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Operadic approach to HNN-extensions

of Leibniz algebras

Georg Klein and Chia Zargeh

Abstract. We construct HNN-extensions of Lie di-algebras in the variety of di-algebras and
provide a presentation for the replicated HNN-extension of a Lie di-algebras. Then, by applying
the method of Gröbner-Shirshov bases for replicated algebras, we obtain a linear basis. As
an application of HNN-extensions, we prove that Lie di-algebras are embedded in their HNN-
extension.

1. Introduction
The Higman-Neuman-Neumann extension (HNN-extension) of a group was origi-
nally introduced in [8], and has been used for the proof of a well-known embedding
theorem, that every countable group is embeddable into a group with two gener-
ators. For a group G and an isomorphism φ between two of its subgroups A and
B, the HNN-extension H of G by an element t is defined by putting t−1at = φ(a)
for every a ∈ A. Thus the group H is presented by

H = 〈G, t | t−1at = φ(a), a ∈ A〉

which implies that G is embedded in H. HNN-extensions for (restricted) Lie alge-
bras were constructed independently by Lichtman and Shirvani [12] and Wasser-
man [19], and this constructions has recently been extended to generalized ver-
sions of Lie algebras, namely Leibniz algebras [11], Lie superalgebras [10], and
Hom-settings of Lie algebras [18]. As an application of HNN-extensions, Wasser-
man [19] obtained some results analogous to the group theoretic ones and proved
that Markov properties of finitely presented Lie algebras are undecidable. More-
over, HNN-extensions are used to prove an essential theorem concerning embed-
dability of algebraic structures into two-generated ones. Ladra et al. [11] used
the Composition-Diamond Lemma (CD-Lemma, for short) for di-algebras in order
to prove that every dialgebra embeds into its HNN-extension. By the Poincaré-
Birkhoff-Witt theorem (PBW theorem, for short), they transferred their results
to Leibniz algebras. The CD-Lemma is the key ingredient of Gröbner-Shirshov
bases theory and it is a powerful tool in combinatorial algebra to obtain normal
forms, solutions to the word problem, extensions, and embedding theorems. The
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theory of Gröbner-Shirshov bases is parallel to the theory of Gröbner bases and
was introduced for ideals of free (commutative, anti-commutative) non associative
algebras, free Lie algebras, and simplicity free associative algebras by Shirshov,
see [3, 16, 17]. This theory has been transferred to different algebraic structures
in the last twenty years. The reader interested in Gröbner-Shirshov bases and its
applications is encouraged to study the recently published book by Bokut et al. [4]
for a comprehensive account.

As there are no Gröbner-Shirshov bases for Leibniz algebras, Gubarev and
Kolesnikov [7, 9] introduced a replication procedure based on operads in order to
fill this gap. Accordingly, given the variety of Lie algebras governed by an operad
Lie, its replicated variety is denoted by di-Lie and it is governed by the Hadamard
product of operads Perm⊗P, where Perm is the operad corresponding to the va-
riety of Perm-algebras [6]. In this paper, we use Kolesnikov’s approach in order to
provide another version of HNN-extensions of Leibniz algebras. Leibniz algebras
are non-antisymmetric generalization of Lie algebras introduced by Bloh [2] and
Loday [13, 14], and they have many applications in both pure and applied math-
ematics and physics. Therefore, many known results of the theory of Lie algebras
as well as combinatorial group theory have been extended to Leibniz algebras in
the last two decades, see [1, 10, 20].

This paper is organized as follows. In Section 2, we recall the notions of operad
and replicated algebras. In Section 3, the theory of Gröbner-Shirshov bases for
Lie algebras will be recalled. In Section 4, we implement the replication procedure
to define Gröbner-Shirshov bases for HNN-extensions of Lie di-algebras (Leibniz
algebras).

2. Overview on operads and replicated algebras

Operads first appeared in algebraic topology. Recently, the theory of operads has
experienced developments in several directions and has been used to investigate
complicated algebraic structures. For our purpose, operads based on the category
of vector spaces play an important role in the replication procedure to determine
Gröbner-Shirshov bases. In this section, we recall fundamental concepts of operads
from the algebraic point of view. For a detailed explanation of the notion of
operads, the reader is referred to [6, 15]. There are several definitions of operads:
for instance, the monoidal definition of operads and the combinatorial definition.
The first one is based on the concept of monoidal category of S-modules and the
latter is given by rooted trees for symmetric operads and by planar rooted trees
for nonsymmetric operads. We provide the monoidal definition of operads in what
follows.

Let P be a variety of algebras defined by polynomial identities (for instance,
associative algebras, Lie algebras, etc.) and denote by P(V ) the free algebra over
the finite-dimensional vector space V . P can be considered a functor from the
category of finite-dimensional vector spaces V ect to itself. In addition, the map
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V → P(V ) gives a natural transformation Id→ P. By Schur’s lemma, P(V ) is of
the form

P(V ) = ⊕n>1P(n)⊗Sn V
⊗n,

for some right Sn-module P(n), where Sn is the symmetric group of degree n. By
applying the universal property of the free algebra to Id : P(V ) → P(V ), one
obtains a natural map P(P(V )) → P(V ). This map is a natural transformation
of functors γ : P ◦ P → P, which is associative with unit.

Definition 2.1. An algebraic operad is a functor P : V ect → V ect, such that
P(0) = 0, equipped with a natural transformation of functors P ◦P → P which is
associative with unit 1 : Id→ P.

For two operads P1 and P2, a morphism from P1 to P2 is a family f = {fn}n>1

of linear maps fn : P1(n)→ P2(n) for n > 1 preserving the composition rule and
the identity.

Let us consider P(V ) and P ◦ P(V ) in terms of vector spaces of the n-ary
operations defined on a type of algebra denoted by P(n) : V ⊗n → V . Then the
operation γ is defined by the linear maps

P(n)⊗ P(i1)⊗ · · · ⊗ P(in)→ P(i1 + · · ·+ in),

and an algebra of type P is defined by P⊗Sn
V ⊗n → V . The family of Sn-modules

{P(n)}n>1 is called an S-module. The left adjoint functor exists and gives rise to
the free operad over an S-module.

Quadratic operads govern varieties of binary algebras defined by multilinear
identities of degree 2 and 3. In what follows, we intend to describe quadratic
operads Lie and Perm, which are governing the variety of Lie algebras and Perm-
algebras (see [21] for Perm-algebras), respectively. Indeed, by considering a space
of binary operations denoted by E and the space of relations R, a quadratic operad
can be defined.

Definition 2.2. (cf. [7]) A binary operad is an operad generated by operations
on two variables. More explicitly, let E be an S2-module (module of generating
operators) such that the action of S2 on E ⊗ E is on the second factor only. In
other words, the action of (12) ∈ S2 on E⊗E is given by id⊗(12). A binary operad
is quadratic if it is the quotient by the ideal generated by some S3-submodule R
of

FE(3) = KS3 ⊗S2
(E ⊗ E),

the space of all the operations on 3 variables which can be performed out of the
operations of 2 variables.

Example 2.3. (cf. [7]) The space E of binary operations (Lie brackets) is consid-
ered an S2-module. If µ is an element of E representing a Lie bracket as (x1, x2) 7→
[x1, x2], then µ(12) corresponds to (x1, x2) 7→ [x2, x1] and µ(21) = −µ. The space of
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multilinear terms of degree 3 is identified with FE(3) = KS3 ⊗S2 (E ⊗E) defined
as above. We have µ⊗ µ ∈ E ⊗ E and the elements of E(3) are described as:

KS3 ⊗S2 (E ⊗ E) Appropriate Monomial
1⊗S2 (µ⊗ µ) [[x1, x2], x3]

1⊗S2 (µ⊗ µ(12)) [[x2, x1], x3]

1⊗S2 (µ(12) ⊗ µ) [x3, [x1, x2]]

1⊗S2 (µ(12) ⊗ µ(12)) [x3, [x2, x1]]

(13)⊗S2 (µ⊗ µ) [[x3, x2], x1]

(13)⊗S2 (µ⊗ µ(12)) [[x2, x3], x1]

(13)⊗S2 (µ(12) ⊗ µ) [x1, [x3, x2]]

(13)⊗S2 (µ(12) ⊗ µ(12)) [x1, [x2, x3]]

(23)⊗S2 (µ⊗ µ) [[x1, x3], x2]

(23)⊗S2 (µ⊗ µ(12)) [[x3, x1], x2]

(23)⊗S2 (µ(12) ⊗ µ) [x2, [x1, x3]]

(23)⊗S2 (µ(12) ⊗ µ(12)) [x2, [x3, x1]]

The operad Lie is the quotient Lie = ELie/RLie, where ELie is the space of Lie
brackets and RLie is the S3-submodule of E⊗E generated by the Jacobiator which
is the following sum

1⊗S2 (µ⊗ µ) + (13)⊗S2 (µ⊗ µ(12)) + (23)⊗S2 (µ⊗ µ(12)) = 0.

Example 2.4. Let Perm-algebra be the variety of associative algebras satisfying
the identity

(x1x2)x3 = (x2x1)x3.

The variety of Perm-algebras is defined as Perm(n) = Kn with standard basis e(n)
i

for i = 1, . . . , n. Every e(n)
i can be identified with an associative and commutative

poly-linear monomial in x1, . . . , xn with one emphasized variable xi. Let

e
(n)
i = (x1 · · ·xi−1xi+1 · · ·xn)xi,

i = 1, . . . , n. Then {e(n)
1 , . . . , e

(n)
n } is a standard basis. Define the composition and

the action of the symmetric group Sn as follows:

γm1,...,mn(e
(n)
i ⊗ e(m1)

j1
⊗ · · · ⊗ e(mn)

jn
) = e

(m)
m1+···+mn−1+ji

and
σ : e

(n)
i 7→ e

(n)
iσ

where m1 + · · ·+mn = m. This yields a symmetric operad denoted by Perm.

Given a variety which is governed by the operad Var, its replicated variety is
denoted by di-Var and governed by the following Hadamard product of operads

di-Var = Var ⊗ Perm.
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The Hadamard tensor product has a natural operad structure and the composition
maps are expanded componentwise. A permutation σ ∈ Sn acts on the Hadamard
product as σ ⊗ σ. For A ∈ Var, P ∈ Perm, the tensor product A ⊗ P equipped
with the operations

fi(x1 ⊗ a1, . . . , xn ⊗ an) = f(a1, . . . , an)⊗ e(n)
i (x1, . . . , xn), (1)

f ∈ Σ, ν(f) = n, xi ∈ P , ai ∈ A, i = 1, . . . , n

belongs to the variety di-Var. In general, finding the generators and defining rela-
tions of the Hadamard product is difficult. However, if Var is a binary quadratic
operad, i.e. an operad corresponding to a variety whose defining identities have de-
grees 2 or 3, the Hadamard tensor product Var⊗Perm coincides with the Manin
white product and is denoted by Var ◦ Perm, [7]. Accordingly, it is proved that
Leib = Lie ◦ Perm, where Leib is the operad governing the variety of Leibniz
algebras.

In order to clarify the operations (1), we construct [x, y] ⊗ e(2)
1 , where e(2)

1 ∈
Perm(2). We have

[x, y]⊗ e(2)
1 = xy ⊗ e(2)

1 − yx⊗ e
(2)
1 = xy ⊗ e(2)

1 + ((xy)⊗ e(2)
2 )(12).

The Leibniz multiplication is defined as

[x a y] = x a y − y ` x,

which gives the right Leibniz algebra. Similarly, by computing [x, y]⊗e(2)
1 , the left

Leibniz algebra can be obtained.

2.1. Replication of variety of Lie algebras [6, 9]
Kolesnikov [9] provided a construction of the free tri-Var〈X〉 generated by a given
set X in the variety tri-Var and obtained essential results. In what follows, anal-
ogous results in the di-Var setting will be provided in accordance with [6] and [9].

Let (Σ, ν) be a set of operations Σ together with an arity function ν : Σ→ Z+

which is called a language. A Σ-algebra is a linear space A equipped with polylinear
operations f : A⊗n → A, f ∈ Σ, n = ν(f). Denote by Alg = AlgΣ the class of
all Σ-algebras, and let Alg〈X〉 be the free algebra generated by X. A replicated
language is defined as follows:

Σ(2) = {fi | f ∈ Σ, i = 1, . . . , ν(f)}, ν(2)(fi) = ν(f).

If Σ consists of one binary operation, then AlgΣ〈X〉 is a magmatic algebra and
the replicated language Σ(2) is the set of binary operations {`,a}. We put
Alg(2) = AlgΣ(2) . Let Var be a variety of Σ-algebras satisfying a family of polylin-
ear identities S(Var) ⊂ Alg〈X〉. We obtain a Σ2-identity in S(Var) by replacing
all products with either a or ` in such a way that all horizontal dashes point to a
selected variable. To illustrate this, we have the following example.
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Example 2.5. Let |Σ| = 1 and Lie be the variety of Lie algebras. Then Σ(2)

includes two binary operations f1 = [x a y] and f2 = [x ` y].

In what follows, we recall the concept of averaging operators which provides
an equivalent definition for di-Var.

Definition 2.6. (cf. [6]) Suppose A is a Σ-algebra. A linear map t : A → A is
called an averaging operator on A if

f(ta1, . . . , tan) = tf(ta1, . . . , tai−1, ai, tai+1, . . . , tan)

for all f ∈ Σ, ν(f) = n, aj ∈ A, i, j = 1, . . . , n. The operator t is called a
homomorphic averaging operator if f(ta1, . . . , tan) = tf(aH1 , . . . , a

H
n ), where H is

in the collection of all nonempty subsets of {1, . . . , n}, and

aHi =

{
ai i ∈ H
tai i /∈ H. (2)

If t is an averaging operator of the Σ-algebra A, denote by A(t) the following
Σ(2)-algebra

fH(a1, . . . , an) = f(aH1 , . . . , a
H
n ),

where f ∈ Σ, ν(f) = n, ai ∈ A and aHi are given by (2). Then the next theorem
provides an equivalent definition of di-Var by means of averaging operators.

Theorem 2.7. (cf. [6]) Suppose ν(f) > 2 for all f ∈ Σ.
(1) If A ∈ Var and t is an averaging operator on A then A(t) is a di-Var

algebra.
(2) Every D ∈ di-Var may be embedded into A(t) for an appropriate A ∈ Var

with an averaging operator t.

Let us consider the free Lie algebra Lie〈X ∪ Ẋ〉 generated by a given set
X and its copy Ẋ = {Ẋ | x ∈ X} in the variety Lie. There exists a unique
homomorphism φ : Lie〈X ∪ Ẋ〉 → Lie〈X〉 defined by x 7→ x, ẋ 7→ x, x ∈ X. We
define Lie(2)〈X ∪ Ẋ〉 with the following binary operations:

f ` g = φ(f)g, f a g = fφ(g)

for f, g ∈ Lie〈X ∪ Ẋ〉.

Lemma 2.8. The algebra Lie(2)〈X ∪ Ẋ〉 belongs to di-Lie.

Proof. We have φ2 = φ, so φ(φ(f)g) = φ(fφ(g)) = φ(fg) for f, g ∈ Lie(2)〈X∪Ẋ〉,
which shows that φ is an averaging operator on Lie(2)〈X∪Ẋ〉. Thus Lie(2)〈X∪Ẋ〉
belongs to di-Lie.

The next lemma and theorem have been proved in the case of tri-algebras in [9].
We restate them in terms of free Leibniz algebras in the variety di-Lie.
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Lemma 2.9. The subalgebra V of Lie(2)〈X ∪ Ẋ〉 generated by Ẋ coincides with
the subspace W of Lie〈X ∪ Ẋ〉 spanned by all monomials u such that the degree
of u with respect to the variables from Ẋ is not zero, i.e. degẊu > 0.

Theorem 2.10. The subalgebra V of Lie(2)〈X ∪ Ẋ〉 is isomorphic to the free
Leibniz algebra in the variety di-Lie generated by X.

Proof. We prove the universal property of V in the class di-Lie. Suppose that
A is an arbitrary Leibniz algebra in di-Lie, and let α : X → A be an arbitrary
map. We construct a homomorphism of Leibniz algebras χ : V → A such that
χ(ẋ) = α(x) for all x ∈ X. The subspace

A0 = span{a ` b− a a b | a, b ∈ A}

is an ideal of A. The quotient Ā = A/A0 has the structure of a Lie algebra.
Consider Â = Ā⊕A with the product:

āb = a ` b, ab̄ = a a b,

for ā, b̄ ∈ Ā, where c̄ = c + A0 ∈ Ā, c ∈ A. Then Â ∈ Lie. We recall that the
Hadamard tensor product Perm ⊗ Lie leads to Leibniz algebras in the variety
di-Lie. We construct α̂ : X ∪ Ẋ → Â as α̂(x) = αx ∈ Ā, α̂(ẋ) = α(x) ∈ A for
x ∈ X. The map α̂ induces a homomorphism of Lie algebras ψ̂ : Lie〈X ∪ Ẋ〉 → Â.
Define ψ : Lie〈X ∪ Ẋ〉 → C2 ⊗ Â by

ψ(f) = e1 ⊗ ψ̂(φ(f)) + e2 ⊗ ψ̂(f), f ∈ Lie〈X ∪ Ẋ〉.

Note that ψ is a homomorphism of di-algebras. Now for all f, g ∈ Lie〈X ∪ Ẋ〉 and
∗ ∈ {a,`},

ψ(f) ∗ ψ(g) = (e1 ⊗ ψ̂(φ(f)) + e2 ⊗ ψ̂(f)) ∗ (e1 ⊗ ψ̂(φ(g)) + e2 ⊗ ψ̂(g))

= (e1 ∗ e1)⊗ ψ̂(φ(f)φ(g)) + (e1 ∗ e2)⊗ ψ̂(φ(f)g)

+ (e2 ∗ e1)⊗ ψ̂(fφ(g)) + (e2 ∗ e2)⊗ ψ̂(fg).

By computation of ψ(f ∗ g) and since φ is a homomorphic averaging operator,
we observe that ψ(f) ` ψ(g) = e1 ⊗ ψ̂(φ(fg)) + e2 ⊗ ψ̂(φ(f)g) = ψ(f ` g) and
ψ(f) a ψ(g) = e1⊗ ψ̂(φ(fg))+e2⊗ ψ̂(fφ(g)) = ψ(f a g). From the definition of ψ
we see that ψ(ẋ) = i(α(x)), where i : A→ C2⊗ Â given by i : a 7→ e1⊗ ā+ e2⊗ a,
a ∈ A. Therefore, the homorphism χ can be constructed as

χ = i−1 ◦ ψ|V : V → A.

The next example shows how a linearly ordered set X and the defined ordering
can be extended to X ∪ Ẋ, where Ẋ is considered a copy of X.
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Example 2.11. (cf. [9]) Suppose that X is a linearly ordered set and extend the
order to X ∪ Ẋ as

x > y ⇒ ẋ > ẏ, ẋ > y

for all x, y ∈ X. The standard bracketing of u is denoted by [u]. All words of the
form [· · · [[ẋi1xi2 ]xi3 ] · · ·xin ] are linearly independent in Lie〈X ∪ Ẋ〉. These words
correspond to

[· · · [[xi1 a xi2 ] a xi3 ] · · · a xin ] ∈ di-Lie(X),

where [ a ] satisfies the right Leibniz identity. Therefore, the words of this form
are a linear basis of di-Lie(X).

3. CD-Lemma for Lie algebras
In this section, we briefly recall the main concepts of Gröbner-Shirshov bases
theory for Lie algebras, referring to [5]. Let X be an ordered set and denote by
X∗ and X∗∗ the set of all associative and non-associative words on X, respectively.
We also consider a monomial ordering on X∗. A standard example of monomial
ordering on X∗ is the deg-lex ordering. An associative Lyndon-Shirshov word is
a word greater than any cyclic permutation of itself. A non-associative Lyndon-
Shirshov word is obtained by a unique standard bracketing and defined as follows.

Definition 3.1. Let [u] be a non-associative word. Then [u] is called a non-
associative Lyndon-Shirshov word if

1. u is an associative Lyndon-Shirshov word;
2. if [u] = [[v][w]], then both [v] and [w] are non-associative Lyndon-Shirshov

words;
3. in (2) if [v] = [[v1][v2]], then v2 6 w in X∗.

For an associative Lyndon-Shirshov word u, its bracketing relative to an asso-
ciative Lyndon-Shirshov subword a is denoted by [u]a. In fact [u]a depends on the
representation u = vaw with v, w ∈ X∗. Given a Lie polynomial f ∈ Lie〈X〉, we
can express it as a linear combination of non-associative Lyndon-Shirshov words.
It is obvious that the leading term, f̄ is an associative Lyndon-Shirshov word.

Definition 3.2. For two monic Lie polynomials f and g in Lie〈X〉, their compo-
sition is denoted by (f, g)w and defined as follows:
• Let w = f̄a = bḡ. Then (f, g)w = [fb]f̄−[ag]ḡ such that deg(f̄)+deg(ḡ) > deg(w)
is called the intersection composition.
• Let w = f̄ = aḡb. Then the composition (f, g)w = f − [agb]ḡ is called the inclu-
sion composition, where a, b ∈ X∗.

The notations [fb]f̄ , [ag]ḡ and [agb]ḡ imply a special bracketing with respect
to the subword f̄ or ḡ.
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Let S ⊂ Lie〈X〉 be a set of monic Lie polynomials, the composition (f, g)w is
called trivial modulo S if

(f, g)w =
∑

αiaisibi

where αi ∈ K, ai, bi ∈ X∗ and si ∈ S with ais̄ibi < w.

Definition 3.3. The set S ⊂ Lie〈X〉 is called Gröbner-Shirshov basis if any com-
position of polynomials from S is trivial modulo S.

The following lemma is called Composition-Diamond Lemma for Lie algebras.

Lemma 3.4. (CD-Lemma for Lie algebras, [5]) Let S ⊂ Lie(X) ⊂ K〈X〉 be a
nonempty set of monic Lie polynomials. Let Id(S) be the ideal of Lie(X) generated
by S. Then the following statements are equivalent.

1. S is a Gröbner-Shirshov basis in Lie(X);
2. f ∈ Id(S)⇒ f̄ = as̄b, for some s ∈ S and a, b ∈ X∗;
3. Irr(S) = {[u] | [u] is a non-associative Lyndon-Shirshov word, u 6= as̄b, s ∈

S, a, b ∈ X∗} is a linear basis of the Lie algebra Lie〈X | S〉 = Lie〈X〉/I(S)
generated by X with defining relations S.

In order to determine a Gröbner-Shirshov basis of an ideal of a Leibniz algebra
L ∈ di-Lie generated by X with set of relations S, we rewrite the relations from
S as elements of Lie〈X ∪ Ẋ〉 and find a Gröbner-Shirshov basis of the ideal I =
(S∪φ(S)) in Lie〈X∪Ẋ〉. The following theorem in [9] is useful for the translation
of a Gröbner-Shirshov basis from the variety Lie to the variety Leib.

Theorem 3.5. Let S ⊂ V ⊂ Lie(2)〈X ∪ Ẋ〉. Then (S)(2) = (S ∪φ(S))∩V , where
(S) stands for the ideal of Lie(2)〈X ∪ Ẋ〉 generated by S.

Proof. Let I = (S ∪ φ(S)). We have

I = ∪s>0Is, I0 ⊂ I1 ⊂ · · · ,
where I0 = span(S ∪ φ(S)), and

Is+1 = Is + Lie〈X ∪ Ẋ〉Is + IsLie〈X ∪ Ẋ〉.
We also consider J = (S)(2). Then

J = ∪s>0Js, J0 ⊂ J1 ⊂ · · · ,
where J0 = span(S), and

Js+1 = Js + V ` Js + Js a V + V a Js + Js ` V + V Js + JsV .

Since S ⊂ V , φ(S) ⊂ Lie(X), and Lie(X)∩V = 0, we have I0∩V = J0. Moreover,
I0 = J0 + I ′0, where I ′0 = spanφ(S) = φ(J0) ⊂ Lie(X). Suppose Is = Js + φ(Js)
for some s > 0. We have Lie〈X ∪ Ẋ〉 = V + Lie(X) and Lie(X) = φ(V ). Then

Is+1 = Is + (V + Lie(X))Is + Is(V + Lie(X))

= Js + φ(Js) + V Js + Lie(X)Js + V φ(Js) + Lie(X)φ(Js)

+ JsV + φ(Js)V + φ(Js)V + φ(Js)Lie(X).
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We note that
V φ(Js) = V a Js, Lie(X)Js = V a Js,

φ(Js)V = Js ` V, JsLie(X) = Js ` V,

and V Js + JsV = 0. Therefore

Is+1 = Js+1 + φ(Js) + φ(Js)Lie(X) + Lie(X)φ(Js)

= Js+1 + φ(Js+1).

We have shown that Is = Js +φ(Js) for all s > 0. Thus Is ∩V = Js which implies
I ∩ V = J .

Corollary 3.6. di-Lie〈X | S〉 is isomorphic to the subalgebra of (Lie〈X ∪ Ẋ〉/I)(2)

generated by Ẋ.

4. Replication of HNN-Extension
The initial approach in [11] for constructing HNN-extensions of Leibniz algebras
is based on the construction of HNN-extensions in the case of di-algebras, which
are closely related to Leibniz algebras, just like associative algebras are related
to Lie algebras. The results were transferred to Leibniz algebras by the PBW
theorem. In this section, we introduce HNN-extensions of Leibniz algebras through
a replication procedure based on operads. The benefit in doing so is that we find
an explicit linear basis for HNN-extensions of Leibniz algebras.

Let L be a right Leibniz algebra over a field K with some bilinear product
[−,−] satisfying the Leibniz identity

[[x, y], z] = [[x, z], y] + [x, [y, z]].

The HNN-extension of Leibniz algebras is defined as

L∗d = 〈L, t | [a, t] = d(a), for all a ∈ A〉,

where d is a derivation map defined on the subalgebra A instead of the whole
algebra L. Also, Ladra et al. [11] defined HNN-extensions of Leibniz algebras cor-
responding to an anti-derivation map in order to prove that every Leibniz algebra
of at most countable dimension is embeddable in a two-generator Leibniz algebra.
We denote the generating sets of L and A by X and B, respectively. Arbitrary
elements of X will be denoted by x, y, z, elements of B by a, b. We recall that
the replication of the skew-symmetric and the Jacobi identities yield the following
identities in the variety di-Lie:

[x ` y] + [y a x] = 0 (3)

and
[[x a y] a z]− [x a [y a z]]− [[x a z] a y] = 0. (4)
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The latter equation is the right Leibniz identity. Therefore, a di-Lie algebra in the
variety di-Lie is considered a left Leibniz algebra with respect to ` or a right Leib-
niz algebra with respect to a. Derivations and anti-derivations of di-Lie algebras
are defined as linear maps d : L→ L and d′ : L→ L satisfying

d([x a y]) = [d(x) a y] + [x a d(y)],

d′([x a y]) = [d′(x) a y]− [d′(y) a x],

for all x, y ∈ L. Therefore right multiplication is a derivation, whereas left mul-
tiplication is an anti-derivation.

We consider the following presentation for HNN-extensions of a Lie di-algebra
in the variety di-Lie with operations [a a b] = [ab] and [b ` a] = −[ba] and denote
it by H. We have

H = 〈X, t | [t a a] = d′(a), [a a t] = d(a) and a ∈ A〉, (5)

where d and d′ are derivation and anti-derivation maps, respectively, defined on
the subalgebra A. Let H0 = span{[x ` y] − [x a y] | x, y ∈ L} with basis X0.
We consider X ∪ Ẋ ∪ {t, ṫ}, where Ẋ is a copy of X and define the ordering
ẋ > ẏ > x > y and ṫ > t such that {t, ṫ} > X ∪ Ẋ. Let S be the set of the
polynomials

1. ḟ1(x, y) = [ẋy]− µ̇a(x, y)

2. ḟ2(y, x) = [ẏx]− µ̇a(y, x)

3. ḟ3(x, x) = [ẋx]− µ̇a(x, x)

4. ġ(a, t) = [ȧt]− µ̇a(a, t)
5. ḣ(t, a) = [ṫa]− µ̇a(t, a)

where µ : X × X → X denotes the multiplication table of a Lie algebra which
is a linear form in X for all x, y ∈ X. By recalling the unique homomorphism
φ : Lie〈X ∪ Ẋ〉 → Lie〈X〉 defined by x 7→ x, ẋ 7→ x, x ∈ X in Section 3, we
have φ(ḟ1) = [xy] − µa(x, y), φ(ḟ2) = [xy] + µa(y, x), φ(ḟ3) = µa(x, x), φ(ḣ) =
[ta]− µa(t, a) and φ(ġ) = [ta] + µa(a, t) with x, y, t, a ∈ X \X0 and consider

S ∪ φ(S) = {ḟ1, ḟ2, ḟ3, ḣ, ġ, φ(ḟ1), φ(ḟ2), φ(ḟ3), φ(ḣ), φ(ġ)}.

The elements of φ(S) have the inclusion compositions µa(x, y)+µa(y, x), µa(x, x)
and µa(t, a) + µa(a, t). Since the linear space spanned by these compositions
coincides with H0, we add letters X0 to S ∪ φ(S). Moreover, by µa(X,X0) = 0
and µa(X0, X) ⊂ X0 we can reduce S ∪ φ(S) to the following set

S ∪ φ(S) = {ḟ1, ḟ2, ḟ3, ḣ, ġ, φ(ḟ1), φ(ḟ3), φ(ḣ)}. (6)

In the next theorem, we implement Kolesnikov’s approach [9] in order to obtain a
linear basis for H, an HNN-extension of a Lie di-algebra.
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Theorem 4.1. The relations in S ∪ φ(S) ∪ X0 in (6) form a Gröbner-Shirshov
basis for H.

Proof. The relations [xy] = µa(x, y) for x, y ∈ X \X0, x > y and [ta] = µa(t, a)
for t, a ∈ X \X0, t > a correspond to the multiplication table of the Lie algebra
H̄ = H/H0 and their intersection compositions are trivial. Considering (4) and
the relations between multiplications of a Lie algebra, we compute other possible
compositions as follows:

(i) ḟ1 = ẋy − yẋ − µ̇a(x, y), φ(ḟ1) = yz − zy − µa(y, z), w = ẋyz, where
y, z ∈ X \X0, y > z and x ∈ X.
(ḟ1, φ(ḟ1))w = ḟ1z − ẋφ(ḟ1) = −yẋz − µ̇a(x, y)z + ẋzy + ẋµa(y, z)

≡ −yzẋ− yµ̇a(x, z)− µ̇a(x, y)z + zẋy + µ̇a(x, z)y + ẋµ̇a(y, z)

≡ −zyẋ− µa(y, z)ẋ− yµ̇a(x, z)− µ̇a(x, y)z + zyẋ+ zµ̇a(x, y)

+ µ̇a(x, z)y + ẋµa(y, z)

= µ̇a(µ̇a(x, z), y) + µ̇a(ẋ, µa(y, z)) + µ̇a(z, µ̇a(x, y)) = 0.
(ii) ḟ1 = ẋy − yẋ − µ̇a(x, y), φ(ḟ2) = yz − zy + µa(z, y), w = ẋyz, where

y, z ∈ X \X0, y > z and x ∈ X.
(ḟ1, φ(ḟ2))w = ḟ1z − ẋφ(ḟ2) = −yẋz − µ̇a(x, y)z + ẋzy − ẋµa(z, y)

≡ −ẋyz + µ̇a(x, y)z − µ̇a(x, y)z + ẋzy − ẋµa(z, y) = 0.

(iii) ḟ3 = ẋx − xẋ − µ̇a(x, y), φ(ḟ1) = xy − yx − µa(x, y), w = ẋxy, where
x, y ∈ X \X0, x > y.
(ḟ3, φ(ḟ1))w = ḟ3y − ẋφ(ḟ1) = −xẋy − µ̇a(x, x)y + ẋyx+ ẋµa(x, y)

≡ −xyẋ− xµ̇a(x, y)− µ̇a(x, x)y + yẋx+ µ̇a(x, y)x+ ẋµ̇a(x, y)

≡ (yx− xy)ẋ− xµ̇a(x, y)− µ̇a(x, x)y + yµ̇a(x, x) + µ̇a(x, y)x

+ ẋµ̇a(x, y)

= µ̇a(y, µa(x, x)) + µ̇a(ẋ, µa(x, y))− µ̇a(µa(x, y), ẋ) = 0.

(iv) ḣ = ṫa−aṫ−µ̇a(t, a), φ(ḟ1) = ab−ba−µa(a, b), w = ṫab, where a, b ∈ X\X0,
a > b.

(ḣ, φ(ḟ1))w = ḣb− ṫφ(ḟ1) = −aṫb− µ̇a(t, a)b+ ṫba+ ṫµa(a, b)

≡ −abṫ− aµ̇a(t, b)− µ̇a(t, a)b+ bṫa+ µ̇a(t, b)a+ ṫµa(a, b)

≡ −abṫ− aµ̇a(t, b)− µ̇a(t, a)b+ baṫ+ bµ̇a(t, a) + µ̇a(t, b)a

+ ṫµa(a, b)

= µ̇a(µ̇a(t, b), a) + µ̇a(b, µ̇a(t, a))− µ̇a(t, µa(a, b)) = 0.

(v) ġ = ȧt− tȧ− µ̇a(a, t), φ(ḣ) = ta− at− µa(t, a), w = ȧta, where a ∈ X \X0,
t > a.
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(ġ, φ(ḣ))w = ġa− ȧφ(ḣ) = −tȧa− µ̇a(a, t)a+ ȧat+ ȧµa(t, a)

≡ −taȧ− tµ̇a(a, a)− µ̇a(a, t)a+ aȧt+ µ̇a(a, a)t+ ȧµa(t, a)

≡ −atȧ− µa(t, a)ȧ+ tµ̇a(a, a)− µ̇a(a, t)a+ aȧt+ µ̇a(a, a)t

+ ȧµ̇a(t, a)

≡ −µa(t, a)ȧ+ tµ̇a(a, a)− µ̇a(a, t)a+ aµ̇a(a, t) + µ̇a(a, a)t

+ ȧµ̇a(t, a)

= µ̇a(µ̇a(a, a), t) + µ̇a(a, µa(t, a) + µ̇a(a, µ̇a(a, t)) = 0.

There is no composition between elements of {ḟ1, ḟ2, ḟ3, ḣ, ġ}. We denote, for
example, (a∧ b) the composition of the polynomials of type (a) and type (b). The
intersection compositions ḟ2 ∧ φ(ḟ1), ḟ2 ∧ φ(ḟ2), ḟ3 ∧ φ(ḟ2), ḣ∧ φ(ḟ2) and ġ ∧ φ(ġ)
are trivial modulo S ∪ φ(S) ∪X0 similar to the cases (i), (ii), (iii), (iv) and (v),
respectively. Also, by straightforward computation we observe that the inclusion
compositions ḟ1 ∧ φ(ḟ3), ḟ2 ∧ φ(ḟ3), ḟ3 ∧ φ(ḟ3) and ḣ ∧ φ(ḟ3) are trivial modulo
S ∪ φ(S) ∪X0.

From the CD-Lemma 3.4, we get a normal form for the elements of the HNN-
extension.

Corollary 4.2. A linear basis for H is given by all the Lyndon-Shirshov words
on X ∪ Ẋ ∪ {t, ṫ} which do not contain subwords from the set X0 or of the form
xy with x, y ∈ X \X0 and x > y, ta with a ∈ B, ẋy or ẋx with x, y ∈ X, ṫa with
a ∈ B.

Corollary 4.3. The isomorphic copy of the Lie di-algebra L̇ is embedded in H.

Proof. All the elements of Ẋ are words in normal form.
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