \otimes b^{-}=\left(a^{+} \oplus L^{+}\right)^{-} \otimes b^{-}=\left(\left(a^{+} \oplus L^{+}\right) \oplus b^{+}\right)^{-} \\
& a^{-} \otimes\left(L^{-} \otimes b^{-}\right)=a^{-} \otimes\left(L^{+} \oplus b^{+}\right)=\left(a^{+} \oplus\left(L^{+} \oplus b^{+}\right)\right)^{-} .
\end{aligned}
$$

In this case, by Equation (6), our claim is true.
(B2) $(\epsilon, \delta)=(+,-)$ or $(-,+)$. By definition,

$$
\begin{aligned}
& \left(a^{+} \otimes b^{-}\right) \otimes L^{-}=\left(a^{+} \oplus b^{+}\right)^{-} \otimes L^{-}=\left(a^{+} \oplus b^{+}\right) \oplus L^{+} \\
& \left(a^{+} \otimes L^{-}\right) \otimes b^{-}=\left(a^{+} \oplus L^{+}\right)^{-} \otimes b^{-}=\left(a^{+} \oplus L^{+}\right) \oplus b^{+} \\
& a^{+} \otimes\left(L^{-} \otimes b^{-}\right)=a^{+} \otimes\left(L^{+} \oplus b^{+}\right)=a^{+} \oplus\left(L^{+} \oplus b^{+}\right) \\
& \left(a^{-} \otimes b^{+}\right) \otimes L^{-}=\left(a^{+} \oplus b^{+}\right)^{-} \otimes L^{-}=\left(a^{+} \oplus b^{+}\right) \oplus L^{+} \\
& \left(a^{-} \otimes L^{-}\right) \otimes b^{+}=\left(a^{+} \oplus L^{+}\right) \otimes b^{+}=\left(a^{+} \oplus L^{+}\right) \oplus b^{+} \\
& a^{-} \otimes\left(L^{-} \otimes b^{+}\right)=a^{-} \otimes\left(L^{+} \oplus b^{+}\right)^{-}=a^{+} \oplus\left(L^{+} \oplus b^{+}\right)
\end{aligned}
$$

Also, in this case, by Equation (5), our claim is true.
By Equations (4) and (7), we can see that $\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}\right) \cup\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes L^{-}\right)$ $=\left(\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}\right) \cup\left(\left(a^{\epsilon} \otimes L^{-}\right) \otimes b^{\delta}\right)=\left(a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right)\right) \cup\left(a^{\epsilon} \otimes\left(L^{-} \otimes b^{\delta}\right)\right)$, which is equivalent to $\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes\left(N^{+} \cup L^{-}\right)\right)=\left(\left(a^{\epsilon} \otimes\left(N^{+} \cup L^{-}\right)\right) \otimes b^{\delta}\right)=$ $\left(a^{\epsilon} \otimes\left(\left(N^{+} \cup L^{-}\right) \otimes b^{\delta}\right)\right)$ or $\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes M\right)=\left(\left(a^{\epsilon} \otimes M\right) \otimes b^{\delta}\right)=\left(a^{\epsilon} \otimes\left(M \otimes b^{\delta}\right)\right)$. This proves that $M \unlhd G$.
(C) $M=N^{+} \cup N^{-}$such that $N^{+} \unlhd H^{+}$and $N^{-}=\varphi\left(N^{+}\right)$. By Theorem 2.2, $M \leq G$. Since $N^{+} \unlhd H^{+}$, by Corollary 2.3, $N^{+} \unlhd G$. By Theorem 1.1, for all $a^{\epsilon}, b^{\delta} \in G$,

$$
\begin{equation*}
\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}=\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right) \tag{8}
\end{equation*}
$$

Since φ is bijective, $\left(\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}\right)^{-}=\left(\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta}\right)^{-}=\left(a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right)\right)^{-}$. Similar to the part B, we can show that $\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{-}=\left(a^{\epsilon} \otimes N^{-}\right) \otimes b^{\delta}$ $=a^{\epsilon} \otimes\left(N^{-} \otimes b^{\delta}\right)$. By the last equality and Equation (8), $\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{+}$ $\cup\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes N^{-}=\left(a^{\epsilon} \otimes N^{+}\right) \otimes b^{\delta} \cup\left(a^{\epsilon} \otimes N^{-}\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(N^{+} \otimes b^{\delta}\right)$ $\cup a^{\epsilon} \otimes\left(N^{-} \otimes b^{\delta}\right)$ and so $\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes\left(N^{+} \cup N^{-}\right)=\left(a^{\epsilon} \otimes\left(N^{+} \cup N^{-}\right)\right) \otimes b^{\delta}$ $=a^{\epsilon} \otimes\left(\left(N^{+} \cup N^{-}\right) \otimes b^{\delta}\right)$. We now apply our assumption to deduce that $\left(a^{\epsilon} \otimes b^{\delta}\right) \otimes M=\left(a^{\epsilon} \otimes M\right) \otimes b^{\delta}=a^{\epsilon} \otimes\left(M \otimes b^{\delta}\right)$, which means that $M \unlhd G$.

Table 1: The Cayley Table of $K(1)$ such that $A=(4,5)(6,7)$.

\oplus	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	gyr $_{K}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{0}$	0	1	2	3	4	5	6	7	$\mathbf{0}$	I							
$\mathbf{1}$	1	0	3	2	5	4	7	6	$\mathbf{1}$	I							
$\mathbf{2}$	2	3	0	1	6	7	4	5	$\mathbf{2}$	I	I	I	I	A	A	A	A
$\mathbf{3}$	3	2	1	0	7	6	5	4	$\mathbf{3}$	I	I	I	I	A	A	A	A
$\mathbf{4}$	4	5	6	7	0	1	2	3	$\mathbf{4}$	I	I	A	A	I	I	A	A
$\mathbf{5}$	5	4	7	6	1	0	3	2	$\mathbf{5}$	I	I	A	A	I	I	A	A
$\mathbf{6}$	6	7	4	5	3	2	1	0	$\mathbf{6}$	I	I	A	A	A	A	I	I
$\mathbf{7}$	7	6	5	4	2	3	0	1	$\mathbf{7}$	I	I	A	A	A	A	I	I

4. Concluding remarks

In this paper, the normal subgyrogroups of a class of finite gyrogroups is characterized. In this section, we check our main result by a Gap code on three examples
that is introduced in [1]. Our Gap code is accessible from the authors upon request. Suppose that $K(1)$ is the gyrogroup such that its Cayley table is given in Table 1. We apply our method to construct the gyrogroups $K(2)$ from $K(1)$ and hence $|K(1)|=8$ and $|K(2)|=16$. Our calculations show that all normal

Table 2: The addition Table of $K(2)$.

\oplus	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\mathbf{0}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathbf{1}$	1	0	3	2	5	4	7	6	9	8	11	10	13	12	15	14
$\mathbf{2}$	2	3	0	1	6	7	4	5	10	11	8	9	14	15	12	13
$\mathbf{3}$	3	2	1	0	7	6	5	4	11	10	9	8	15	14	13	12
$\mathbf{4}$	4	5	6	7	0	1	2	3	12	13	14	15	8	9	10	11
$\mathbf{5}$	5	4	7	6	1	0	3	2	13	12	15	14	9	8	11	10
$\mathbf{6}$	6	7	4	5	3	2	1	0	14	15	12	13	11	10	9	8
$\mathbf{7}$	7	6	5	4	2	3	0	1	15	14	13	12	10	11	8	9
$\mathbf{8}$	8	9	10	11	12	13	14	15	0	1	2	3	4	5	6	7
$\mathbf{9}$	9	8	11	10	13	12	15	14	1	0	3	2	5	4	7	6
$\mathbf{1 0}$	10	11	8	9	14	15	12	13	2	3	0	1	6	7	4	5
$\mathbf{1 1}$	11	10	9	8	15	14	13	12	3	2	1	0	7	6	5	4
$\mathbf{1 2}$	12	13	14	15	8	9	10	11	4	5	6	7	0	1	2	3
$\mathbf{1 3}$	13	12	15	14	9	8	11	10	5	4	7	6	1	0	3	2
$\mathbf{1 4}$	14	15	12	13	11	10	9	8	6	7	4	5	3	2	1	0
$\mathbf{1 5}$	15	14	13	12	10	11	8	9	7	6	5	4	2	3	0	1

Table 3: The gyration table of $K(2)$ such that $A=(4,5)(6,7)(12,13)(14,15)$.

$\mathbf{g y r}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
0	I															
$\mathbf{1}$	I															
$\mathbf{2}$	I	I	I	I	A	A	A	A	I	I	I	I	A	A	A	A
$\mathbf{3}$	I	I	I	I	A	A	A	A	I	I	I	I	A	A	A	A
$\mathbf{4}$	I	I	A	A												
$\mathbf{5}$	I	I	A	A												
$\mathbf{6}$	I	I	A	A	A	A	I	I	I	I	A	A	A	A	I	I
$\mathbf{7}$	I	I	A	A	A	A	I	I	I	I	A	A	A	A	I	I
$\mathbf{8}$	I															
$\mathbf{9}$	I															
$\mathbf{1 0}$	I	I	I	I	A	A	A	A	I	I	I	I	A	A	A	A
$\mathbf{1 1}$	I	I	I	I	A	A	A	A	I	I	I	I	A	A	A	A
$\mathbf{1 2}$	I	I	A	A												
$\mathbf{1 3}$	I	I	A	A												
$\mathbf{1 4}$	I	I	A	A	A	A	I	I	I	I	A	A	A	A	I	I
$\mathbf{1 5}$	I	I	A	A	A	A	I	I	I	I	A	A	A	A	I	I

subgyrogroups of $K(1)$ and $K(2)$ are in Table 4, respectively. In both cases, these normal subgyrogroups can be obtained from our main result. A nondegenerate gyrogroup is a gyrogroup that is not a group. In Table 4, the nondegenerate normal subgyrogroups are bolded.

Acknowledgement. The work of the second named author is partially supported by the University of Kashan under grant no. 364988/67.

Table 4: The normal subgyrogroups of $K(1)$ and $K(2)$.

Gyrogroup	The normal subgyrogroups
K(1)	$\{0\},\{0,1\},\{0,1,2,3\},\{0,1,4,5\},\{0,1,6,7\},\{\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6}, \mathbf{7}\}$
K(2)	$\{0\},\{0,1\},\{0,1,2,3\},\{0,1,4,5\},\{0,1,6,7\},\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}\}$, $\{0,8\},\{0,9\},\{0,1,8,9\},\{0,1,10,11\},\{0,1,12,13\},\{0,1,14,15\}$, $\{0,1,2,3,8,9,10,11\},\{\mathbf{0 , 1 , 2 , 3 , 1 2 , 1 3}, \mathbf{1 4}, \mathbf{1 5}\}$ $\{0,1,4,5,8,9,12,13\},\{\mathbf{0}, \mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{1 0 , 1 1 , 1 4 , 1 5}\}$, $\{0,1,6,7,8,9,14,15\},\{\mathbf{0}, \mathbf{1 , 6 , 7}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 3}\},\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{1 3 , 1 4 , 1 5}\}$

References

[1] S. Mahdavi, A.R. Ashrafi, M.A. Salahshour, Construction of new gyrogroups and the structure of their subgyrogroups, Alg. Struc. Appl., 8 (2021), no. 2, $17-30$.
[2] T. Suksumran, The algebra of gyrogroups: Cayley's theorem, Lagrange's theorem, and isomorphism theorems, Essays in Mathematics and its Applications, 369-437, Springer, 2016.
[3] T. Suksumran, Special subgroups of gyrogroups: Commutators, nuclei and radical, Math. Interdiscip. Res., 1 (2016), no. 1, $53-68$.
[4] T. Suksumran, Gyrogroup actions: a generalization of group actions, J. Algebra, 454 (2016), 70 - 91.
[5] A.A. Ungar, The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities, Appl. Math. Lett., 1 (1988), no. 4, 403-405.
[6] A.A. Ungar, Axiomatic approach to the nonassociative group of relativistic velocities, Found. Phys., 2 (1989), no. 2, 199 - 203.
[7] A.A. Ungar, Beyond the Einstein Addition law and its Gyroscopic Thomas Precession. The Theory of Gyrogroups and Gyrovector Spaces, Fundamental Theories of Physics 117, Kluwer Academic Publishers Group, Dordrecht, 2001.
[8] A.A. Ungar, The intrinsic beauty, harmony and interdisciplinarity in Einstein velocity addition law: Gyrogroups and gyrovector spaces, Math. Interdisc. Res., 1 (2016), no. 1, 5-51.
[9] A.A. Ungar, Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces. An Introduction to the Theory of Bi-Gyrogroups and Bi-Gyrovector Spaces, Mathematical Analysis and Its Applications, Academic Press, London, 2018.
[10] The GAP Team, GAP - Groups, Algorithms, and Programming, Version 4.7.5; 2014.

Received July 06, 2021

A.R. Ashrafi, S. Mahdavi

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, 87317-53153, Kashan, I. R. Iran
e-mails: ashrafi@kashanu.ac.ir s.mahdavi@grad.kashanu.ac.ir
M.A. Salahshour

Department of Mathematics, Savadkooh Branch, Islamic Azad University, Savadkooh, I. R. Iran e-mail: salahshour@iausk.ac.ir

[^0]: 2010 Mathematics Subject Classification: 20N05, 20F99, 20D99.
 Keywords: Gyrogroup, normal subgyrogroup, groupoid.

