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On topological n-ary semigroups

Wiesªaw A. Dudek and Vladimir V. Mukhin

Abstract

In this note some we describe topologies on n-ary semigroups induced by families
of deviations.

1. Introduction
Topological n�groups were investigated by many authors. For ex-
ample, �upona proved in [5] that each topological n�group can be
embedded into a topological group. �iºovi¢ described topological me-
dial n�groups (cf. [20]), topological n�groups with the Baire property
(cf. [21]) and proved a topological analog of Hosszú theorem (cf. [19]).
Crombez and Six described a fundamental system of open neighbor-
hoods of a �xed element (cf. [4]). Endres proved that every topo-
logical n�group is homeomorphic to some canonical topological group
(cf. [9]). Topologies induced by norms are considered by Boujuf and
Mukhin (cf. [2] ). Balci Dervis ( cf. [1] ) described free topological
n�groups. In [12] is described a method of embedding topological
abelian n�semigroups in topological n�group.

On the other hand, we known that topological n�semigroups have
many properties which are not true for binary semigroups.

In this paper we investigate topologies on n�semigroups and n�
groups determined by families of left invariant deviations. We describe
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the conditions under which such topology is compatible with the n�
ary operation. We �nd also the necessary and su�cient conditions for
the topologically embedding a semiabelian topological n�semigroup in
a topological n�group.

2. Preliminaries
Traditionally in the theory of n-ary groups we use the following abbre-
viated notation: the sequence xi, ..., xj is denoted by xj

i (for j < i
this symbol is empty). If xi+1 = ... = xi+k = x, then instead of xi+k

i+1

we write (k)
x . Obviously (0)

x is the empty symbol. In this notation the
formula

f(x1, ..., xi, xi+1, ..., xi+k, xi+k+1, ..., xn) ,

where xi+1 = ... = xi+k = x , will be written as f(xi
1,

(k)
x , xn

i+k+1) .
If m = k(n− 1) + 1, then the m-ary operation g given by

g(x
k(n−1)+1
1 ) = f(f(..., f(f︸ ︷︷ ︸

k−times

(xn
1 ), x2n−1

n+1 ), ...), x
k(n−1)+1
(k−1)(n−1)+2)

will be denoted by f(k). In certain situations, when the arity of g does
not play a crucial role, or when it will di�er depending on additional
assumptions, we write f(.) , to mean f(k) for some k = 1, 2, ....

An n�ary operation f de�ned on G is called associative if

f(f(xn
1 ), x2n−1

n+1 ) = f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i )

holds for all x1, x2, ..., x2n−1 ∈ G and i = 1, 2, ..., n. The set G
together with one associative operation f is called an n�ary semigroup
(brie�y: n�semigroup). An n�semigroup (G, f) in which for for all
a1, a2, ..., an, b ∈ G there exits an uniquely determined xi ∈ G such
that f(ai−1

1 , xi, a
n
i+1) = b is called an n�group.

From this de�nition it follows that a group (a semigroup) is a 2-
group (a 2�semigroup) in the above sense. Moreover, it is worthwhile
to note that, under the assumption of the associativity of f , it su�ces
only to postulate the existence of a solution of the last equation at
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the places i = 1 and i = n or at one place i other than 1 and n (cf.
[13], p.21317). This means that an n�group may be considered as an
algebra (G, f, f1, fn) with one associative n�ary operation f and two
n�ary operations f1, fn such that

f(f1(a
n
2 , b), a

n
2 ) = f(an

a , fn(an
2 , b)) = b (1)

for all an
2 , b ∈ G.

Following E.L.Post ([13], p.282) the solution of the equation

f(x, a, ..., a, f(a, ..., a)) = a

is denoted by a[−2]. An n�semigroup (G, f) with an unary operation
[−2] : G → G satisfying some natural identities is an n�group (cf.
[16]).

The map x 7→ f(aj−1
1 , x, an

j+1) is called an j�th n�ary translation
determined by a1, ..., an. In an n�group each n�ary translation is a
bijection.

In an n�group (G, f) for any sequence an−2
1 there exists only one

a ∈ G such that

f(x, an−2
1 , a) = f(an−2

1 , a, x) = f(a, an−2
1 , x) = f(x, a, an−2

1 ) = x

for all x ∈ G (cf. [17]). An element a is called inverse for an−2
1 . In the

binary case, i.e. in the case n = 2, when the sequence an−2
1 is empty

by the inverse we mean the neutral element of a group (G, f) .
A sequence an

2 is called a left (right) neutral sequence if f(an
2 , x) =

x (respectively f(x, an
2 ) = x) holds for all x ∈ G. A left and right

neutral sequence is called a neutral sequence. In an n�group for every
sequence an−2

1 may be extended to a neutral sequence, but there are
n�semigroups without left (right) neutral sequences.

Let (G, f) be an n�semigroup and let an−1
2 be �xed. Then (G, ∗),

where
x ∗ y = f(x, an−1

2 , y) (2)
is a semigroup, which is called a binary retract of (G, f) and is denoted
by retan−1

2
(G, f). A binary retract of an n�group is a group. Moreover,

all binary retracts of a given n�group are isomorphic (cf. [7]), but n�
groups with the same retract are not isomorphic, in general.
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By so-called Hosszú theorem (cf. [11] or [7]), every n�group (G, f)
has the form

f(xn
1 ) = x1 ∗ β(x2) ∗ β2(x3) . . . ∗ βn−1(xn) ∗ b , (3)

where an
2 is a �xed right neutral sequence of (G, f) , (G, ∗) =

retan−1
2

(G, f), b = f(
(n)
an) and β(x) = f(an, x, an−1

2 ).
The identical result holds for n�semigroups with a right neutral

sequence.

3. Topology
An n�semigroup (G, f) de�ned on a topological space (G, T ) is called
a topological n�semigroup if the operation f is continuous in all vari-
ables together.

A topological n�group is de�ned as a topological n�semigroup with
two additional continuous operations f1 and fn satisfying (1) (cf. [5]).
A topological n�group may be de�ned also a topological n�semigroup
with additional continuous operation [−2]. These de�nitions are equiv-
alent (cf. [15]).

It is clear that retracts of a topological n�semigroup (n�group) are
topological semigroups (groups). Obviously all translations of a topo-
logical n�semigroup (n�group) are continuous maps. On the other
hand, every n�ary operation which may by written in the form (3),
where ∗ and β are continuous, is continuous in all variables together.
Thus the following lemma is true.

Lemma 3.1. Assume that an n�semigroup (G, f) with a topology T
has a right neutral sequence an

2 . Then (G, f, T ) is a topological n�
semigroup if and only if retan−1

2
(G, f) is a topological semigroup and

β(x) = f(an, x, an−1
2 ) is continuous.

Corollary 3.2. An n�group (G, f) de�ned on a topological space
(G, T ) is a topological n�group if and only if there exists a right neu-
tral sequence an

2 such that x ∗ y = f(x, an−1
2 , y), β(x) = f(an, x, an−1

2 )
and [−2] : x 7→ x[−2] are continuous.
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Proposition 3.3. An n�group (G, f) de�ned on a topological space
(G, T ) is a topological n�group if and only if there exists a right neu-
tral sequence an

2 such that retan−1
2

(G, f) is a topological semigroup,
β(x) = f(an, x, an−1

2 ) and s : x → s(x), where f(s(x), an−1
2 , x) = an,

are continuous.

Proof. Let an
2 be a �xed right neutral sequence on an n�group (G, f) .

If (G, ∗) = retan−1
2

(G, f) is a topological semigroup and β(x) =

f(an, x, an−1
2 ) is continuous, then (G, f) is a topological n�semigroup

by Lemma 3.1.
Moreover, an is the neutral element of (G, ∗) and s(x) is the

solution of f(s(x), an−1
2 , x) = an, i.e. s(x) ∗ x = an in (G, ∗). Thus

s(x) is the inverse of x in (G, ∗). Hence (G, ∗) is a topological group,
because s(x) is continuous, by the assumption.

Since f(z, cn
2 ) = f(f(z, an

2 ), cn
2 ) = z ∗ f(an, c

n
2 ) for all cj ∈ G,

then the solution z of f(z, cn
2 ) = b in (G, f) is the solution of

z ∗ f(an, cn
2 ) = b in (G, ∗), then z continuously depends on b and

f(an, cn
2 ). Thus z is a continuous function of variables b, c2, ..., cn.

This, for b = c2 = ... = cn−1 = x, cn = f(x, ..., x), implies that
z = x[−2] is a continuous function of x. Thus (G, f) is a topological
n�group.

The converse is obvious.

Corollary 3.4. Let T be a locally compact topology on an n�group
(G, f) with a right neutral sequence an

2 . If for every b ∈ G transla-
tions x 7→ f(x, an−1

2 , b), x 7→ f(b, an−1
2 , x) and x 7→ f(an, x, an−1

2 )
are continuous, then (G, f, T ) is a topological n�group.

Proof. In the group (G, ∗) = retan−1
2

(G, f) translations x 7→ x ∗ b
and x 7→ b ∗ x are continuous for every b ∈ G. Thus, by the theorem
of Ellis (cf. Theorem 3 in [8]), (G, ∗) is a topological group. In this
group s(x) de�ned in the previous Proposition is a continuous oper-
ation. Hence (G, f) is a topological n�group.
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4. Deviations
By a deviation de�ned on a nonempty set X we mean every map
ϕ : X ×X → [0, +∞) such that ϕ(x, x) = 0, ϕ(x, y) = ϕ(y, x) , and
ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y) for all x, y, z ∈ X. A deviation ϕ de�ned
on a semigroup (group) (G, ·) is left invariant if ϕ(cx, cy) = ϕ(x, y)
for all c, x, y ∈ G. A deviation ϕ de�ned on an n�semigroup (G, f) is
a left invariant if

ϕ(f(cn−1
1 , x), f(cn−1

1 , y)) = ϕ(x, y)

for all x, y, cn−1
1 ∈ G.

Theorem 4.1 ([2]) . A binary semigroup (group) (G, ·) with a topol-
ogy T is a topological semigroup (group) if and only if there exists a
family Φ of continuous left invariant deviations on G which induces
T and ϕz ∈ Φ for every z ∈ G and ϕ ∈ Φ, where ϕz is de�ned by
ϕz(x, y) = ϕ(xz, yz).

In the case of an n�semigroup (G, f) every deviation ϕ on (G, f)
induces a new deviation (ϕ, k, cn

2 ) de�ned by

(ϕ, k, cn
2 )(x, y) = ϕ(f(ck

2, x, cn
k+1), f(ck

2, y, cn
k+1)) ,

where cn
2 ∈ G and k = 1, ..., n are �xed.

Theorem 4.2. Let an
2 be a right neutral sequence of an n�semigroup

(G, f) . If a topology T on G is induced by the family Φ of deviations
such that for all x, y, z ∈ G and ϕ ∈ Φ

(a) ϕ(f(z, an−1
2 , x), f(z, an−1

2 , y)) = ϕ(x, y),
(b) (ϕ, 1, an−1

2 , z), (ϕ, 2, an, a
n−1
2 ) ∈ Φ,

then (G, f) is a topological n�semigroup.

Proof. Let Φ be as in the assumption. By (a) every ϕ ∈ Φ is a left
invariant deviation on a semigroup (G, ∗) = retan−1

2
(G, f). From (b)

we obtain

ϕz(x, y) = ϕ(x ∗ z, y ∗ z) = ϕ(f(x, an−1
2 , z), f(y, an−1

2 , z)) =
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= (ϕ, 1, an−1
2 , z)(x, y)

for every z ∈ G, which gives ϕz ∈ Φ. By Theorem 4.1 (G, ∗) is a
topological semigroup.

Let ε > 0. If x, x0 ∈ G are such that (ϕ, 2, an, an−1
2 )(x, x0) < ε,

where ϕ ∈ Φ, then
ϕ(β(x), β(x0)) = ϕ(f(an, x, an−1

2 ), f(an, x0, a
n−1
2 )) =

= (ϕ, 2, an, a
n−1
2 )(x, x0) < ε ,

which proves that β is continuous. Lemma 3.1 �nish the proof.

Theorem 4.3. An n�group (G, f) with a topology T is a topological
n�group if and only if there exists the family Φ of deviations such that
a topology T is induced by Φ and for some right neutral sequence an

2

of G and for all x, y, z ∈ G, ϕ ∈ Φ the conditions (a), (b) from the
previous theorem are satis�ed.

Proof. Let (G, f, T ) be a topological n�group. Then the retract
(G, ∗) = retan−1

2
(G, f) is a binary topological group for every choice

of a2, ..., an−1 ∈ G . Thus, by Theorem 4.1, there exists the family
Φ of continuous left invariant deviations of (G, ∗) which induces the
topology T . Hence, for all x, y, z ∈ G and ϕ ∈ Φ, we have

ϕ(f(z, an−1
2 , x), f(z, an−1

2 , y)) = ϕ(z ∗ x, z ∗ y) = ϕ(x, y),

which proves (a).
Moreover, since for all a2, ..., an−1 ∈ G there exista an ∈ G such

that an
2 is a right neutral sequence, then from the above follows

ϕ(f(cn−1
1 , x), f(cn−1

1 , y)) =

= ϕ(f(cn−1
1 , f(an, an−1

2 , x)), f(cn−1
1 , f(an, a

n−1
2 , y))) =

= ϕ(f(f(cn−1
1 , an), an−1

2 , x)), f(f(cn−1
1 , an), an−1

2 , y))) = ϕ(x, y)

for all c1, ..., cn−1 ∈ G.
Thus every ϕ ∈ Φ is a left invariant deviation of an n�group

(G, f) . Hence also (ϕ, k, cn
2 ) is a left invariant deviation for ev-

ery k = 1, 2, ..., n and all c1, ..., cn−1 ∈ G. Obviously (ϕ, k, cn
2 ) is
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also left invariant on (G, ∗) and (ϕ, k, cn
2 ) ∈ Φ. Therefore (ϕ, 1, an

2 ),
(ϕ, 2, an, an−1

2 ) ∈ Φ, which proves (b).
Conversely, if a topology T is induced by the family Φ of deviations

satisfying (a) and (b), then, by Theorem 4.1, (G, ∗) = retan−1
2

(G, f)
is a binary topological group. Similarly as in the proof of Theo-
rem 4.2 from (ϕ, 2, an, an−1

2 ) ∈ Φ follows that the translation β(x) =
f(an, x, an−1

2 ) is continuous. Proposition 3.3 completes the proof.

5. Embedding of topological n�semigroups
The necessary and su�cient conditions for the embedding of topolog-
ical semigroup in topological group are described by N. J. Rothman
(cf. [14]) and F. Christoph (cf. [3]). In this section we give some
generalizations of these results.

As it is well known (cf. for example [13] or [6]) an n�semigroup
(G, f) is called semiabelian or (1, n)�commutative if

f(x, an−1
2 , y) = f(y, an−1

2 , x)

holds for all x, y, a2, ..., an−1 ∈ G, and cancellative if

f(ai−1
1 , x, an

i+1) = f(ai−1
1 , y, an

i+1) =⇒ x = y

for all i = 1, 2, ..., n and x, y, a1, ..., an ∈ G . Every n�group is obvi-
ously cancellative.

Now we use the construction of the quotient n�group presented
during the Gomel's algebraic conference (1995) by A. M. Gal'mak
and V. V. Mukhin.

Let (G, f) be a cancellative semiabelian n�semigroup. Then the
relation

〈x, y〉 ∼ 〈z, t〉 ⇐⇒ f(2)(
(n−1)

y ,
(n)
z ) = f(2)(

(n−1)

t ,
(n)
x )

de�ned on G × G is an equivalence relation. Indeed, the re�exivity
and symmetry are obvious. We prove the transitivity.

Let 〈x, y〉 ∼ 〈z, t〉 and 〈z, t〉 ∼ 〈u, v〉 . Then

f(2)(
(n−1)

y ,
(n)
z ) = f(2)(

(n−1)

t ,
(n)
x ) and f(2)(

(n−1)

t ,
(n)
u ) = f(2)(

(n−1)
v ,

(n)
z ) .
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Hence

f(3)(
(n−1)

t ,
(n)
x ,

(n−1)
v ) = f(3)(

(n−1)
y ,

(n)
z ,

(n−1)
v ) = f(3)(

(n−1)
y ,

(n−1)
v ,

(n)
z ) =

= f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) = f(3)(

(n−1)

t ,
(n−1)

y ,
(n)
u ) ,

which by the cancellativity gives f(2)(
(n−1)
x ,

(n)
v ) = f(2)(

(n−1)
y ,

(n)
u ) .

Since (G, f) is semiabelian, then

f(2)(
(n−1)
x ,

(n)
v ) = f(2)(

(n−1)
v ,

(n)
x ) ,

and in the consequence

f(2)(
(n−1)

v ,
(n)
x ) = f(2)(

(n−1)
y ,

(n)
u ) ,

which proves the transitivity.
In the set G∗ = G × G/ ∼ of all equivalence classes 〈xi, yi〉 we

de�ne the new n�ary operation

f ∗( 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xn, yn〉 ) = 〈 f(xn
1 ) , f(yn

1 ) 〉 .
If 〈xi, yi〉 ∼ 〈si, ti〉 for all i = 1, 2, ..., n, then also

f(2)(
(n−1)
yi ,

(n)
si ) = f(2)(

(n−1)

ti ,
(n)
xi)

and
f(f(2)(

(n−1)
y1 ,

(n)
s1), ... , f(2)(

(n−1)
yn ,

(n)
sn)) = f(f(2)(

(n−1)

t1 ,
(n)
x1), ... , f(2)(

(n−1)

tn ,
(n)
xn)) .

But every semiabelian n�semigroup is also medial ( see [10] ), i.e.
it satis�es

f(f(x1n
11 ), f(x2n

21 ), . . . , f(xnn
n1 )) = f(f(xn1

11 ), f(xn2
12 ), . . . , f(xnn

1n )) .

Then the last identity may be written in the form

f(2)

( (n−1)

f(yn
1 ),

(n)

f(sn
1 )

)
= f(2)

( (n−1)

f(tn1 ),
(n)

f(xn
1 )

)
,

which proves that

〈 f(xn
1 ) , f(yn

1 ) 〉 ∼ 〈 f(sn
1 ) , f(tn1 ) 〉 .
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Hence the operation f ∗ is well de�ned. It is clear that this operation
is also associative and (1, n)�commutative.

Now let
x = f(·)

(
a,

(n−1)(n−2)

d ,
(n−1)(n−1)

c
)

and
y = f(·)

(
b,

(n−1)(n−1)

d ,
(n−1)n

c
)
,

where a, b, c, d are �xed elements from G. Then, using (1, n)�commu-
tativity, we obtain

f(·)
(
f(y,

(n−1)

d ), . . . , f(y,
(n−1)

d )︸ ︷︷ ︸
(n−1)−times

,
(n)
a

)
=

= f(·)
(
b,

(n−1)(n−1)

d ,
(n−1)n

c ,
(n−1)

d︸ ︷︷ ︸ , . . . , b,
(n−1)(n−1)

d ,
(n−1)n

c ,
(n−1)

d︸ ︷︷ ︸︸ ︷︷ ︸
(n−1)−times

,
(n)
a

)
=

= f(·)
( (n−1)

b ,
(n)
a ,

(n−1)2n

d ,
(n−1)2n

c
)

= W1

and

f(·)
( (n−1)

b , f(x,
(n−1)

c ), . . . , f(x,
(n−1)

c )︸ ︷︷ ︸
n−times

)
=

f(·)
( (n−1)

b , a,
(n−1)(n−1)

d ,
(n−1)(n−2)

c ,
(n−1)

c︸ ︷︷ ︸, ... , a,
(n−1)(n−1)

d ,
(n−1)(n−2)

c ,
(n−1)

c︸ ︷︷ ︸︸ ︷︷ ︸
n−times

)

= f(·)
( (n−1)

b ,
(n)
a ,

(n−1)2n

d ,
(n−1)2n

c
)

= W2 .

Since W1 = W2 , then

f(·)
(
f(y,

(n−1)

d ), ..., f(y,
(n−1)

d )︸ ︷︷ ︸
(n−1)−times

,
(n)
a

)
= f(·)

( (n−1)

b , f(x,
(n−1)

c ), ..., f(x,
(n−1)

c )︸ ︷︷ ︸
n−times

)

which proves that

〈 f(x,
(n−1)

c ) , f(y,
(n−1)

d ) 〉 = 〈a, b〉 ,
i.e.
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f ∗( 〈x, y〉, 〈c, d〉, . . . , 〈c, d〉︸ ︷︷ ︸
n−1times

) = 〈a, b〉 .

Hence for all 〈a, b〉, 〈c, d〉 ∈ G∗ the last equation has the solution
〈x, y〉 ∈ G∗.

In the similar way we prove that for all 〈a, b〉, 〈c, d〉 ∈ G∗ there
exists 〈x, y〉 ∈ G∗ such that

f ∗(〈c, d〉, . . . , 〈c, d〉︸ ︷︷ ︸
(n−1)−times

, 〈x, y〉 ) = 〈a, b〉 .

This proves (cf. [18]) that (G∗, f ∗) is a semiabelian n�group.
The map p(x) = 〈x, x〉 is a homomorphic embedding of an n�

semigroup (G, f) in an n�group (G∗, f ∗). Indeed,
p(f(xn

1 )) = 〈f(xn
1 ) , f(xn

1 )〉 =

= f ∗(〈x1, x1〉, . . . , 〈xn, xn〉) = f ∗(p(x1), . . . , p(xn))

and p(x) = p(y) implies 〈x, x〉 = 〈y, y〉, i.e.

f(2)(
(n−1)
x ,

(n)
y ) = f(2)(

(n−1)
y ,

(n)
x ) = f(2)(

(n−1)
x ,

(n−1)
y , x) ,

which by the cancellativity gives x = y. Thus the following lemma is
true.

Lemma 5.1. Every semiabelian cancellative n-semigroup may be em-
bedded into a semiabelian n-group.

Lemma 5.2. If ϕ is a left invariant deviation of a cancellative semi-
abelian n�semigroup (G, f) , then

ϕG( 〈x, y〉, 〈z, t〉 ) = ϕ(f(2)(
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
z ) )

is a left invariant deviation on G∗ such that ϕG(p(x), p(y)) = ϕ(x, y).

Proof. From the de�nition of ϕG follows ϕG( 〈x, x〉, 〈x, x〉 ) = 0 and
ϕG( 〈x, y〉, 〈z, t〉 ) = ϕG( 〈z, t〉, 〈x, y〉 ).

Moreover, if 〈x, y〉 ∼ 〈u, v〉, where 〈x, y〉, 〈u, v〉 ∈ G×G, then

f(2)(
(n−1)

v ,
(n)
x ) = f(2)(

(n−1)
y ,

(n)
u )
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and

ϕG( 〈x, y〉, 〈z, t〉 ) = ϕ(f(2)(
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

v ,
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

t ,
(n−1)

v ,
(n)
x ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

t ,
(n−1)

y ,
(n)
u ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) , f(3)(

(n−1)
y ,

(n−1)
v ,

(n)
z ) ) =

= ϕ(f(2)(
(n−1)

t ,
(n)
u ) , f(2)(

(n−1)
v ,

(n)
z ) ) = ϕG( 〈u, v〉, 〈z, t〉 )

which proves that ϕG is well de�ned.

Now, for all 〈x, y〉, 〈z, t〉 ∈ G×G we have

ϕG( 〈x, y〉, 〈z, t〉 ) = ϕ(f(2)(
(n−1)

t ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

v ,
(n−1)

t ,
(n)
x ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) ≤

≤ ϕ(f(3)(
(n−1)

v ,
(n−1)

t ,
(n)
x ) , f(3)(

(n−1)
y ,

(n−1)

t ,
(n)
u ) )

+ ϕ(f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) , f(3)(

(n−1)
v ,

(n−1)
y ,

(n)
z ) ) =

= ϕ(f(3)(
(n−1)

t ,
(n−1)

v ,
(n)
x ) , f(3)(

(n−1)

t ,
(n−1)

y ,
(n)
u ) )

+ ϕ(f(3)(
(n−1)

y ,
(n−1)

t ,
(n)
u ) , f(3)(

(n−1)
y ,

(n−1)
v ,

(n)
z ) ) =

= ϕ(f(2)(
(n−1)

v ,
(n)
x ) , f(2)(

(n−1)
y ,

(n)
u ) ) + ϕ(f(2)(

(n−1)

t ,
(n)
u ) , f(2)(

(n−1)
v ,

(n)
z ) ) =

= ϕG( 〈x, y〉, 〈u, v〉 ) + ϕG( 〈u, v〉, 〈z, t〉 ).
Hence ϕG is a deviation on G∗.

To prove that ϕG is left invariant observe that for all i = 1, ..., n−1,
and ai, bi, an−1, x, y, u, v ∈ G we have

ϕG

(
f(〈a1, b1〉, ..., 〈an−1, bn−1〉, 〈x, y〉), f(〈a1, b1〉, ..., 〈an−1, bn−1〉, 〈u, v〉)

)
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= ϕG

(
〈f(an−1

1 , x), f(bn−1
1 , y)〉, 〈f(an−1

1 , u), f(bn−1
1 , v)〉

)
=

= ϕ
(
f(2)( f(bn−1

1 , v), ..., f(bn−1
1 , v)︸ ︷︷ ︸

(n−1)−times

, f(an−1
1 , x), ..., f(an−1

1 , x)︸ ︷︷ ︸
n−times

) ,

f(2)( f(bn−1
1 , y), ..., f(bn−1

1 , y)︸ ︷︷ ︸
(n−1)−times

, f(an−1
1 , u), ..., f(an−1

1 , u)︸ ︷︷ ︸
n−times

)
)
.

By the associativity and (1, n)�commutativity of f , the last formula
may be written in the form

ϕ
(
f(.)( . . . ,

(n−1)
v ,

(n)
x ) , f(.)( . . . ,

(n−1)
y ,

(n)
u )

)
,

which, together with the fact that ϕ is left invariant, implies

ϕ
(
f(2)(

(n−1)
v ,

(n)
x ) , f(2)(

(n−1)
y ,

(n)
u )

)
= ϕG( 〈x, y〉, 〈u, v〉 ).

This proves that ϕG is a left invariant deviation on G∗.

Moreover

ϕG(p(x), p(y)) = ϕG( 〈x, x〉, 〈y, y〉 ) = ϕ
(
f(2)(

(n−1)
y ,

(n)
x ) , f(2)(

(n−1)
x ,

(n)
y )

)

= ϕ
(
f(2)(

(n−1)
y ,

(n−1)
x , x) , f(2)(

(n−1)
x ,

(n−1)
y , y)

)
=

= ϕ
(
f(2)(

(n−1)
y ,

(n−1)
x , x) , f(2)(

(n−1)
y ,

(n−1)
x , y)

)
= ϕ(x, y),

which completes our proof.

Theorem 5.3. A cancellative semiabelian n�semigroup (G, f) with a
topology T may be topologically embedded in a topological n�group if
and only if a topology T is induced by a some family of left invariant
deviations de�ned on G.

Proof. If a cancellative semiabelian n�semigroup (G, f) with a topol-
ogy T is topologically embedded in a topological n�group (H, f) with
a topology TH , then TH is induced by some family Φ of deviations
such that

ϕ(f(z, an−1
2 , x) , f(z, an−1

2 , y) ) = ϕ(x, y),
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where x, y, z ∈ H and a2, ..., an is a right neutral sequence of an n�
group H (Theorem 4.3). Since in an n�group H for all a2, ..., an−1 ∈ H
there exists an ∈ H such that a2, ..., an is a right neutral sequence,
then in the above formula all x, y, z, a2, ..., an−1 are arbitrary. This
proves that all ϕ ∈ Φ are left invariant deviations.

Conversely, if a topology T on a cancellative semiabelian n�semigroup
(G, f) is induced by a some family Φ of left invariant deviations, then
every ϕG de�ned in Lemma 5.2 is a left invariant deviation on G∗. By
Theorem 4.3 the family {ϕG}ϕ∈Φ induces on G∗ the topology TG such
that G∗ is a topological n�group and p(x) = 〈x, x〉 is a topological
embedding of (G, f, T ) in (G∗, f ∗, TG).
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