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Normal subgyrogroups of certain gyrogroups

Soheila Mahdavi, Ali Reza Ashrafi and Mohammad Ali Salahshour

Abstract. Suppose that (T, ?) is a groupoid with a left identity such that each element a ∈
T has a left inverse. Then T is called a gyrogroup if and only if (i) there exists a function
gyr : T × T −→ Aut(T ) such that for all a, b, c ∈ T , a ? (b ? c) = (a ? b) ? gyr[a, b]c, where
gyr[a, b]c = gyr(a, b)(c); and (ii) for all a, b ∈ T , gyr[a, b] = gyr[a ? b, b]. In this paper, the
structure of normal subgyrogroups of certain gyrogroups are investigated.

1. Introduction

Gyrogroup theory started in 1988 by Ungar [5] in which he proved that the set of all
3-dimensional relativistically admissible velocities possesses a group-like structure
in which the group-like operation is given by the standard relativistic velocity
composition law. In another paper [6], he has shown that the Thomas rotation, in
turn, gives rise to a non-associative group-like structure for the set of relativistically
admissible velocities. Nowadays this non-associative group-like structure is known
as a gyrogroup. In an algebraic language, if (T, ?) is a groupoid with a left identity
such that each element a ∈ T has a left inverse. Then T is called a gyrogroup if
and only if (i) there exists a function gyr : T × T −→ Aut(T ) such that for all
a, b, c ∈ T , a ? (b ? c) = (a ? b) ? gyr[a, b]c, where gyr[a, b]c = gyr(a, b)(c); and (ii)
for all a, b ∈ T , gyr[a, b] = gyr[a ? b, b]. It is easy to see that it is a generalization
of a group by defining the gyroautomorphisms to be the identity automorphism.

Let T be a gyrogroup and let H be a non-empty subset of T . If H is a group
under the induced operation of T , then H is called a subgroup of T , and if H is a
gyrogroup under the induced operation of T , then we use the term subgyrogroup
for H. If H is the kernel of a homomorphism from T to another gyrogroup, then
H is called a normal subgyrogroup of T ; see [2] for more details.

Suppose that (H+,⊕) is a gyrogroup, H− is a non-empty set disjoint from H+

such that |H+| = |H−| and ϕ : H+ −→ H− is bijective. Set G = H+ ∪H− and
a− = ϕ(a+). For arbitrary elements aε, bδ ∈ G, we define:

aε ⊗ bδ =

{
a+ ⊕ b+ ε = δ = + or ε = δ = −
(a+ ⊕ b+)− ε = +, δ = − or ε = −, δ = +

.

The function gyrG : G×G −→ Aut(G) is given by
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gyrG[a
ε, bδ](tγ) =

{
gyrH+ [a+, b+](t+) γ = +

(gyrH+ [a+, b+](t+))− γ = −
,

where aε, bδ and tγ are arbitrary elements of G.
The aim of this paper is to prove the following theorem:

Theorem 1.1. A non-empty subset M of G is a normal subgyrogroup if and only
if one of the following conditions are satisfied:

1. M EH+;

2. there exists N+ EH+ and L− ⊆ H− such that M = N+ ∪ L− and for each
x, y ∈ L−, x ⊗ y ∈ N+. Also, N+ ∩ L+ = ∅ and N+ ∪ L+ E H+, where
L+ = ϕ−1(L−);

3. M = N+ ∪N− such that N+ EH+ and N− = ϕ(N+).

Throughout this paper, our notations are standard and can be taken mainly
from the books [7, 9]. We refer the readers to consult the survey article [8] for a
complete history of gyrogroups. Our calculations are checked by the aid of GAP
[10].

2. Preliminary results
The following result of Suksumran [2, Theorem 32] is crucial throughout this paper:

Theorem 2.1. Let (T, ?) be a gyrogroup containing a subgyrogroup H. Then H
is normal in T if and only if for all a, b ∈ T , a ? (H ? b) = (a ? b) ?H = (a ?H) ? b.

The present authors [1] obtained the structure of the subgyrogroups of G which
is important in finding its normal subgyrogroups.

Theorem 2.2. With above notations, (G,⊗) is a gyrogroup. A non-empty sub-
set B of G is a subgyrogroup of (G,⊗) if and only if one of the following three
conditions hold:

(a) B ≤ H+;

(b) there exists A+ ≤ H+ and L− ⊆ H− such that B = A+ ∪ L− and for each
x, y ∈ L−, x⊗ y ∈ A+. Moreover, A+ ∩ L+ = ∅ and A+ ∪ L+ ≤ H+, where
L+ = ϕ−1(L−);

(c) B = A+ ∪A− such that A+ ≤ H+ and A− = ϕ(A+).

Corollary 2.3. The gyrogroup (G,⊗) satisfies the following conditions:

1. H+ EG.

2. If N+ EH+, then N+ EG
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Proof. The case (1) is [1, Theorem 2.10]. To prove (2), we assume that aε, bδ are
arbitrary elements of G. We consider two cases as follows:

(i) ε = δ = + or ε = δ = −. By definition,

(a+ ⊗ b+)⊗N+ = (a+ ⊕ b+)⊗N+ = (a+ ⊕ b+)⊕N+

(a+ ⊗N+)⊗ b+ = (a+ ⊕N+)⊗ b+ = (a+ ⊕N+)⊕ b+

a+ ⊗ (N+ ⊗ b+) = a+ ⊗ (N+ ⊕ b+) = a+ ⊕ (N+ ⊕ b+)
(a− ⊗ b−)⊗N+ = (a+ ⊕ b+)⊗N+ = (a+ ⊕ b+)⊕N+

(a− ⊗N+)⊗ b− = (a+ ⊕N+)− ⊗ b− = (a+ ⊕N+)⊕ b+

a− ⊗ (N+ ⊗ b−) = a− ⊗ (N+ ⊕ b+)− = a+ ⊕ (N+ ⊕ b+)

Note that by our assumption, N+ EH+ and so for all a+, b+ ∈ H+,

(a+ ⊕ b+)⊕N+ = (a+ ⊕N+)⊕ b+ = a+ ⊕ (N+ ⊕ b+).

This shows that

(aε ⊗ bδ)⊗N+ = (aε ⊗N+)⊗ bδ = aε ⊗ (N+ ⊗ bδ).

(ii) (ε, δ) = (+,−) or (−,+). By definition,

(a+ ⊗ b−)⊗N+ = (a+ ⊕ b+)− ⊗N+ = ((a+ ⊕ b+)⊕N+)−

(a+ ⊗N+)⊗ b− = (a+ ⊕N+)⊗ b− = ((a+ ⊕N+)⊕ b+)−

a+ ⊗ (N+ ⊗ b−) = a+ ⊗ (N+ ⊕ b+)− = (a+ ⊕ (N+ ⊕ b+))−

(a− ⊗ b+)⊗N+ = (a+ ⊕ b+)− ⊗N+ = ((a+ ⊕ b+)⊕N+)−

(a− ⊗N+)⊗ b+ = (a+ ⊕N+)− ⊗ b+ = ((a+ ⊕N+)⊕ b+)−

a− ⊗ (N+ ⊗ b+) = a− ⊗ (N+ ⊕ b+) = (a+ ⊕ (N+ ⊕ b+))−

By our assumption, N+ EH+ and so for all a+, b+ ∈ H+,

(a+ ⊕ b+)⊕N+ = (a+ ⊕N+)⊕ b+ = a+ ⊕ (N+ ⊕ b+).

Since φ is bijective,

((a+ ⊕ b+)⊕N+)− = ((a+ ⊕N+)⊕ b+)− = (a+ ⊕ (N+ ⊕ b+))−.

This shows that

(aε ⊗ bδ)⊗N+ = (aε ⊗N+)⊗ bδ = aε ⊗ (N+ ⊗ bδ).

This proves that N+ EG, as desired.
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3. Proof of the main result
The aim of this section is to prove the main result of this paper. To do this, we
assume thatM is a normal subgyrogroup of the gyrogroup G introduced in Section
1. By Theorem 2.1, for each aε, bδ ∈ G = H+ ∪H−,

(aε ⊗ bδ)⊗M = (aε ⊗M)⊗ bδ = aε ⊗ (M ⊗ bδ). (1)

By Theorem 2.2, one of the following conditions hold:

(a) M ≤ H+;

(b) there exists N+ ≤ H+ and L− ⊆ H− such that M = N+ ∪ L− and for all
x, y ∈ L−, x ⊗ y ∈ N+. Also, N+ ∩ L+ = ∅ and N+ ∪ L+ ≤ H+, where
L+ = ϕ−1(L−);

(c) M = N+ ∪N− such that N− = ϕ(N+).

Suppose that the condition (a) is satisfied. Then by considering δ = ε = + in
Equation (1), M EH+. If condition (b) is satisfied, then H+ ∩M = (H+ ∩N+)∪
(H+∩L−) = H+∩N+ = N+. Note that by our assumption,M is normal in G and
by Corollary 2.3(1), H+ EG. Hence, by [3, Theorem 2.2], N+ EG, which implies
that N+ EH+. To complete this part, it is enough to prove that N+ ∪L+ EH+,
where L+ = ϕ−1(L−). By our assumption, M = N+ ∪ L− EG and by Equation
(1), (aε⊗ bδ)⊗ (N+∪L−) = (aε⊗ (N+∪L−))⊗ bδ = aε⊗ ((N+∪L−)⊗ bδ), where
aε, bδ are arbitrary elements of G. Therefore,

((aε ⊗ bδ)⊗N+) ∪ ((aε ⊗ bδ)⊗ L−) = ((aε ⊗N+)⊗ bδ) ∪ ((aε ⊗ L−)⊗ bδ)
= (aε ⊗ (N+ ⊗ bδ)) ∪ (aε ⊗ (L− ⊗ bδ)). (2)

We know that N+EH+, and by Corollary 2.3(2), N+EG. So for all aε, bδ ∈ G,

(aε ⊗ bδ)⊗N+ = (aε ⊗N+)⊗ bδ = aε ⊗ (N+ ⊗ bδ) (3)

Since N+ ∩ L− = ∅, by Equations (2) and (3),

(aε ⊗ bδ)⊗ L− = (aε ⊗ L−)⊗ bδ = aε ⊗ (L− ⊗ bδ).

In the previous equation, we set ε = δ = +, then

(a+ ⊗ b+)⊗ L− = (a+ ⊗ L−)⊗ b+ = a+ ⊗ (L− ⊗ b+).

By definition, ((a+⊕b+)⊕L+)− = ((a+⊕L+)⊕b+)− = (a+⊕(L+⊕b+))−. Since ϕ is
bijective, (a+⊕b+)⊕L+ = (a+⊕L+)⊕b+ = a+⊕(L+⊕b+). By the last equality and
Equation (3), ((a+⊕b+)⊕N) ∪ ((a+⊕b+)⊕L+) = ((a+⊕N)⊕b+) ∪ ((a+⊕L+)⊕b+)
= (a+ ⊕ (N ⊕ b+)) ∪ (a+ ⊕ (L+ ⊕ b+)) and hence (a+ ⊕ b+) ⊕ (N+ ∪ L+) =
(a+ ⊕ (N+ ∪ L+)) ⊕ b+ = a+ ⊕ ((N+ ∪ L+) ⊕ b+). Then N+ ∪ L+ E H+. This
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completes the proof of (2). To prove (3), we have to show that N+ E H+. By
condition (c), H+ ∩M = (H+ ∩N+) ∪ (H+ ∩N−) = H+ ∩N+ = N+. By our
assumption, M E G and by Corollary 2.3, H+ E G. We now apply [3, Theorem
2.2] to deduce that N+ EG. Therefore, N+ EH+, as desired.

Conversely, we assume that M satisfies one of the conditions (1), (2) or (3) in
Theorem 1.1. It will be shown that M EG. To do this, the following three cases
will be considered:

(A) M EH+. By Corollary 2.3(2), M EG.

(B) There exists N+ E H+ and L− ⊆ H− such that M = N+ ∪ L− and for
all x, y ∈ L−, x ⊗ y ∈ N+. Also, N+ ∩ L+ = ∅ and N+ ∪ L+ E H+,
where L+ = ϕ−1(L−). Since N+, N+ ∪ L+ E H+, by Corollary 2.3(2),
N+, N+ ∪ L+ EG. Then by Theorem 2.1, for all aε, bδ ∈ G,

(aε ⊗ bδ)⊗N+ = (aε ⊗N+)⊗ bδ = aε ⊗ (N+ ⊗ bδ) (4)

and (aε⊗ bδ)⊗ (N+ ∪L+) = (aε⊗ (N+ ∪L+))⊗ bδ = aε⊗ ((N+ ∪L+)⊗ bδ).
Hence, ((aε⊗bδ)⊗N+) ∪ ((aε⊗bδ)⊗L+) = ((aε⊗N+)⊗bδ) ∪ ((aε⊗L+)⊗bδ)
= (aε⊗ (N+⊗ bδ)) ∪ (aε⊗ (L+⊗ bδ)). Since N+ ∩L+ = ∅, by Equation (4)
and the last equality,

(aε ⊗ bδ)⊗ L+ = (aε ⊗ L+)⊗ bδ = aε ⊗ (L+ ⊗ bδ). (5)

Since ϕ is bijective,

((aε ⊗ bδ)⊗ L+)− = ((aε ⊗ L+)⊗ bδ)− = (aε ⊗ (L+ ⊗ bδ))−. (6)

Now, we claim that for all aε, bδ ∈ G, the following equality holds:

(aε ⊗ bδ)⊗ L− = (aε ⊗ L−)⊗ bδ = aε ⊗ (L− ⊗ bδ). (7)

We consider two cases as follows:

(B1) (ε, δ) = (+,+) or (−,−). By definition,

(a+ ⊗ b+)⊗ L− = (a+ ⊕ b+)⊗ L− = ((a+ ⊕ b+)⊕ L+)−

(a+ ⊗ L−)⊗ b+ = (a+ ⊕ L+)− ⊗ b+ = ((a+ ⊕ L+)⊕ b+)−

a+ ⊗ (L− ⊗ b+) = a+ ⊗ (L+ ⊕ b+)− = (a+ ⊕ (L+ ⊕ b+))−

(a− ⊗ b−)⊗ L− = (a+ ⊕ b+)⊗ L− = ((a+ ⊕ b+)⊕ L+)−

(a− ⊗ L−)⊗ b− = (a+ ⊕ L+)− ⊗ b− = ((a+ ⊕ L+)⊕ b+)−

a− ⊗ (L− ⊗ b−) = a− ⊗ (L+ ⊕ b+) = (a+ ⊕ (L+ ⊕ b+))−.

In this case, by Equation (6), our claim is true.
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(B2) (ε, δ) = (+,−) or (−,+). By definition,

(a+ ⊗ b−)⊗ L− = (a+ ⊕ b+)− ⊗ L− = (a+ ⊕ b+)⊕ L+

(a+ ⊗ L−)⊗ b− = (a+ ⊕ L+)− ⊗ b− = (a+ ⊕ L+)⊕ b+

a+ ⊗ (L− ⊗ b−) = a+ ⊗ (L+ ⊕ b+) = a+ ⊕ (L+ ⊕ b+)
(a− ⊗ b+)⊗ L− = (a+ ⊕ b+)− ⊗ L− = (a+ ⊕ b+)⊕ L+

(a− ⊗ L−)⊗ b+ = (a+ ⊕ L+)⊗ b+ = (a+ ⊕ L+)⊕ b+

a− ⊗ (L− ⊗ b+) = a− ⊗ (L+ ⊕ b+)− = a+ ⊕ (L+ ⊕ b+)

Also, in this case, by Equation (5), our claim is true.

By Equations (4) and (7), we can see that ((aε⊗bδ)⊗N+) ∪ ((aε⊗bδ)⊗L−)
= ((aε⊗N+)⊗ bδ) ∪ ((aε⊗L−)⊗ bδ) = (aε⊗ (N+⊗ bδ)) ∪ (aε⊗ (L−⊗ bδ)),
which is equivalent to ((aε ⊗ bδ)⊗ (N+ ∪L−)) = ((aε ⊗ (N+ ∪L−))⊗ bδ) =
(aε⊗((N+∪L−)⊗bδ)) or ((aε⊗bδ)⊗M) = ((aε⊗M)⊗bδ) = (aε⊗(M⊗bδ)).
This proves that M EG.

(C) M = N+ ∪ N− such that N+ E H+ and N− = ϕ(N+). By Theorem 2.2,
M ≤ G. Since N+ EH+, by Corollary 2.3, N+ E G. By Theorem 1.1, for
all aε, bδ ∈ G,

(aε ⊗ bδ)⊗N+ = (aε ⊗N+)⊗ bδ = aε ⊗ (N+ ⊗ bδ). (8)

Since ϕ is bijective, ((aε⊗bδ)⊗N+)− = ((aε⊗N+)⊗bδ)− = (aε⊗(N+⊗bδ))−.
Similar to the part B, we can show that (aε ⊗ bδ) ⊗ N− = (aε ⊗ N−) ⊗ bδ
= aε ⊗ (N− ⊗ bδ). By the last equality and Equation (8), (aε ⊗ bδ) ⊗ N+

∪ (aε ⊗ bδ) ⊗ N− = (aε ⊗ N+) ⊗ bδ ∪ (aε ⊗ N−) ⊗ bδ = aε ⊗ (N+ ⊗ bδ)
∪ aε ⊗ (N− ⊗ bδ) and so (aε ⊗ bδ) ⊗ (N+ ∪N−) = (aε ⊗ (N+ ∪N−)) ⊗ bδ
= aε ⊗ ((N+ ∪ N−) ⊗ bδ). We now apply our assumption to deduce that
(aε ⊗ bδ)⊗M = (aε ⊗M)⊗ bδ = aε ⊗ (M ⊗ bδ), which means that M EG.

Table 1: The Cayley Table of K(1) such that A = (4, 5)(6, 7).

⊕ 0 1 2 3 4 5 6 7 gyrK 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7 0 I I I I I I I I
1 1 0 3 2 5 4 7 6 1 I I I I I I I I
2 2 3 0 1 6 7 4 5 2 I I I I A A A A
3 3 2 1 0 7 6 5 4 3 I I I I A A A A
4 4 5 6 7 0 1 2 3 4 I I A A I I A A
5 5 4 7 6 1 0 3 2 5 I I A A I I A A
6 6 7 4 5 3 2 1 0 6 I I A A A A I I
7 7 6 5 4 2 3 0 1 7 I I A A A A I I

4. Concluding remarks
In this paper, the normal subgyrogroups of a class of finite gyrogroups is charac-
terized. In this section, we check our main result by a Gap code on three examples
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that is introduced in [1]. Our Gap code is accessible from the authors upon re-
quest. Suppose that K(1) is the gyrogroup such that its Cayley table is given
in Table 1. We apply our method to construct the gyrogroups K(2) from K(1)
and hence |K(1)| = 8 and |K(2)| = 16. Our calculations show that all normal

Table 2: The addition Table of K(2).

⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 3 2 1 0 14 15 12 13 11 10 9 8
7 7 6 5 4 2 3 0 1 15 14 13 12 10 11 8 9
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 11 10 9 8 6 7 4 5 3 2 1 0
15 15 14 13 12 10 11 8 9 7 6 5 4 2 3 0 1

Table 3: The gyration table of K(2) such that A = (4, 5)(6, 7)(12, 13)(14, 15).

gyr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 I I I I I I I I I I I I I I I I
1 I I I I I I I I I I I I I I I I
2 I I I I A A A A I I I I A A A A
3 I I I I A A A A I I I I A A A A
4 I I A A I I A A I I A A I I A A
5 I I A A I I A A I I A A I I A A
6 I I A A A A I I I I A A A A I I
7 I I A A A A I I I I A A A A I I
8 I I I I I I I I I I I I I I I I
9 I I I I I I I I I I I I I I I I
10 I I I I A A A A I I I I A A A A
11 I I I I A A A A I I I I A A A A
12 I I A A I I A A I I A A I I A A
13 I I A A I I A A I I A A I I A A
14 I I A A A A I I I I A A A A I I
15 I I A A A A I I I I A A A A I I

subgyrogroups of K(1) and K(2) are in Table 4, respectively. In both cases, these
normal subgyrogroups can be obtained from our main result. A nondegenerate gy-
rogroup is a gyrogroup that is not a group. In Table 4, the nondegenerate normal
subgyrogroups are bolded.
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Table 4: The normal subgyrogroups of K(1) and K(2).

Gyrogroup The normal subgyrogroups
K(1) {0}, {0, 1}, {0, 1, 2, 3}, {0, 1, 4, 5}, {0, 1, 6, 7}, { 0,1,2,3,4,5,6,7}

{0}, {0, 1}, {0, 1, 2, 3}, {0, 1, 4, 5}, {0, 1, 6, 7}, { 0,1,2,3,4,5,6,7},
{0, 8}, {0, 9}, {0, 1, 8, 9}, {0, 1, 10, 11}, {0, 1, 12, 13}, {0, 1, 14, 15},

K(2) {0, 1, 2, 3, 8, 9, 10, 11},{0,1,2,3,12,13,14,15},
{0, 1, 4, 5, 8, 9, 12, 13}, { 0,1,4,5,10,11,14,15},

{0, 1, 6, 7, 8, 9, 14, 15}, { 0,1,6,7,10,11,12,13}, {0,1,2,3, . . . , 13,14,15}
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