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The ordered semilattice equivalence relations

on ordered semihypergroups

Jukkrit Daengsaen and Sorasak Leeratanavalee

Abstract. The semilattice equivalence relations play an important role in investigating the
structural properties of ordered semihypergroups. Such relations can be expressed in terms of
hyperfilters. There are two concepts of (ordered) hyperfilters of (ordered) semihypergroups which
were introduced by Tang et al. [16] and Kehayopulu[9]. In this paper, we prove that those two
concepts coincide and characterize the least semilattice equivalence relations on ordered semi-
hypergroups. Furthermore, we investigate the relationship between the semilattice equivalence
relations and the strongly ordered regular equivalence relations on ordered semihypergroups.
Finally, we introduce the concept of ρ-classes-chain on ordered semihypergroups and give the
characterization of the strongly ordered regular equivalence relations via such concept.

1. Introduction

The investigation of ordered semihypergroups, which are a generalization of or-
dered semigroups, was initiated by Davvaz and Heidari [8] in 2011. As we known,
the semilattice congruences on ordered semigroups play a significant role in study-
ing the structural properties of ordered semigroups, see [12, 10, 13]. In case of or-
dered semihypergroups, the analogous role is played by the concept of semilattice
equivalence relations which was defined through the strongly regular equivalence
relations on ordered semihypergroups. Such semilattice equivalence relations can
be expressed by means of hyperfilters and completely prime hyperideals. The con-
cept of (ordered) hyperideals of ordered semihypergroups was studied by Chang-
phas and Davvaz [1]. In 2015, Tang et al. [16] introduced the concept of (ordered)
hyperfilters and completely prime (ordered) hyperideals on ordered semihyper-
groups. They gave the characterization of the (ordered) hyperfilters in terms of
completely prime (ordered) hyperideals. Omidi and Davvaz [14] generalized some
remarkable results concerning the semilattice congruences and the relation N on
ordered semigroups to ordered semihypergroups, whereN is generated by the same
principal filters (ordered hyperfilters) of ordered semigroups (ordered semihyper-
groups, respectively). They showed that N is the semilattice equivalence relation
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on ordered semihypergroups. Also, they discussed the relationship between the
Green’s relation J and the relation N on ordered semihypergroups. Gu and Tang
[7, 6] introduced the concept of ordered regular (strongly ordered regular) equiva-
lence relations on ordered semihypergroups and discussed their related properties.
Moreover, they introduced the notion of ordered semilattice equivalence relations
on ordered semihypergroups and proved that N is the least ordered semilattice
equivalence relation. In the meantime, they illustrated by counterexample that
N is not the least semilattice equivalence relation on ordered semihypergroups
in general. Recently, Kehayopulu[11] introduced a new concept of hyperfilters
(in such paper, it is called filter) on ordered semihypergroups and used such hy-
perfilters to define the relation N ∗ (in such paper, the author use the notation
N ). The author proved that N ∗ is the semilattice equivalence relation on ordered
semihypergroups. Furthermore, the author introduced the concept of complete
semilattice congruences on ordered semihypergroups and showed that N ∗ is the
least complete semilattice congruence on ordered semihypergroups. From those
works, the following question is natural: What is the smallest semilattice equiv-
alence relation on ordered semihypergroups? In this paper, we attempt to solve
this problem.

The present paper is organized as follows. In Section 2, we recall some basic no-
tions and elementary results of ordered semihypergroups. We show that the Tang’s
hyperfilter and the Kehayopulu’s hyperfilter coincide. This implies that N = N ∗.
In Section 3, we give the characterization of (complete) semilattice equivalence
relations in terms of the (ordered) hyperfilters generated by their corresponding
equivalence classes. In Section 4, we answer the previous question. Some our
results are an extension and a generalization of the results on ordered semigroups
given in [5]. The last section, we establish the connection between the complete
semilattice equivalence relations and the strongly ordered regular equivalence re-
lations on ordered semihypergroups. Furthermore, we introduce the concept of
ρ-classes-chain on ordered semihypergroups and characterize the strongly ordered
regular equivalence relation by means of such chain.

2. Preliminaries
In this section, we recall some basic results of ordered semihypergroups, see [4, 17,
18, 3].

Let S be a nonempty set and let P∗(S) be denoted as the set of all nonempty
subsets of S. A mapping ◦ : S × S → P∗(S) is called a hyperoperation. A couple
(S, ◦) is called a hypergroupoid. For any A,B ∈ P∗(S) and x ∈ S, we write

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hyperoperation ◦ is called associative if (x ◦ y) ◦ z = x ◦ (y ◦ z), for all
x, y, z ∈ S. In this case, the hypergroupoid (S, ◦) is called a semihypergroup.
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An ordered semihypergroup (S, ◦,6) is a semihypergroup (S, ◦) with a partial
order 6 that is compatible together with the hyperoperation ◦, i.e., for x, y, z ∈ S,

x 6 y implies x ◦ z 6 y ◦ z and z ◦ x 6 z ◦ y.

Note that, for any A,B ∈ P∗(S), A 6 B means for any a ∈ A there exists b ∈ B
such that a 6 b.

Throughout this paper, we denote S as an ordered semihypergroup (S, ◦,6).
For A ∈ P∗(S), A is said to be a subsemihypergroup of S if A ◦ A ⊆ A. A is
called a right(left) hyperideal of S if A ◦ S ⊆ A(S ◦ A ⊆ A). If A is both a
right and a left hyperideal of S, then A is a hyperideal of S. A right hyperideal
(left hyperideal, hyperideal) of S is called an ordered right hyperideal (ordered left
hyperideal, ordered hyperideal) of S if for any y ∈ S and x ∈ A, y 6 x implies
y ∈ A.

A hyperideal A of S is said to be prime if, for any x, y ∈ A, x ◦ y ⊆ A implies
x ∈ A or y ∈ A. A hyperideal A of S is called completely prime if, for any
x, y ∈ A, x ◦ y ∩ A 6= ∅ implies x ∈ A or y ∈ A. Clearly, every completely prime
hyperideal is always a prime hyperideal but the converse does not hold in general.
Let CP(S) and CPO(S) denote the set of all completely prime hyperideals of S and
the set of all completely prime ordered hyperideals of S, respectively. Evidently,
∅ 6= CPO(S) ⊆ CP(S).

There are two concepts of (ordered) hyperfilters of ordered semihypergroups.
In 2015, Tang et. al[16] introduced the following notion.

Definition 2.1 (cf. [16]). Let S be an ordered semihypergroup. A subsemihyper-
group F of S is called an ordered hyperfilter of S if the following two conditions
hold.

(T1) F is a hyperfilter of S, i.e., if (x ◦ y) ∩ F 6= ∅, for all x, y ∈ S, then x, y ∈ F .

(T2) If for any x ∈ F and y ∈ S such that x 6 y, then y ∈ F .

Also, they proved the following result.

Lemma 2.2. (cf. [16]) Let S be an ordered semihypergroup and A ∈ P∗(S). Then,
the following statements are equivalent.

(i) A is a (ordered) hyperfilter of S

(ii) S \A = ∅ or S \A is a completely prime (ordered) hyperideal of S.

In 2017, Kehayopulu[9] introduced the notion of hyperfilter (in such paper, it
is called filter) on hypergroupoids and applied it to ordered hypergroupoids which
presented in [11] as follows.

Definition 2.3 (cf. [11]). Let S be an ordered semihypergroup. A subsemihyper-
group F of S is called a hyperfilter of S if it satisfies the conditions (K1) and (K2).
Furthermore, F is called an ordered hyperfilter of S if it satisfies the conditions
(K1), (K2) and (K3) as follows.
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(K1) If x ◦ y ⊆ F , for all x, y ∈ S, then x, y ∈ F .

(K2) For any x, y ∈ S, we have x ◦ y ⊆ F or (x ◦ y) ∩ F = ∅.

(K3) If for any x ∈ F and y ∈ S such that x 6 y, then y ∈ F .

To prevent the confusing, we call the Tang’s (ordered) hyperfilter that T-
(ordered) hyperfilter and call the Kehayopulu’s (ordered) hyperfilter that K-(orde-
red) hyperfilter. Next, we show that the T-hyperfilter and K-hyperfilter coincide
on ordered semihypergroups.

Theorem 2.4. Let S be an ordered semihypergroup and F ∈ P∗(S). Then, F is
the K-hyperfilter of S if and only if F is the T-hyperfilter of S.

Proof. (⇒) Let F be a K-hyperfilter of S. Let x, y ∈ S with (x ◦ y) ∩ F 6= ∅. By
(K2), we have x ◦ y ⊆ F. By (K1), we get x, y ∈ F. Thus F is a T-hyperfilter of S.
(⇒) Suppose that F is a T-hyperfilter of S. Let x, y ∈ S and x ◦ y ⊆ F . It follows
that x ◦ y ∩ F 6= ∅. Since F is a T-hyperfilter of S, by (T1), we have x, y ∈ F .
Next, we show that F satisfies (K2). Let x1, x2 ∈ S. Since F is a T-hyperfilter
of S, by Lemma 2.2, we obtain that S \ F = ∅ or S \ F is a completely prime
hyperideal of S. If S \ F = ∅, then F = S. So F satisfies (K2). If S \ F is a
completely prime hyperideal of S, then we consider the following two cases.
Case 1: xi ∈ S \ F for some i ∈ {1, 2}. Since S \ F is a hyperideal of S, we get
x1 ◦ x2 ⊆ S \ F . So (x1 ◦ x2) ∩ F = ∅.
Case 2: x1, x2 /∈ S \F . Then x1, x2 ∈ F . Since F is a subsemihypergroup of S, we
have x1◦x2 ⊆ F . From Case 1 and 2, we conclude that F satisfies (K2). Therefore
F is a K-hyperfilter of S.

From the previous theorem, we also conclude that the T-ordered hyperfilter
and the K-ordered hyperfilter of S coincide. The present paper is based on the
notion of hyperfilters of S which was defined by Tang et al. As we know, the
intersection of all hyperfilters (ordered hyperfilters) of S is always a hyperfilter
(an ordered hyperfilter, respectively), provided it is nonempty. The intersection
of all hyperfilters (ordered hyperfilters) of S containing A(A ∈ P∗(S)) is called a
hyperfilter (an ordered hyperfilter) of S generated by A. For case A = {x}, let n(x)
denote the hyperfilter of S generated by x, N(x) denote the ordered hyperfilter of
S generated by x.

An equivalence relation ρ on S is a semilattice equivalence relation [14] if ρ
satisfies the following conditions.

(1) ρ is a strongly regular relation[4] on S, i.e.,

(x, y) ∈ ρ implies z ◦ x ¯̄ρ z ◦ y and x ◦ z ¯̄ρ y ◦ z for all x, y, z ∈ S

where, for any A,B ∈ P∗(S), A ¯̄ρB means (a, b) ∈ ρ for all a ∈ A and b ∈ B.

(2) x ¯̄ρ x ◦ x and x ◦ y ¯̄ρ y ◦ x for all x, y ∈ S.
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Let SR(S) be the set of all semilattice equivalence relations on S. In addition,
any ρ ∈ SR(S) is called a complete semilattice equivalence relation [11] on S if

(3) for any x, y ∈ S, x 6 y implies x ¯̄ρ x ◦ y.

Let CSR(S) be the set of all complete semilattice equivalence relations on S.
Clearly, ∅ 6= CSR(S) ⊆ SR(S). For any A ∈ P∗(S), we define the relations on S
as follows:

δA := {(x, y) ∈ S × S : x, y ∈ A or x, y /∈ A},
η := {(x, y) ∈ S × S : n(x) = n(y)},
N := {(x, y) ∈ S × S : N(x) = N(y)}.

Clearly, the relations δA, η and N are equivalence relations on S. Moreover, we
have δA = δS\A for all A ∈ P∗(S). Omidi and Davvaz [14] established the remark-
able properties concerning the relation N on ordered semihypergroups as follows.

Lemma 2.5 (cf. [14]). If A is a completely prime (ordered) hyperideal of S, then
δA ∈ SR(S).

Lemma 2.6 (cf. [14]). Let S be an ordered semihypergroup. Then N ∈ SR(S)
and N =

⋂
{δA : A ∈ CPO(S)} .

Lemma 2.7. (cf.[4]) Let (S, ◦) be a semihypergroup and ρ be a strongly regular
equivalence relation on S. Then, (S/ρ, ∗ρ) is a semigroup with respect to the
following operation: ρ(x)∗ρρ(y) = ρ(z) for all z ∈ x◦y where S/ρ := {ρ(x) : x ∈ S}
and ρ(x) denotes the equivalence class of x (x ∈ S).

3. Complete semilattice equivalence relations
In this section, we give some properties of (complete) semilattice equivalence rela-
tions on ordered semihypergroups in terms of the (ordered) hyperfilters generated
by their corresponding equivalence classes. Firstly, we give the following results
which are easily to prove by applying Lemma 2.7.

Lemma 3.1. Let ρ ∈ SR(S). Then the following statements hold.

(i) For any x ∈ S, the ρ-class ρ(x) is a subsemihypergroup of S.

(ii) The quotient set S/ρ := {ρ(x) : x ∈ S} is a commutative semigroup under
the multiplication ∗ρ defined by ρ(x) ∗ρ ρ(y) = ρ(z) for all z ∈ x ◦ y.

Note that, for any x, y, z ∈ S and ρ ∈ SR(S), (x ◦ y) ∩ ρ(z) 6= ∅ if and
only if ρ(z) = ρ(x) ∗ρ ρ(y). In fact, let a ∈ (x ◦ y) ∩ ρ(z). Then a ∈ x ◦ y and
ρ(a) = ρ(z). Since ρ ∈ SR(S), we have x ◦ y ¯̄ρ x ◦ y and it implies that (a, b) ∈ ρ
for all b ∈ x ◦ y. By Lemma 3.1(ii), we get ρ(b) = ρ(x) ∗ρ ρ(y) for all b ∈ x ◦ y.
Thus ρ(z) = ρ(a) = ρ(b) = ρ(x) ∗ρ ρ(y). Conversely, if ρ(z) = ρ(x) ∗ρ ρ(y) then
by Lemma 3.1(ii), we have ρ(x) ∗ρ ρ(y) = ρ(c) for all c ∈ x ◦ y. Consequently,
c ∈ ρ(c) = ρ(z) and then c ∈ (x ◦ y) ∩ ρ(z) 6= ∅.
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Lemma 3.2. Let S be an ordered semihypergroup and A ∈ P∗(S). Then the
following statements are equivalent.

(i) δA ∈ CSR(S).

(ii) One of A or S \A is a completely prime ordered hyperideal of S.

Proof. (i) ⇒ (ii) Let δA ∈ CSR(S) and A ∈ P∗(S). If A = S, then we are done.
Suppose that A 6= S. Firstly, we show that A and S \ A are subsemihypergroups
of S. Let x, y ∈ A. Then (x, y) ∈ δA. Since δA ∈ CSR(S), we have x ◦ y δA y ◦ y
and y ◦ y δA y. It follows that x ◦ y δA y. Since y ∈ A, we get x ◦ y ⊆ A. So A
is a subsemihypergroup of S. Using the same process, we can show that S \ A is
a subsemihypergroup of S. Next, we show that A is an ordered hyperideal of S.
Let x ∈ A and y ∈ S. We consider two cases as follows.
Case 1: x ◦ y ⊆ A. Since δA ∈ CSR(S), we get x ◦ y δA y ◦ x. Consequently,
y ◦ x ⊆ A and so A is a hyperideal of S. Next, let u ∈ S and v ∈ A with u 6 v.
Since δA ∈ CSR(S), we have u δA u ◦ v. Since A is a hyperideal of S and v ∈ A,
we get u◦v ⊆ A. By the definition of δA, it follows that u ∈ A. So A is an ordered
hyperideal of S.
Case 2: x ◦ y * A. Then y /∈ A. Indeed, if y ∈ A, then, since A is a sub-
semihypergroup of S, we have x ◦ y ⊆ A. It is impossible. Hence y /∈ A.
We have (y, z) ∈ δA for all z ∈ x ◦ y \ A. By Lemma 3.1(ii), we obtain that
δA(y) = δA(z) = δA(x) ∗δA δA(y). Since x ∈ A and y /∈ A, we get δA(x) = A and
δA(y) = S \A. It follows that S \A = A ◦ (S \A). Furthermore, we have

S ◦ (S \A) = (A ∪ S \A) ◦ (S \A)

⊆ (A ◦ (S \A)) ∪ ((S \A) ◦ (S \A)) ⊆ (S \A) ∪ (S \A) = S \A,

since S \ A is a subsemihypergroup of S. Consequently, S \ A is a left hyperideal
of S. As we known that, for any x, y ∈ S, if y ◦x ⊆ A, then, since y ◦x δA x◦y, we
have x ◦ y ⊆ A. Since x ◦ y * A, it follows that y ◦x * A. Using the same process,
we can show that S \A is a right hyperideal of S and hence S \A is a hyperideal
of S. Next, let u ∈ S and v ∈ S \ A. If u 6 v, then, since δS\A = δA ∈ CSR(S),
we have u δS\A u ◦ v. Since S \ A is a hyperideal of S and v ∈ S \ A, we get
u◦v ⊆ S \A and hence u ∈ S \A. Consequently, S \A is an ordered hyperideal of
S. Finally, we show that A is completely prime. Let x, y /∈ A. Then (x, y) ∈ δA.
Since δA is a strongly regular, we obtain that x ◦ x δA x ◦ y. Since δA ∈ CSR(S),
we have x δA x ◦ x. So x δA x ◦ y. Since x /∈ A, by the definition of δA, we get
(x ◦ y) ∩ A = ∅. Consequently, A is a completely prime ordered hyperideal of S.
Similarly, we can show that S \A is also a completely prime ordered hyperideal.
(ii) ⇒ (i) Since δA = δS\A for all A ∈ P∗(S), by Lemma 2.5, we get δA ∈ SR(S).
Next, we show that δA ∈ CSR(S). Firstly, suppose that A is a completely prime
ordered hyperideal of S. Let x, y ∈ S with x 6 y. If y ∈ A, then, since A is an
ordered hyperideal of S, we get x ∈ A and so x ◦ y ⊆ A. It follows that x δA x ◦ y.
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Hence δA ∈ CSR(S). If y /∈ A, then we consider the following two cases.
Case 1: (x ◦ y) ∩ A 6= ∅. Since A is completely prime and y /∈ A, we have x ∈ A.
Since A is an ordered hyperideal of S, we get x ◦ y ⊆ A and so xδAx ◦ y.
Case 2: (x ◦ y) ∩A = ∅. Then x ◦ y ⊆ S \A. If x ∈ A, then, since A is an ordered
hyperideal of S, we get x ◦ y ⊆ A, which is a contradiction. So x /∈ A. Hence
xδAx ◦ y. From Case 1 and 2, we conclude that δA ∈ CSR(S). Similarly, for
case S \ A is a completely prime ordered hyperideal of S, we can also show that
δA = δS\A ∈ CSR(S) and the proof is completed.

Corollary 3.3. Let S be an ordered semihypergroup and A ∈ P∗(S). Then, the
following statements are equivalent.

(i) δA ∈ SR(S).

(ii) One of A or S \A is a completely prime hyperideal of S.

Let ρ be an equivalence relation on S. For any x ∈ S, let 〈ρ(x)〉f denote the
hyperfilter of S generated by ρ-class ρ(x); t denote the hyperfilter of S generated
by

⋃
y∈ρ(x)

n(y); 〈ρ(x)〉F denote the ordered hyperfilter of S generated by ρ-class

ρ(x); T denote the ordered hyperfilter of S generated by
⋃

y∈ρ(x)
N(y).

The following lemmas extend and generalize the results of filters and ordered
filters on ordered semigroups, see Lemma 2.4 and Lemma 2.6 in [5].

Lemma 3.4. Let S be an ordered semihypergroup, ρ ∈ SR(S) and x ∈ S. Then
the following statements hold.

(i) 〈ρ(x)〉f =
{
a ∈ S : a ∈ ρ(x) or u ◦ a ∩ ρ(x) 6= ∅ for some u ∈ 〈ρ(x)〉f

}
.

(ii) 〈ρ(x)〉f = t.

(iii) If y ∈ 〈ρ(x)〉f , then 〈ρ(y)〉f ⊆ 〈ρ(x)〉f .

(iv) ρ =
{

(x, y) ∈ S × S : 〈ρ(x)〉f = 〈ρ(y)〉f
}
.

Proof. (i) Let N =
{
a ∈ S : a ∈ ρ(x) or u ◦ a ∩ ρ(x) 6= ∅ for some u ∈ 〈ρ(x)〉f

}
.

Clearly, ρ(x) ⊆ N ⊆ 〈ρ(x)〉f . Indeed, if a ∈ N , then a ∈ ρ(x) or u ◦ a ∩ ρ(x) 6= ∅
for some u ∈ 〈ρ(x)〉f . Since ∅ 6= u ◦ a ∩ ρ(x) ⊆ u ◦ a ∩ 〈ρ(x)〉f and 〈ρ(x)〉f is a
hyperfilter of S, we have a ∈ 〈ρ(x)〉f . So N ⊆ 〈ρ(x)〉f . The following assertions
hold.

(1) N is a subsemihypergroup of S. Indeed, let a, b ∈ N . There exist 4 cases
to be considered as follows.
Case 1.1 a, b ∈ ρ(x). By Lemma 3.1(i), we have a ◦ b ⊆ ρ(x) ⊆ N .
Case 1.2 a ∈ ρ(x) and u◦b ∩ρ(x) 6= ∅ for some u ∈ 〈ρ(x)〉f . We have ρ(x) = ρ(u)∗ρ
ρ(b). Since ρ ∈ SR(S), we have x ¯̄ρ x◦x and then ρ(x) = ρ(x)∗ρ ρ(x). By Lemma
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3.1(ii) we have ρ(x) = ρ(x) ∗ρ ρ(x) = (ρ(u) ∗ρ ρ(b)) ∗ρ ρ(a) = ρ(u) ∗ρ (ρ(a) ∗ρ ρ(b)).
Let z ∈ a ◦ b. By Lemma 3.1(ii), we have ρ(x) = ρ(u) ∗ρ ρ(z) and it follows that
u ◦ z ∩ ρ(x) 6= ∅. Hence z ∈ N and it implies that a ◦ b ⊆ N .
Case 1.3 b ∈ ρ(x) and u ◦ a ∩ ρ(x) 6= ∅ for some u ∈ 〈ρ(x)〉f . The proof is similar
to Case 1.2 and we get a ◦ b ⊆ N .
Case 1.4 u1◦a∩ρ(x) 6= ∅ and u2◦b∩ρ(x) 6= ∅ for some u1, u2 ∈ 〈ρ(x)〉f . By Lemma
3.1(ii), we have ρ(u1) ∗ρ ρ(a) = ρ(x) = ρ(u2) ∗ρ ρ(b). Since ρ ∈ SR(S), we have
ρ(x) = ρ(x) ∗ρ ρ(x). This implies that ρ(x) = (ρ(u1) ∗ρ ρ(a)) ∗ρ (ρ(u2) ∗ρ ρ(b)) =
(ρ(u1) ∗ρ ρ(u2)) ∗ρ (ρ(a) ∗ρ ρ(b)). Let z ∈ a ◦ b. By Lemma 3.1(ii), we have
ρ(x) = (ρ(u1) ∗ρ ρ(u2)) ∗ρ ρ(z). It follows that ρ(x) ∩ ((u1 ◦ u2) ◦ z) 6= ∅. Since
〈ρ(x)〉f is a subsemihypergroup of S, we have u1 ◦ u2 ⊆ 〈ρ(x)〉f . Consequently,
z ∈ N and so a ◦ b ⊆ N . Thus N is a subsemihypergroup of S.

(2) We show that N is a hyperfilter of S. Before showing that, we first prove
that, for any a, b ∈ S, if a ◦ b ∩ N 6= ∅ then b ◦ a ∩ N 6= ∅. Let a, b ∈ S with
a◦b∩N 6= ∅. Then there exists c ∈ a◦b∩N . Since c ∈ N , we obtain that c ∈ ρ(x)
or v ◦ c ∩ ρ(x) 6= ∅ for some v ∈ 〈ρ(x)〉f . We consider the following two cases.
Case 2.1: c ∈ ρ(x). By Lemma 3.1(ii), we have ρ(x) = ρ(c) = ρ(a) ∗ρ ρ(b) =
ρ(b) ∗ρ ρ(a). It follows that ∅ 6= b ◦ a ∩ ρ(x) ⊆ b ◦ a ∩N .
Case 2.2: v ◦ c ∩ ρ(x) 6= ∅ for some v ∈ 〈ρ(x)〉f . Then v ◦ (a ◦ b) ∩ ρ(x) 6= ∅. By
Lemma 3.1(ii), we have ρ(x) = ρ(v) ∗ρ (ρ(a) ∗ρ ρ(b)) = ρ(v) ∗ρ (ρ(b) ∗ρ ρ(a)). It
follows that v ◦ (b ◦ a) ∩ ρ(x) 6= ∅. Consequently, b ◦ a ⊆ N and so b ◦ a ∩N 6= ∅.
From the previous two cases, we conclude that, for any a, b ∈ S, if a ◦ b ∩N 6= ∅,
then b ◦ a ∩N 6= ∅.

Next, we show that N is a hyperfilter of S. Let a, b ∈ S with a ◦ b ∩N 6=
∅. Then there exists d ∈ a ◦ b ∩ N . Since d ∈ N , we obtain that d ∈ ρ(x)
or v ◦ d ∩ ρ(x) 6= ∅ for some v ∈ 〈ρ(x)〉f . It follows that a ◦ b ∩ ρ(x) 6= ∅ or
((v ◦ a) ◦ b) ∩ ρ(x) = (v ◦ (a ◦ b)) ∩ ρ(x) 6= ∅. Since ∅ 6= a ◦ b ∩N ⊆ a ◦ b ∩ 〈ρ(x)〉f
and 〈ρ(x)〉f is a hyperfilter of S, we have a, b ∈ 〈ρ(x)〉f . Since 〈ρ(x)〉f is a
subsemihypergroup of S, we have v ◦ a ⊆ 〈ρ(x)〉f . Consequently, b ∈ N . As
we know that a ◦ b ∩ N 6= ∅ implies b ◦ a ∩ N 6= ∅. Using the same process, we
also get a ∈ N . Hence N is a hyperfilter of S containing ρ(x) and so 〈ρ(x)〉f ⊆ N .
Therefore N = 〈ρ(x)〉f .

(ii) Since ρ(x) ⊆
⋃
{n(y) : y ∈ ρ(x)}, we obtain that t is a hyperfilter of S

containing ρ(x). Thus 〈ρ(x)〉f ⊆ t. Conversely, for any y ∈ ρ(x), since n(y) is
the hyperfilter of S generated by y and y ∈ 〈ρ(x)〉f , we have n(y) ⊆ 〈ρ(x)〉f .
So

⋃
{n(y) : y ∈ ρ(x)} ⊆ 〈ρ(x)〉f . This follows that t ⊆ 〈ρ(x)〉f and hence t =

〈ρ(x)〉f .
(iii) Let y ∈ 〈ρ(x)〉f . Then y ∈ ρ(x) or u ◦ y ∩ ρ(x) 6= ∅ for some u ∈ 〈ρ(x)〉f .

We consider two cases as follows.
Case 3.1 y ∈ ρ(x). We have ρ(y) = ρ(x) ⊆ 〈ρ(x)〉f . Thus 〈ρ(y)〉f ⊆ 〈ρ(x)〉f .
Case 3.2 u ◦ y ∩ ρ(x) 6= ∅ for some u ∈ 〈ρ(x)〉f . We have ρ(x) = ρ(u) ∗ρ ρ(y). Let
z ∈ ρ(y). Then ρ(x) = ρ(u)∗ρρ(z). It follows that ∅ 6= u◦z∩ρ(x) ⊆ u◦z∩〈ρ(x)〉f .
Since 〈ρ(x)〉f is a hyperfilter, we have z ∈ 〈ρ(x)〉f . Consequently, ρ(y) ⊆ 〈ρ(x)〉f
and hence 〈ρ(y)〉f ⊆ 〈ρ(x)〉f .
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(iv) Let σ =
{

(x, y) ∈ S × S : 〈ρ(x)〉f = 〈ρ(y)〉f
}
. Obviously, ρ ⊆ σ. Con-

versely, let (x, y) ∈ σ. Then 〈ρ(x)〉f = 〈ρ(y)〉f . Hence x ∈ 〈ρ(y)〉f and y ∈ 〈ρ(x)〉f .
By (i), if x ∈ ρ(y) or y ∈ ρ(x), then ρ(x) = ρ(y) and so σ ⊆ ρ. Next, assume
that x /∈ ρ(y) and y /∈ ρ(x). By (i), there exist u, v ∈ 〈ρ(x)〉f = 〈ρ(y)〉f such that
u◦x∩ρ(y) 6= ∅ and v◦y∩ρ(x) 6= ∅. By Lemma 3.1(ii), we have ρ(y) = ρ(u)∗ρ ρ(x)
and ρ(x) = ρ(v) ∗ρ ρ(y). Since ρ ∈ SR(S), we have x ¯̄ρ x ◦ x and y ¯̄ρ y ◦ y. By
Lemma 3.1(ii), we obtain that ρ(x) = ρ(x)∗ρρ(x) and ρ(y) = ρ(y)∗ρρ(y). We have
ρ(x) = ρ(v)∗ρ ρ(y) = ρ(v)∗ρ (ρ(y)∗ρ ρ(y)) = (ρ(v)∗ρ ρ(y))∗ρ ρ(y) = ρ(x)∗ρ ρ(y) =
ρ(x) ∗ρ (ρ(u) ∗ρ ρ(x)) = ρ(u) ∗ρ (ρ(x) ∗ρ ρ(x)) = ρ(u) ∗ρ ρ(x) = ρ(y). Consequently,
(x, y) ∈ ρ. Therefore σ ⊆ ρ and the proof is completed.

Corollary 3.5. Let S be an ordered semihypergroup and x ∈ S. Then the following
assertions hold.

(i) η ∈ SR(S) and 〈η(x)〉f = n(x).

(ii) n(x) = {a ∈ S : a ∈ η(x) or u ◦ a ∩ η(x) 6= ∅ for some u ∈ n(x)} .

Proof. (i) As in the proof of Theorem 5.5 in [14], it is not difficult to verify that
η ∈ SR(S). By Lemma 3.4(ii), we have 〈η(x)〉f = t. Since n(y) = n(x) for
all y ∈ η(x). So

⋃
y∈η(x)

n(y) = n(x). Since t is a hyperfilter of S generated by⋃
y∈η(x)

n(y) = n(x), we have n(x) ⊆ t ⊆ n(x). Consequently, 〈η(x)〉f = t = n(x).

(ii) By Lemma 3.4 (i), we have
n(x) = 〈η(x)〉f = {a ∈ S : a ∈ η(x) or u ◦ a ∩ η(x) 6= ∅ for some u ∈ n(x)} .

For any A ∈ P∗(S), denote by [A) = {x ∈ S : a 6 x for some a ∈ A}.

Lemma 3.6. Let S be an ordered semihypergroup, ρ ∈ CSR(S) and x ∈ S. Then

(i) 〈ρ(x)〉F = {a ∈ S : a ∈ [ρ(x)) or u ◦ a ∩ [ρ(x)) 6= ∅ for some u ∈ 〈ρ(x)〉F }.

(ii) 〈ρ(x)〉F = T .

(iii) If y ∈ 〈ρ(x)〉F , then 〈ρ(y)〉F ⊆ 〈ρ(x)〉F .

(iv) ρ = {(x, y) ∈ S × S : 〈ρ(x)〉F = 〈ρ(y)〉F }.

Proof. (i) LetN = {a ∈ S : a ∈ [ρ(x)) or u ◦ a ∩ [ρ(x)) 6= ∅ for some u ∈ 〈ρ(x)〉F } .
Clearly, ρ(x) ⊆ N ⊆ 〈ρ(x)〉F . Firstly, we show that N is an ordered hyperfilter

(1) N is a subsemihypergroup of S. Let a1, a2 ∈ N . We consider the following
two cases.
Case 1.1 a1, a2 /∈ [ρ(x)). Then, there exist u1, u2 ∈ 〈ρ(x)〉F such that ui ◦ ai ∩
[ρ(x)) 6= ∅ for all i = 1, 2. For any i = 1, 2, we put bi ∈ ui ◦ ai ∩ [ρ(x)) 6= ∅.
Then, there exists vi ∈ ρ(x) such that vi 6 bi. Since 6 is compatible, we get
v1 ◦ v2 6 b1 ◦ b2 and v1 ◦ v2 ⊆ ρ(x) by Lemma 3.1(i). Let c ∈ v1 ◦ v2. Then, there
exists d ∈ b1 ◦ b2 such that c 6 d. Since ρ ∈ CSR(S), we have c ¯̄ρ c ◦ d and then
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ρ(c) = ρ(c) ∗ρ ρ(d). Since c ∈ v1 ◦ v2 ⊆ ρ(x), we have ρ(c) = ρ(x). By Lemma
3.1(ii), we have

ρ(x) = ρ(c) = ρ(c) ∗ρ ρ(d) = ρ(x) ∗ρ ρ(d), since d ∈ b1 ◦ b2,
= ρ(x) ∗ρ (ρ(b1) ∗ρ ρ(b2)), since bi ∈ ui ◦ ai for all i = 1, 2,

= ρ(x) ∗ρ ((ρ(u1) ∗ρ ρ(a1)) ∗ρ (ρ(u2) ∗ρ ρ(a2))), since ∗ρ is commutat.,
= (ρ(x) ∗ρ (ρ(u1) ∗ρ ρ(u2))) ∗ρ (ρ(a1) ∗ρ ρ(a2)).

Let y ∈ a1 ◦a2. By Lemma 3.1(ii), we have ρ(x) = (ρ(x)∗ρ (ρ(u1)∗ρρ(u2)))∗ρρ(y).
Consequently, ∅ 6= ((x ◦ (u1 ◦ u2)) ◦ y) ∩ ρ(x) ⊆ ((x ◦ (u1 ◦ u2)) ◦ y) ∩ [ρ(x)). Since
x ◦ (u1 ◦ u2) ⊆ 〈ρ(x)〉F , we have y ∈ N and so a1 ◦ a2 ⊆ N .
Case 1.2 ai ∈ [ρ(x)) for some i ∈ {1, 2}. There exists vi ∈ ρ(x) such that vi 6 ai.
Since 6 is compatible, we have vi ◦ vi 6 vi ◦ ai, i.e., for any b ∈ vi ◦ vi there exists
c ∈ vi ◦ ai such that b 6 c. It follows that c ∈ [ρ(x)) and so vi ◦ ai ∩ [ρ(x)) 6= ∅. As
we known that vi ∈ ρ(x) ⊆ 〈ρ(x)〉F , using the similar process as in Case 1.1, we
also conclude that a1 ◦ a2 ⊆ N . Thus N is a subsemihypergroup of S.

(2) Using the similar process as in the proof of Lemma 3.4(ii), we obtain that
N is a hyperfilter of S. Next, let a ∈ N and b ∈ S with a 6 b. Then a ∈ [ρ(x)) or
u ◦ a ∩ [ρ(x)) 6= ∅ for some u ∈ 〈ρ(x)〉F . We consider the following two cases.
Case 2.1: a ∈ [ρ(x)). Since a 6 b, we get b ∈ [ρ(x)). So b ∈ N .
Case 2.2: u ◦ a ∩ [ρ(x)) 6= ∅ for some u ∈ 〈ρ(x)〉F . Since 6 is compatible, we get
u ◦ a 6 u ◦ b, i.e., for any c ∈ u ◦ a, there exists d ∈ u ◦ b such that c 6 d. Put
c′ ∈ u ◦ a ∩ [ρ(x)), there exists d′ ∈ u ◦ b such that c′ 6 d′. Since c′ ∈ [ρ(x)), we
have d′ ∈ [ρ(x)). It implies that u ◦ b ∩ [ρ(x)) 6= ∅. Consequently, b ∈ N .
From Case 2.1 and 2.2, we conclude thatN is an ordered hyperfilter of S containing
ρ(x). Hence 〈ρ(x)〉F ⊆ N and so 〈ρ(x)〉F = N .

(ii) The proof is similar to Lemma 3.4(ii).
(iii) Let y ∈ 〈ρ(x)〉F . By (i), we obtain that y ∈ [ρ(x)) or u ◦ y ∩ [ρ(x)) 6= ∅

for some u ∈ 〈ρ(x)〉F . We analyze two cases as follows.
Case 3.1: y ∈ [ρ(x)). Then, there exists a ∈ ρ(x) such that a 6 y. Since ρ ∈
CSR(S), we have a ¯̄ρ a◦y. It follows that ρ(x) = ρ(a) = ρ(a)∗ρρ(y). Let y′ ∈ ρ(y).
We have ρ(x) = ρ(a)∗ρρ(y′) and it follows that ∅ 6= (a◦y′)∩ρ(x) ⊆ (a◦y′)∩[ρ(x)).
Since a ∈ ρ(x) ⊆ 〈ρ(x)〉F and by (i), we have y′ ∈ 〈ρ(x)〉F . It follows that
ρ(y) ⊆ 〈ρ(x)〉F and so 〈ρ(y)〉F ⊆ 〈ρ(x)〉F .
Case 3.2: u◦y∩[ρ(x)) 6= ∅ for some u ∈ 〈ρ(x)〉F . Then, there exists b ∈ u◦y∩[ρ(x)).
There is a ∈ ρ(x) such that a 6 b. Since ρ ∈ CSR(S), we get a ¯̄ρ a ◦ b. By
Lemma 3.1(ii), we have ρ(x) = ρ(a) = ρ(a) ∗ρ ρ(b) = ρ(a) ∗ρ (ρ(u) ∗ρ ρ(y)) =
(ρ(a) ∗ρ ρ(u)) ∗ρ ρ(y). Let y′ ∈ ρ(y). It follows that ρ(x) = (ρ(a) ∗ρ ρ(u)) ∗ρ ρ(y′).
We have ∅ 6= ((a ◦ u) ◦ y′)∩ ρ(x) ⊆ ((a ◦ u) ◦ y′)∩ [ρ(x)). Since a ∈ ρ(x) ⊆ 〈ρ(x)〉F
and 〈ρ(x)〉F is a subsemihypergroup of S, we have a ◦ u ⊆ 〈ρ(x)〉F . By (i), we
have y′ ∈ 〈ρ(x)〉F and hence ρ(y) ⊆ 〈ρ(x)〉F . Thus 〈ρ(y)〉F ⊆ 〈ρ(x)〉F .

(iv) Let σ = {(x, y) ∈ S × S : 〈ρ(x)〉F = 〈ρ(y)〉F } . Evidently, ρ ⊆ σ. Con-
versely, let (x, y) ∈ ρ. Then 〈ρ(x)〉F = 〈ρ(y)〉F . It follows that x ∈ 〈ρ(y)〉F and
y ∈ 〈ρ(x)〉F . We consider the following two cases.
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Case 4.1: x /∈ [ρ(y)) and y /∈ [ρ(x)). Then there exist u1, u2 ∈ 〈ρ(x)〉F = 〈ρ(y)〉F
such that u1 ◦ x ∩ [ρ(y)) 6= ∅ and u2 ◦ y ∩ [ρ(x)) 6= ∅. Since u1 ◦ x ∩ [ρ(y)) 6= ∅,
there exists a ∈ u1 ◦ x ∩ [ρ(y)) and a′ ∈ ρ(y) such that a′ 6 a. Since ρ ∈ CSR(S),
we have a′ ¯̄ρ a′ ◦ a. Since a ∈ u1 ◦ x and a′ ∈ ρ(y), by Lemma 3.1(ii), we have
ρ(y) = ρ(a′) = ρ(a′) ∗ρ ρ(a) = ρ(y) ∗ρ ρ(a) = ρ(y) ∗ρ (ρ(u1) ∗ρ ρ(x)). Similarly,
since u2 ◦ y ∩ [ρ(x)) 6= ∅, we have ρ(x) = ρ(x) ∗ρ (ρ(u2) ∗ρ ρ(y)). It follows that

ρ(u2) ∗ρ ρ(y) = ρ(u2) ∗ρ (ρ(y) ∗ρ (ρ(u1) ∗ρ ρ(x))), since ∗ρ is commutative,
= ρ(u1) ∗ρ (ρ(x) ∗ρ (ρ(u2) ∗ρ ρ(y))) = ρ(u1) ∗ρ ρ(x).

Since ρ ∈ CSR(S), we have ρ(x) = ρ(x) ∗ρ ρ(x) and ρ(y) = ρ(y) ∗ρ ρ(y). Then
ρ(x) = ρ(x) ∗ρ (ρ(u2) ∗ρ ρ(y)) = ρ(x) ∗ρ (ρ(u1) ∗ρ ρ(x)) = ρ(u1) ∗ρ (ρ(x) ∗ρ ρ(x)) =
ρ(u1) ∗ρ ρ(x) = ρ(u2) ∗ρ ρ(y) = ρ(u2) ∗ρ (ρ(y) ∗ρ ρ(y)) = (ρ(u2) ∗ρ ρ(y)) ∗ρ ρ(y) =
(ρ(u1) ∗ρ ρ(x)) ∗ρ ρ(y) = ρ(y). Consequently, (x, y) ∈ ρ.
Case 4.2: x ∈ [ρ(y)) or y ∈ [ρ(x)). Without loss of generality, assume that x ∈
[ρ(y)). Using the similar poof as in Case 1.2, there exists v ∈ 〈ρ(x)〉F = 〈ρ(y)〉F
such that v ◦ x∩ [ρ(y)) 6= ∅. Using the analogous processes as in Case 4.1, we also
obtain that (x, y) ∈ ρ. From Case 4.1 and 4.2, we conclude that σ ⊆ ρ and the
proof is completed.

Applying Lemma 3.6 and Corollary 3.5, we obtain the following result.

Corollary 3.7. Let S be an ordered semihypergroup and x ∈ S. Then

(i) 〈N (x)〉F = N(x).

(ii) N(x) = {a ∈ S : a ∈ [N (x)) or u ◦ a ∩ [N (x)) 6= ∅ for some u ∈ N(x)}.

4. The least semilattice equivalence relation
We will show that the relation η is the least semilattice equivalence relation on
ordered semihypergroups which is used to answer the question in Section 1.

Theorem 4.1. Let S be an ordered semihypergroup. Then

(i) η =
⋂
{δA : A ∈ CP(S)}.

(ii) η ⊆ N .

Proof. (i) Let τ =
⋂
{δA : A ∈ CP(S)} . By Corollary 3.3, we have δA ∈ SR(S)

for all A ∈ CP(S). So τ ∈ SR(S). By using the similar proof as in Theorem 2.8
in [14], we can show that η = τ .

(ii) Since CPO(S) ⊆ CP(S), by (i) and Lemma 2.6 (ii), we obtain
η =

⋂
{δA : A ∈ CP(S)} ⊆

⋂
{δA : A ∈ CPO(S)} = N .

Theorem 4.2. Let S be an ordered semihypergroup and ρ ∈ SR(S). Then
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(i) ρ =
⋂
x∈S

δ〈ρ(x)〉f .

(ii) η is the least semilattice equivalence relation on S.

Proof. (i) Let τ =
⋂{

δ〈ρ(x)〉f : x ∈ S
}
. Since 〈ρ(x)〉f is a hyperfilter of S, by

Lemma 2.2, we have S\〈ρ(x)〉f is a completely prime hyperideal of S. By Corollary
3.3, we have δ〈ρ(x)〉f = δS\〈ρ(x)〉f ∈ SR(S). It follows that τ ∈ SR(S). Let
(x, y) ∈ τ . Then (x, y) ∈ δ〈ρ(a)〉f for all a ∈ S. To show that (x, y) ∈ ρ, assume
that (x, y) /∈ ρ. By Lemma 3.4(iv), we have 〈ρ(x)〉f 6= 〈ρ(y)〉f . It follows that
〈ρ(x)〉f * 〈ρ(y)〉f or 〈ρ(y)〉f * 〈ρ(x)〉f .
Case 1.1: 〈ρ(x)〉f * 〈ρ(y)〉f . By Lemma 3.4(iii), we have x /∈ 〈ρ(y)〉f . Since
y ∈ 〈ρ(y)〉f , it follows that (x, y) /∈ δ〈ρ(y)〉f . This is a contradiction.
Case 1.2: 〈ρ(y)〉f * 〈ρ(x)〉f . Using the similar proof as in Case 1.1, we obtain
a contradiction. Hence (x, y) ∈ ρ and so τ ⊆ ρ. Conversely, let (x, y) ∈ ρ. By
Lemma 3.4(iv), we have 〈ρ(x)〉f = 〈ρ(y)〉f . To show that (x, y) ∈ τ , assume that
(x, y) /∈ τ . Then, there exists a ∈ S such that (x, y) /∈ δS\〈ρ(a)〉f . We obtain the
following two cases.
Case 2.1: x /∈ 〈ρ(a)〉f and y ∈ 〈ρ(a)〉f . By Lemma 3.4(iii), we have 〈ρ(y)〉f ⊆
〈ρ(a)〉f . and so x ∈ 〈ρ(x)〉f = 〈ρ(y)〉f ⊆ 〈ρ(a)〉f . It is impossible.
Case 2.2: x ∈ 〈ρ(a)〉f and y /∈ 〈ρ(a)〉f . The proof is similar to Case 2.1, we also
get a contradiction. Consequently, (x, y) ∈ τ . Therefore ρ = τ .

(ii) Let ρ ∈ SR(S). Since
{
S \ 〈ρ(x)〉f : x ∈ S

}
⊆ CP(S), we obtain that

η =
⋂
{δA : A ∈ CP(S)} ⊆

⋂{
δS\〈ρ(x)〉f : x ∈ S

}
=

⋂{
δ〈ρ(x)〉f : x ∈ S

}
= ρ.

Therefore η is the least semilattice equivalence relation on S.

Applying Lemma 3.2, 3.6, and Corollary 3.7, by using the similar proof of
Theorem 4.2, we obtain that N is the least complete semilattice equivalence re-
lation on ordered semihypergroups which analogous to the Kehayopulu’s results,
see Corollary 4.11 in [11].

Theorem 4.3. Let S be an ordered semihypergroup and ρ ∈ CSR(S). Then

(i) ρ =
⋂
x∈S

δ〈ρ(x)〉F .

(ii) N is the least complete semilattice equivalence relation on S.

Example 4.4. Let S = {a, b, c, d}. Define ◦ : S × S → P∗(S) as in the table.
Then (S, ◦) is a semihypergroup(see Example 1 [15]). Define a partial order 6 by

6:= {(a, a), (b, b), (c, a), (c, c), (d, a), (d, d)}.

Then (S, ◦,6) is an ordered semihypergroup. Clearly, H1 = {a, b, d}, H2 =
{a, c, d}, H3 = {a, d} and S are all hyperideals of S. On the other hand, H2
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◦ a b c d
a {a, d} {a, d} {a, d} {a}
b {a, d} {b} {a, d} {a, d}
c {a, d} {a, d} {c} {a, d}
d {a} {a, d} {a, d} {d}

and S are all ordered hyperideals of S. Furthermore, H1, H2, S are completely
prime and H3 is not completely prime because (b ◦ c) ∩H3 = {a, d} ∩ {a, d} 6= ∅
but b, c /∈ H3. By Lemma 2.6 and Theorem 4.1, we have

η = δH1
∩ δH2

∩ δS = {(a, a), (a, d), (b, b), (c, c), (d, a), (d, d)},
N = δH2

∩ δS = {(a, a), (a, c), (a, d), (b, b), (c, a), (c, c), (c, d), (d, a), (d, c), (d, d)}.

It is not difficult to show that all semilattice equivalence relations on S are defined
as follows:

ρ1 = {(a, a), (a, d), (b, b), (c, c), (d, a), (d, d)} = η,

ρ2 = {(a, a), (a, b), (a, d), (b, a), (b, b), (b, d), (c, c), (d, a), (d, b), (d, d)},
ρ3 = {(a, a), (a, c), (a, d), (b, b), (c, a), (c, c), (c, d), (d, a), (d, c), (d, d)} = N
ρ4 = {(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d),

(d, a), (d, b), (d, c), (d, d)}.

Moreover, all complete semilattice equivalence relations on S are ρ3 and ρ4. Con-
sequently, η ⊆ N . Therefore η is the least semilattice equivalence relation on S
and N is the least complete semilattice equivalence relation on S.

5. Ordered regular equivalence relations
In this section, we describe the relationship between complete semilattice equiv-
alence relations and strongly ordered regular equivalence relations on an ordered
semihypergroup S via the (ordered) hyperfilter of S generated by its equivalence
classes. Firstly, we recall the notion of strongly ordered regular equivalence rela-
tions on ordered semihypergroups which was introduced by Gu and Tang in [7].

Definition 5.1. Let (S1, ◦1,61) and (S2, ◦2,62) be two ordered semihypergroups.
A mapping ϕ : S1 → S2 is called a normal homomorphism if the following two
conditions hold.

(i) ϕ(x ◦1 y) = ϕ(x) ◦2 ϕ(y) for all x, y ∈ S, where ϕ(H) = {ϕ(a) : a ∈ H}.

(ii) If x 61 y, then ϕ(x) 62 ϕ(y).

Definition 5.2. Let (S, ◦,6) be an ordered semihypergroup and ρ be a strongly
regular equivalence relation on S. The relation ρ is called strongly ordered regular if
there exists an order relation 4 on S/ρ which satisfies the following two conditions.
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(i) (S/ρ, ∗ρ,4) is an ordered semigroup.

(ii) the mapping ϕ : S → S/ρ by x 7→ ρ(x) is a normal homomorphism.

The following theorems extend and generalize Theorem 2.1 and 2.2 in [19].

Theorem 5.3. Let ρ ∈ SR(S). Define an order relation 4f on S/ρ as follows

ρ(x) 4f ρ(y) if and only if 〈ρ(y)〉f ⊆ 〈ρ(x)〉f .

Then (S/ρ, ∗ρ,4f ) is an ordered semigroup.

Proof. Let ρ(x) = ρ(x′) and ρ(y) = ρ(y′) with ρ(x) 4f ρ(y). Then 〈ρ(y)〉f ⊆
〈ρ(x)〉f . It follows that 〈ρ(y′)〉f = 〈ρ(y)〉f ⊆ 〈ρ(x)〉f = 〈ρ(x′)〉f and hence
ρ(x′) 4f ρ(y′). So 4f is well-defined. Next, we show that 4f is a partial order on
S/ρ. Obviously, ρ(x) 4f ρ(x) for all x ∈ S, so 4f is reflexive. Let ρ(x) 4f ρ(y)
and ρ(y) 4f ρ(x) for all x, y ∈ S. Then 〈ρ(y)〉f ⊆ 〈ρ(x)〉f and 〈ρ(x)〉f ⊆ 〈ρ(y)〉f .
Hence 〈ρ(x)〉f = 〈ρ(y)〉f . By Lemma 3.4(iv), we have (x, y) ∈ ρ. Consequently,
ρ(x) = ρ(y) and so 4f is anti-symmetric. Let ρ(x) 4f ρ(y) and ρ(y) 4f ρ(z)
for all x, y, z ∈ S. Then 〈ρ(z)〉f ⊆ 〈ρ(y)〉f ⊆ 〈ρ(x)〉f . Hence ρ(x) 4f ρ(z)
and 4f is transitive. Thus 4f is a partial order on S/ρ. Next, we show that
4f is compatible with the operation ∗ρ on S/ρ which was defined in Lemma
3.1(ii). Let ρ(x) 4f ρ(y) and ρ(c) ∈ S/ρ. Then 〈ρ(y)〉f ⊆ 〈ρ(x)〉f . Firstly,
we show that ρ(x) ∗ρ ρ(c) 4f ρ(y) ∗ρ ρ(c). Let u ∈ x ◦ c. By Lemma 3.1(ii),
we have ρ(u) = ρ(x) ∗ρ ρ(c). Since ρ ∈ SR(S), we have ρ(x) = ρ(x) ∗ρ ρ(x) and
ρ(c) = ρ(c)∗ρρ(c). Since u ∈ 〈ρ(u)〉f , for any a ∈ u◦c, we have ρ(a) = ρ(u)∗ρρ(c) =
(ρ(x) ∗ρ ρ(c)) ∗ρ ρ(c) = ρ(x) ∗ρ (ρ(c) ∗ρ ρ(c)) = ρ(x) ∗ρ ρ(c) = ρ(u). It follows that
u ◦ c∩ ρ(u) 6= ∅. By Lemma 3.4(i), we get c ∈ 〈ρ(u)〉f . Similarly, far any b ∈ u ◦x,
we have ρ(b) = ρ(u) ∗ρ ρ(x) = (ρ(x) ∗ρ ρ(c)) ∗ρ ρ(x) = (ρ(x) ∗ρ ρ(x)) ∗ρ ρ(c) =
ρ(x) ∗ρ ρ(c) = ρ(u). It follows that u ◦ x ∩ ρ(u) 6= ∅. By Lemma 3.4(i), we get
x ∈ 〈ρ(u)〉f . By Lemma 3.4(iii), we have y ∈ 〈ρ(y)〉f ⊆ 〈ρ(x)〉f ⊆ 〈ρ(u)〉f . Since
〈ρ(u)〉f is a subsemihypergroup of S, we have y ◦ c ⊆ 〈ρ(u)〉f . By Lemma 3.4(iii),
we obtain that 〈ρ(v)〉f ⊆ 〈ρ(u)〉f for all v ∈ y ◦ c. It follows that ρ(u) 4f ρ(v) for
all u ∈ x◦c and all v ∈ y ◦c. By Lemma 3.1(ii), we get ρ(x)∗ρ ρ(c) 4f ρ(y)∗ρ ρ(c).
Similarly, we can show that ρ(c) ∗ρ ρ(x) 4f ρ(c) ∗ρ ρ(y). Therefore (S/ρ, ∗ρ,4f )
is an ordered semigroup.

Theorem 5.4. Every complete semilattice equivalence relation on S is a strongly
ordered regular equivalence relation.

Proof. Let ρ ∈ CSR(S). We define an order relation 4F on S/ρ by ρ(x) 4F ρ(y)
if and only if 〈ρ(y)〉F ⊆ 〈ρ(x)〉F . By Lemma 3.6 and using the similar proof as
in Theorem 5.3, we obtain that (S/ρ, ∗ρ,4F ) is an ordered semigroup. Next, we
consider the mapping ϕ : S → S/ρ which is defined by ϕ(x) = ρ(x) for all x ∈ S.
Clearly, ϕ is a normal homomorphism. Indeed, if x 6 y, then y ∈ 〈ρ(x)〉F . By
Lemma 3.6(iii), we have 〈ρ(y)〉F ⊆ 〈ρ(x)〉F . Consequently, ρ(x) 4F ρ(y) and then
ϕ(x) 4F ϕ(y). Therefore ρ is a strongly ordered regular equivalence relation on
S.
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From Theorem 5.4, we obtain the following result.

Corollary 5.5. N is a strongly ordered regular equivalence relation.

Definition 5.6. (cf. [7]) Let S be an ordered semihypergroup and ρ be an equiv-
alence relation on S. Then, ρ is an ordered semilattice equivalence relation if

(i) S/ρ is a semilattice. Note that (S/ρ, ∗ρ,C) is an ordered semigroup with the
well-known partial order C on semilattice which is defined by

ρ(x) C ρ(y) if and only if ρ(x) = ρ(x) ∗ρ ρ(y),

(ii) ρ satisfies the condition (ii) in Definition 5.2.

Clearly, N is an ordered semilattice equivalence relation on S.
On the other hand, a semilattice equivalence relation on an ordered semihyper-

group S is called a weak ordered semilattice equivalence relation if it is a strongly
ordered regular equivalence relation on S. Consequently, every complete semi-
lattice equivalence relation and N are the weak ordered semilattice equivalence
relations on S. In [7], Gu and Tang proved that N is the least ordered semilattice
equivalence relation on S. The following example shows that the relation N does
not need to be the least weak ordered semilattice equivalence relation in general.

Example 5.7. Let S = {a, b, c, d}. Define ◦ : S × S → P∗(S) by the following
table.

◦ a b c d
a {a, d} {a, d} {a, c, d} {a}
b {a, d} {b} {a, c, d} {a, d}
c {a, d} {a, d} {a, c, d} {a, d}
d {a} {a, d} {c} {d}

Then (S, ◦) is a semihypergroup (see Example 3 [15]). Define a partial order 6 by

6:= {(a, a), (b, a), (b, b), (c, c), (d, a), (d, d)}.

Then (S, ◦,6) is an ordered semihypergroup. Clearly, all completely prime hyper-
ideals of S are A = {a, c, d} and S. Furthermore, A is not an ordered hyperideal of
S since b 6 a ∈ A but b /∈ A. Consequently, S is only a completely prime ordered
hyperideal of S. By Lemma 2.6 and Corollary 3.3, we have

ρ := δA = {(a, a), (a, c), (a, d), (b, b), (c, a), (c, c), (c, d), (d, a), (d, c), (d, d)}
∈ SR(S),

N = δS = {(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c),

(c, d), (d, a), (d, b), (d, c), (d, d)} ∈ CSR(S).
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∗ρ ρ(a) ρ(b)
ρ(a) ρ(a) ρ(a)
ρ(b) ρ(a) ρ(b)

Next, we show that ρ is a weak ordered semilattice equivalence relation on S.
Clearly, S/ρ = {ρ(a), ρ(b)} where ρ(a) = {a, c, d} = ρ(c) = ρ(d), ρ(b) = {b}. By
Lemma 3.1(ii), we have (S/ρ, ∗ρ) is a semigroup where the hyperoperation ∗ρ is
defined by the following table.
Next, we define a partial order 6ρ on S/ρ by

6ρ:= {(ρ(a), ρ(a)), (ρ(b), ρ(a)), (ρ(b), ρ(b))} .

Then, (S/ρ, ∗ρ,6ρ) is an ordered semigroup. Furthermore, we have

b 6 a implies ρ(b) 6ρ ρ(a)

d 6 a implies ρ(d) = ρ(a) 6ρ ρ(a).

Therefore ρ is a weak ordered semilattice equivalence relation on S and ρ ⊆ N .

From the previous results, the following question is natural: Is every semilattice
equivalence relation the weak ordered semilattice equivalence relation on ordered
semihypergroups ?

In order to solve the problem, we first present Theorem 5.8 that gives the
characterization of the smallest order relation with respect to the given strongly
ordered regular equivalence relation.

Theorem 5.8. Let ρ be a strongly regular equivalence relation on S. Define a
relation 4ρ on S/ρ as follows:

α := {(ρ(x), ρ(y)) ∈ S/ρ× S/ρ : there exist x′ ∈ ρ(x) and y′ ∈ ρ(y) such that x′ 6 y′}

4ρ= {(ρ(x), ρ(y)) ∈ S/ρ× S/ρ : (ρ(x), ρ(y)) ∈ αm for some m ∈ N} .

If ρ is a strongly ordered regular equivalence relation on S, then 4ρ is the smallest
order relation on S/ρ with respect to ρ.

Proof. Let ρ be a strongly ordered regular equivalence relation on S. First of all
we show that 4ρ is a partial order on S/ρ.

(1) Reflexive. Since x 6 x for all x ∈ S, we have (ρ(x), ρ(x)) ∈ α ⊆4ρ.
(2) Anti-symmetric. Let (ρ(x), ρ(y)) ∈4ρ and (ρ(y), ρ(x)) ∈4ρ. Then, there

exist m,n ∈ N such that (ρ(x), ρ(y)) ∈ αm and (ρ(y), ρ(x)) ∈ αn. There are
ρ(a1), ..., ρ(am−1), ρ(b1), ..., ρ(bn−1) ∈ S/ρ such that ρ(x) α ρ(a1) α ... α ρ(am−1) α ρ(y)

and ρ(y) α ρ(b1) α ... α ρ(bn−1) α ρ(x). By the definition of α, there exist x′, x′′ ∈
ρ(x), y′, y′′ ∈ ρ(y), a′i, a

′′
i ∈ ρ(ai) and b′j , b

′′
j ∈ ρ(bj), for all i = 1, ...,m − 1 and

j = 1, ..., n − 1, such that x′ 6 a′1, a
′′
1 6 a′2, ..., a

′′
m−2 6 a′m−1, a

′′
m−1 6 y′ and

y′′ 6 b′1, b
′′
1 6 b′2, ..., b

′′
n−2 6 b′n−1, b

′′
n−1 6 x′′. Since ρ is a strongly ordered regular
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equivalence relation, there exists an order regular4 on S/ρ such that (S/ρ, ∗ρ,4) is
an ordered semigroup and the mapping ϕ : S → S/ρ which is defined by x 7→ ρ(x)
is a normal homomorphism. It follows that ρ(x) = ρ(x′) 4 ρ(a′1) = ρ(a1) =
ρ(a′′1) 4 ... 4 ρ(a′m−1) = ρ(am−1) = ρ(a′′m−1) 4 ρ(y′) = ρ(y) and ρ(y) = ρ(y′′) 4
ρ(b′1) = ρ(b1) = ρ(b′′1) 4 ... 4 ρ(b′n−1) = ρ(bn−1) = ρ(b′′n−1) 4 ρ(x′′) = ρ(x). Since
4 is transitive, we have ρ(x) 4 ρ(y) and ρ(y) 4 ρ(x). Since 4 is anti-symmetric,
we have ρ(x) = ρ(y).

(3) Transitive. Let (ρ(x), ρ(y)) ∈4ρ and (ρ(y), ρ(z)) ∈4ρ. Then, there ex-
ist m,n ∈ N and there are ρ(u1), ..., ρ(um−1), ρ(v1), ..., ρ(vn−1) ∈ S/ρ such that
ρ(x) α ρ(u1) α... α ρ(um−1) α ρ(y) and ρ(y) α ρ(v1) α ... α ρ(vn−1) α ρ(z). Since
ρ(y) α ρ(y), we have (ρ(x), ρ(z)) ∈ αm+n+1 ⊆4ρ.

(4) 4ρ is compatible with the operation ∗ρ of S/ρ. Before showing that, we
first prove that the relation α is compatible with ∗ρ. Let (ρ(x), ρ(y)) ∈ α and
ρ(z) ∈ S/ρ. Then, there exist x′ ∈ ρ(x) and y′ ∈ ρ(y) such that x′ 6 y′. Since ≤
is compatible with the hyperoperation ◦ of S, we have x′ ◦ z 6 y′ ◦ z, i.e., for any
a ∈ x′ ◦ z there exists b ∈ y′ ◦ z such that a 6 b. So (ρ(a), ρ(b)) ∈ α. By Lemma
3.1(ii), we have ρ(a) = ρ(x′) ∗ρ ρ(z) = ρ(x) ∗ρ ρ(z) and ρ(b) = ρ(y′) ∗ρ ρ(z) =
ρ(y) ∗ρ ρ(z). Consequently, (ρ(x) ∗ρ ρ(z), ρ(y) ∗ρ ρ(z)) ∈ α. Similarly, we can
show that (ρ(z) ∗ρ ρ(x), ρ(z) ∗ρ ρ(y)) ∈ α. Furthermore, it is not difficult to
show that the relation αm is compatible with ∗ρ for all m ∈ N. Thus 4ρ is
compatible. Consequently, (S/ρ, ∗ρ,4ρ) is an ordered semigroup. Clearly, the
mapping ϕ : S → S/ρ by x 7→ ρ(x), for all x ∈ S, is a normal homomorphism. In
fact, if x 6 y for all x, y ∈ S, then (ρ(x), ρ(y)) ∈ α ⊆4ρ. Therefore 4ρ is an order
relation on S/ρ.

Finally, we show that 4ρ is the smallest order relation on S/ρ with respect
to ρ. Let 4′ be an order relation on S/ρ with respect to a strongly ordered
regular equivalence relation ρ. Let (ρ(x), ρ(y)) ∈4ρ. Then, there exists m ∈
N such that (ρ(x), ρ(y)) ∈ αm. There are ρ(w1), ..., ρ(wm−1) ∈ S/ρ such that
ρ(x) α ρ(w1) α ... α ρ(wm−1) α ρ(y).

By the definition of α, there exist x′ ∈ ρ(x), w′i, w
′′
i ∈ ρ(wi) and y′ ∈ ρ(y), for

all i = 1, ...,m − 1, such that x′ 6 w′1, w
′′
1 6 w′2, ..., w

′′
m−2 6 w′m−1 and w′′m−1 6

y′. Using the similar proof of (2), we obtain that ρ(x) 4′ ρ(w1) 4′ ... 4′

ρ(wm−1) 4′ ρ(y). Since 4′ is transitive, we have (ρ(x), ρ(y)) ∈4′ and the proof
is completed.

Example 5.9. Let S = {a, b, c, d, e, f}. Define ◦ : S×S → P∗(S) by the following
table.
Then (S, ◦) is a semihypergroup(see page 63 in [4]) and a partial order 6 is defined
by

6:= {(a, a), (a, b), (a, f), (a, e), (b, b), (b, f), (c, a), (c, b), (c, c), (c, f), (c, e),
(d, b), (d, d), (d, f), (e, e), (e, f), (f, f)}. hen (S, ◦,6) is an ordered semihypergroup.
We will show that the semilattice equivalence relation on S is not an ordered
semilattice in general. Let A = {c, d, e, f}. Clearly, A is a completely prime
hyperideal of S. By Corollary 3.3, we have
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◦ a b c d e f
a a {a, b} c {c, d} e {e, f}
b b b d d f f
c c {c, d} c {c, d} c {c, d}
d d d d d d d
e e {e, f} c {c, d} e {e, f}
f f f d d f f

ρ := {(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (c, e), (c, f), (d, c), (d, d), (d, e),
(d, f), (e, c), (e, d), (e, e), (e, f), (f, c), (f, d), (f, e), (f, f)} ∈ SR(S).

By Lemma 3.1(ii), (S/ρ, ∗ρ) is a semigroup where S/ρ := {ρ(a), ρ(c)}, ρ(a) =
{a, b} = ρ(b) and ρ(c) = {c, d, e, f} = ρ(d) = ρ(e) = ρ(f).

Assume that ρ is a weak ordered semilattice equivalence relation on S. By
Theorem 5.8, we have the smallest order relation 4ρ on S/ρ with respect to ρ.
Then

α := {(ρ(a), ρ(a)), (ρ(a), ρ(c)), (ρ(c), ρ(a)), (ρ(c), ρ(c))} ⊆4ρ .

Since (ρ(a), ρ(c)), (ρ(c), ρ(a)) ∈4ρ and 4ρ is anti-symmetric, we have ρ(a) = ρ(c)
which is impossible. Consequently, ρ is not a weak ordered semilattice. Therefore,
any semilattice equivalence relation on ordered semihypergroups does not need to
be weak ordered semilattice in general which leads to answer our problem.

Finally, we give a characterization of the strongly ordered regular and the weak
ordered semilattice equivalence relation on ordered semihypergroups.

Definition 5.10. Let (S, ◦,6) be an ordered semihypergroup and ρ be a (strongly)
regular equivalence relation on S. A sequence ρ(x), ρ(a1), ρ(a2), ..., ρ(an), ρ(y) of
S/ρ is called a ρ-classes-chain if ρ(x) α ρ(a1) α ρ(a2) α ... α ρ(an) α ρ(y) where
α is defined in Theorem 5.8. A ρ-classes-chain is called a ρ-classes-cyclic if and
only if (x, y) ∈ ρ and a1, a2, ..., an /∈ ρ(x).

Theorem 5.11. Let S be an ordered semihypergroup and ρ be a strongly regular
equivalence relation on S. Then, ρ is strongly ordered regular if and only if S/ρ
does not contain the ρ-classes-cyclic.

Proof. (⇒) Let ρ be a strongly ordered regular equivalence relation on S. Then,
there exists an order relation 4 on S/ρ such that (S/ρ, ∗ρ,4) is an ordered semi-
group and the mapping ϕ : S → S/ρ by x 7→ ρ(x) is a normal homomorphism. As-
sume that S/ρ has a ρ-classes-cyclic ρ(a) α ρ(b1) α ρ(b2) α ... α ρ(bn) α ρ(a). Then
b1, ..., bn /∈ ρ(a). By the definition of α, there exist a′, a′′ ∈ ρ(a), b′i, b

′′
i ∈ ρ(bi), for

all i = 1, ..., n, such that a′ 6 b′1, b′′i 6 b′i+1 and b′′n 6 a′′ for all i = 1, ..., n−1. It fol-
lows that ϕ(a′) 4 ϕ(b′1), ϕ(b′′i ) 4 ϕ(b′i+1) and ϕ(b′′n) 4 ϕ(a′′) for all i = 1, ..., n−1.
We have

ρ(a) = ρ(a′) 4 ρ(b′1) = ρ(b1) = ρ(b′′1) 4 ... 4 ρ(b′n) = ρ(bn) = ρ(b′′n) 4 ρ(a′′) = ρ(a).
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Since 4 is anti-symmetric on S/ρ, we have ρ(a) = ρ(b1) = ... = ρ(bn). This
implies that b1, ..., bn ∈ ρ(a) which is a contradiction. Thus S/ρ does not contain
the ρ-classes-cyclic.

(⇐) Suppose that S/ρ does not contain the ρ-classes-cyclic. Since ρ is a
strongly regular equivalence relation on S, by Lemma 3.1(ii), we obtain that
(S/ρ, ∗ρ) is a semigroup. Let 4ρ be the relation which was defined in Theo-
rem 5.8. Consequently, the rest of the proof in this theorem that 4ρ is reflexive.
Let (ρ(x), ρ(y)) ∈4ρ and (ρ(y), ρ(x)) ∈4ρ. Then, there exist m,n ∈ N such that
(ρ(x), ρ(y)) ∈ αm and (ρ(y), ρ(x)) ∈ αn. There are ρ(a1), ..., ρ(am−1), ρ(b1), ...,
ρ(bn−1) ∈ S/ρ such that

ρ(x) α ρ(a1) α ... α ρ(am−1) α ρ(y) α ρ(b1) α ... α ρ(bn−1) α ρ(x).

Since S/ρ does not contain the ρ-classes-cyclic, we get a1, ..., am−1, y, b1, ..., bn−1 ∈
ρ(x) and then ρ(x) = ρ(y). Using the similar proof of Theorem 5.8, we conclude
that ρ is strongly ordered regular on S.

Corollary 5.12. Let ρ ∈ SR(S). Then, ρ is a weak ordered semilattice if and
only if S/ρ does not contain the ρ-classes-cyclic.
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