On topological n-ary semigroups

Wiesław A. Dudek and Vladimir V. Mukhin

Abstract

In this note some we describe topologies on n-ary semigroups induced by families of deviations.

1. Introduction

Topological *n*-groups were investigated by many authors. For example, Čupona proved in [5] that each topological *n*-group can be embedded into a topological group. Žižović described topological medial *n*-groups (cf. [20]), topological *n*-groups with the Baire property (cf. [21]) and proved a topological analog of Hosszú theorem (cf. [19]). Crombez and Six described a fundamental system of open neighborhoods of a fixed element (cf. [4]). Endres proved that every topological *n*-group is homeomorphic to some canonical topological group (cf. [9]). Topologies induced by norms are considered by Boujuf and Mukhin (cf. [2]). Balci Dervis (cf. [1]) described free topological *n*-groups. In [12] is described a method of embedding topological abelian *n*-semigroups in topological *n*-group.

On the other hand, we known that topological n-semigroups have many properties which are not true for binary semigroups.

In this paper we investigate topologies on n-semigroups and ngroups determined by families of left invariant deviations. We describe

¹⁹⁹¹ Mathematics Subject Classification: 20N15, 22A30

Keywords: n-ary semigroup, n-ary group, topological semigroup, deviation

the conditions under which such topology is compatible with the n-ary operation. We find also the necessary and sufficient conditions for the topologically embedding a semiabelian topological n-semigroup in a topological n-group.

2. Preliminaries

Traditionally in the theory of *n*-ary groups we use the following abbreviated notation: the sequence $x_i, ..., x_j$ is denoted by x_i^j (for j < i this symbol is empty). If $x_{i+1} = ... = x_{i+k} = x$, then instead of x_{i+1}^{i+k} we write $x^{(k)}$. Obviously $x^{(0)}$ is the empty symbol. In this notation the formula

$$f(x_1,...,x_i,x_{i+1},...,x_{i+k},x_{i+k+1},...,x_n),$$

where $x_{i+1} = \dots = x_{i+k} = x$, will be written as $f(x_1^i, \overset{(k)}{x}, x_{i+k+1}^n)$. If m = k(n-1) + 1, then the m-ary operation g given by

$$g(x_1^{k(n-1)+1}) = \underbrace{f(f(\dots, f(f(x_1^n), x_{n+1}^{2n-1}), \dots), x_{(k-1)(n-1)+2}^{k(n-1)+1})}_{k-times}$$

will be denoted by $f_{(k)}$. In certain situations, when the arity of g does not play a crucial role, or when it will differ depending on additional assumptions, we write $f_{(.)}$, to mean $f_{(k)}$ for some k = 1, 2, ...

An n-ary operation f defined on G is called *associative* if

$$f(f(x_1^n), x_{n+1}^{2n-1}) = f(x_1^{i-1}, f(x_i^{n+i-1}), x_{n+i}^{2n-1})$$

holds for all $x_1, x_2, ..., x_{2n-1} \in G$ and i = 1, 2, ..., n. The set G together with one associative operation f is called an *n*-ary semigroup (briefly: *n*-semigroup). An *n*-semigroup (G, f) in which for for all $a_1, a_2, ..., a_n, b \in G$ there exits an uniquely determined $x_i \in G$ such that $f(a_1^{i-1}, x_i, a_{i+1}^n) = b$ is called an *n*-group.

From this definition it follows that a group (a semigroup) is a 2group (a 2-semigroup) in the above sense. Moreover, it is worthwhile to note that, under the assumption of the associativity of f, it suffices only to postulate the existence of a solution of the last equation at the places i = 1 and i = n or at one place *i* other than 1 and *n* (cf. [13], p.213¹⁷). This means that an *n*-group may be considered as an algebra (G, f, f_1, f_n) with one associative *n*-ary operation *f* and two *n*-ary operations f_1, f_n such that

$$f(f_1(a_2^n, b), a_2^n) = f(a_a^n, f_n(a_2^n, b)) = b$$
(1)

for all $a_2^n, b \in G$.

Following E.L.Post ([13], p.282) the solution of the equation

$$f(x, a, ..., a, f(a, ..., a)) = a$$

is denoted by $a^{[-2]}$. An *n*-semigroup (G, f) with an unary operation $[-2] : G \to G$ satisfying some natural identities is an *n*-group (cf. [16]).

The map $x \mapsto f(a_1^{j-1}, x, a_{j+1}^n)$ is called an *j*-th *n*-ary translation determined by a_1, \ldots, a_n . In an *n*-group each *n*-ary translation is a bijection.

In an *n*-group (G, f) for any sequence a_1^{n-2} there exists only one $a \in G$ such that

$$f(x, a_1^{n-2}, a) = f(a_1^{n-2}, a, x) = f(a, a_1^{n-2}, x) = f(x, a, a_1^{n-2}) = x$$

for all $x \in G$ (cf. [17]). An element *a* is called *inverse* for a_1^{n-2} . In the binary case, i.e. in the case n = 2, when the sequence a_1^{n-2} is empty by the inverse we mean the neutral element of a group (G, f).

A sequence a_2^n is called a *left (right) neutral sequence* if $f(a_2^n, x) = x$ (respectively $f(x, a_2^n) = x$) holds for all $x \in G$. A left and right neutral sequence is called a *neutral sequence*. In an *n*-group for every sequence a_1^{n-2} may be extended to a neutral sequence, but there are *n*-semigroups without left (right) neutral sequences.

Let (G, f) be an *n*-semigroup and let a_2^{n-1} be fixed. Then (G, *), where

$$x * y = f(x, a_2^{n-1}, y)$$
(2)

is a semigroup, which is called a *binary retract* of (G, f) and is denoted by $ret_{a_2^{n-1}}(G, f)$. A binary retract of an *n*-group is a group. Moreover, all binary retracts of a given *n*-group are isomorphic (cf. [7]), but *n*groups with the same retract are not isomorphic, in general. By so-called Hosszú theorem (cf. [11] or [7]), every *n*-group (G, f) has the form

$$f(x_1^n) = x_1 * \beta(x_2) * \beta^2(x_3) \dots * \beta^{n-1}(x_n) * b, \qquad (3)$$

where a_2^n is a fixed right neutral sequence of (G, f), $(G, *) = ret_{a_2^{n-1}}(G, f)$, $b = f(a_n)$ and $\beta(x) = f(a_n, x, a_2^{n-1})$.

The identical result holds for n-semigroups with a right neutral sequence.

3. Topology

An *n*-semigroup (G, f) defined on a topological space (G, \mathcal{T}) is called a *topological n-semigroup* if the operation f is continuous in all variables together.

A topological *n*-group is defined as a topological *n*-semigroup with two additional continuous operations f_1 and f_n satisfying (1) (cf. [5]). A topological *n*-group may be defined also a topological *n*-semigroup with additional continuous operation ^[-2]. These definitions are equivalent (cf. [15]).

It is clear that retracts of a topological *n*-semigroup (*n*-group) are topological semigroups (groups). Obviously all translations of a topological *n*-semigroup (*n*-group) are continuous maps. On the other hand, every *n*-ary operation which may by written in the form (3), where * and β are continuous, is continuous in all variables together. Thus the following lemma is true.

Lemma 3.1. Assume that an *n*-semigroup (G, f) with a topology \mathcal{T} has a right neutral sequence a_2^n . Then (G, f, \mathcal{T}) is a topological *n*-semigroup if and only if $\operatorname{ret}_{a_2^{n-1}}(G, f)$ is a topological semigroup and $\beta(x) = f(a_n, x, a_2^{n-1})$ is continuous. \Box

Corollary 3.2. An *n*-group (G, f) defined on a topological space (G, \mathcal{T}) is a topological *n*-group if and only if there exists a right neutral sequence a_2^n such that $x * y = f(x, a_2^{n-1}, y)$, $\beta(x) = f(a_n, x, a_2^{n-1})$ and $[-2]: x \mapsto x^{[-2]}$ are continuous.

Proposition 3.3. An *n*-group (G, f) defined on a topological space (G, \mathcal{T}) is a topological *n*-group if and only if there exists a right neutral sequence a_2^n such that $\operatorname{ret}_{a_2^{n-1}}(G, f)$ is a topological semigroup, $\beta(x) = f(a_n, x, a_2^{n-1})$ and $s: x \to s(x)$, where $f(s(x), a_2^{n-1}, x) = a_n$, are continuous.

Proof. Let a_2^n be a fixed right neutral sequence on an *n*-group (G, f). If $(G, *) = ret_{a_2^{n-1}}(G, f)$ is a topological semigroup and $\beta(x) = f(a_n, x, a_2^{n-1})$ is continuous, then (G, f) is a topological *n*-semigroup by Lemma 3.1.

Moreover, a_n is the neutral element of (G, *) and s(x) is the solution of $f(s(x), a_2^{n-1}, x) = a_n$, i.e. $s(x) * x = a_n$ in (G, *). Thus s(x) is the inverse of x in (G, *). Hence (G, *) is a topological group, because s(x) is continuous, by the assumption.

Since $f(z, c_2^n) = f(f(z, a_2^n), c_2^n) = z * f(a_n, c_2^n)$ for all $c_j \in G$, then the solution z of $f(z, c_2^n) = b$ in (G, f) is the solution of $z * f(a_n, c_2^n) = b$ in (G, *), then z continuously depends on b and $f(a_n, c_2^n)$. Thus z is a continuous function of variables $b, c_2, ..., c_n$. This, for $b = c_2 = ... = c_{n-1} = x$, $c_n = f(x, ..., x)$, implies that $z = x^{[-2]}$ is a continuous function of x. Thus (G, f) is a topological n-group.

The converse is obvious.

Corollary 3.4. Let \mathcal{T} be a locally compact topology on an *n*-group (G, f) with a right neutral sequence a_2^n . If for every $b \in G$ translations $x \mapsto f(x, a_2^{n-1}, b), x \mapsto f(b, a_2^{n-1}, x)$ and $x \mapsto f(a_n, x, a_2^{n-1})$ are continuous, then (G, f, \mathcal{T}) is a topological *n*-group.

Proof. In the group $(G, *) = ret_{a_2^{n-1}}(G, f)$ translations $x \mapsto x * b$ and $x \mapsto b * x$ are continuous for every $b \in G$. Thus, by the theorem of Ellis (cf. Theorem 3 in [8]), (G, *) is a topological group. In this group s(x) defined in the previous Proposition is a continuous operation. Hence (G, f) is a topological *n*-group. \Box

4. Deviations

By a deviation defined on a nonempty set X we mean every map $\varphi: X \times X \to [0, +\infty)$ such that $\varphi(x, x) = 0$, $\varphi(x, y) = \varphi(y, x)$, and $\varphi(x, y) \leq \varphi(x, z) + \varphi(z, y)$ for all $x, y, z \in X$. A deviation φ defined on a semigroup (group) (G, \cdot) is left invariant if $\varphi(cx, cy) = \varphi(x, y)$ for all $c, x, y \in G$. A deviation φ defined on an *n*-semigroup (G, f) is a *left invariant* if

$$\varphi(f(c_1^{n-1}, x), f(c_1^{n-1}, y)) = \varphi(x, y)$$

for all $x, y, c_1^{n-1} \in G$.

Theorem 4.1 ([2]) . A binary semigroup (group) (G, \cdot) with a topology \mathcal{T} is a topological semigroup (group) if and only if there exists a family Φ of continuous left invariant deviations on G which induces \mathcal{T} and $\varphi_z \in \Phi$ for every $z \in G$ and $\varphi \in \Phi$, where φ_z is defined by $\varphi_z(x, y) = \varphi(xz, yz)$.

In the case of an *n*-semigroup (G, f) every deviation φ on (G, f)induces a new deviation (φ, k, c_2^n) defined by

$$(\varphi, k, c_2^n)(x, y) = \varphi(f(c_2^k, x, c_{k+1}^n), f(c_2^k, y, c_{k+1}^n)),$$

where $c_2^n \in G$ and k = 1, ..., n are fixed.

Theorem 4.2. Let a_2^n be a right neutral sequence of an *n*-semigroup (G, f). If a topology \mathcal{T} on G is induced by the family Φ of deviations such that for all $x, y, z \in G$ and $\varphi \in \Phi$ (a) $\varphi(f(z, a_2^{n-1}, x), f(z, a_2^{n-1}, y)) = \varphi(x, y),$

(b) $(\varphi, 1, a_2^{n-1}, z), (\varphi, 2, a_n, a_2^{n-1}) \in \Phi,$

then (G, f) is a topological *n*-semigroup.

Proof. Let Φ be as in the assumption. By (a) every $\varphi \in \Phi$ is a left invariant deviation on a semigroup $(G, *) = ret_{a_2^{n-1}}(G, f)$. From (b) we obtain

$$\varphi_z(x,y) = \varphi(x * z, y * z) = \varphi(f(x, a_2^{n-1}, z), f(y, a_2^{n-1}, z)) =$$

$$= (\varphi, 1, a_2^{n-1}, z)(x, y)$$

for every $z \in G$, which gives $\varphi_z \in \Phi$. By Theorem 4.1 (G, *) is a topological semigroup.

Let $\varepsilon > 0$. If $x, x_0 \in G$ are such that $(\varphi, 2, a_n, a_2^{n-1})(x, x_0) < \varepsilon$, where $\varphi \in \Phi$, then

$$\varphi(\beta(x), \beta(x_0)) = \varphi(f(a_n, x, a_2^{n-1}), f(a_n, x_0, a_2^{n-1})) =$$

= $(\varphi, 2, a_n, a_2^{n-1})(x, x_0) < \varepsilon$,

which proves that β is continuous. Lemma 3.1 finish the proof.

Theorem 4.3. An *n*-group (G, f) with a topology \mathcal{T} is a topological *n*-group if and only if there exists the family Φ of deviations such that a topology \mathcal{T} is induced by Φ and for some right neutral sequence a_2^n of G and for all $x, y, z \in G$, $\varphi \in \Phi$ the conditions (a), (b) from the previous theorem are satisfied.

Proof. Let (G, f, \mathcal{T}) be a topological *n*-group. Then the retract $(G, *) = ret_{a_2^{n-1}}(G, f)$ is a binary topological group for every choice of $a_2, ..., a_{n-1} \in G$. Thus, by Theorem 4.1, there exists the family Φ of continuous left invariant deviations of (G, *) which induces the topology \mathcal{T} . Hence, for all $x, y, z \in G$ and $\varphi \in \Phi$, we have

$$\varphi(f(z, a_2^{n-1}, x), f(z, a_2^{n-1}, y)) = \varphi(z * x, z * y) = \varphi(x, y),$$

which proves (a).

Moreover, since for all $a_2, ..., a_{n-1} \in G$ there exists $a_n \in G$ such that a_2^n is a right neutral sequence, then from the above follows

$$\begin{aligned} \varphi(f(c_1^{n-1}, x), f(c_1^{n-1}, y)) &= \\ &= \varphi(f(c_1^{n-1}, f(a_n, a_2^{n-1}, x)), f(c_1^{n-1}, f(a_n, a_2^{n-1}, y))) = \\ &= \varphi(f(f(c_1^{n-1}, a_n), a_2^{n-1}, x)), f(f(c_1^{n-1}, a_n), a_2^{n-1}, y))) = \varphi(x, y) \end{aligned}$$

for all $c_1, ..., c_{n-1} \in G$.

Thus every $\varphi \in \Phi$ is a left invariant deviation of an *n*-group (G, f). Hence also (φ, k, c_2^n) is a left invariant deviation for every k = 1, 2, ..., n and all $c_1, ..., c_{n-1} \in G$. Obviously (φ, k, c_2^n) is

also left invariant on (G, *) and $(\varphi, k, c_2^n) \in \Phi$. Therefore $(\varphi, 1, a_2^n)$, $(\varphi, 2, a_n, a_2^{n-1}) \in \Phi$, which proves (b).

Conversely, if a topology \mathcal{T} is induced by the family Φ of deviations satisfying (a) and (b), then, by Theorem 4.1, $(G, *) = ret_{a_2^{n-1}}(G, f)$ is a binary topological group. Similarly as in the proof of Theorem 4.2 from $(\varphi, 2, a_n, a_2^{n-1}) \in \Phi$ follows that the translation $\beta(x) = f(a_n, x, a_2^{n-1})$ is continuous. Proposition 3.3 completes the proof. \Box

5. Embedding of topological n-semigroups

The necessary and sufficient conditions for the embedding of topological semigroup in topological group are described by N. J. Rothman (cf. [14]) and F. Christoph (cf. [3]). In this section we give some generalizations of these results.

As it is well known (cf. for example [13] or [6]) an *n*-semigroup (G, f) is called *semiabelian* or (1, n)-commutative if

$$f(x, a_2^{n-1}, y) = f(y, a_2^{n-1}, x)$$

holds for all $x, y, a_2, ..., a_{n-1} \in G$, and *cancellative* if

$$f(a_1^{i-1}, x, a_{i+1}^n) = f(a_1^{i-1}, y, a_{i+1}^n) \implies x = y$$

for all i = 1, 2, ..., n and $x, y, a_1, ..., a_n \in G$. Every *n*-group is obviously cancellative.

Now we use the construction of the quotient n-group presented during the Gomel's algebraic conference (1995) by A. M. Gal'mak and V. V. Mukhin.

Let (G, f) be a cancellative semiabelian *n*-semigroup. Then the relation

$$\langle x, y \rangle \sim \langle z, t \rangle \iff f_{(2)} \begin{pmatrix} {}^{(n-1)}, {}^{(n)}, \\ y \end{pmatrix} = f_{(2)} \begin{pmatrix} {}^{(n-1)}, {}^{(n)}, \\ t \end{pmatrix}$$

defined on $G \times G$ is an equivalence relation. Indeed, the reflexivity and symmetry are obvious. We prove the transitivity.

Let $\langle x, y \rangle \sim \langle z, t \rangle$ and $\langle z, t \rangle \sim \langle u, v \rangle$. Then

$$f_{(2)}\binom{(n-1)}{y}, \binom{(n)}{z} = f_{(2)}\binom{(n-1)}{t}, \binom{(n)}{x}$$
 and $f_{(2)}\binom{(n-1)}{t}, \binom{(n)}{u} = f_{(2)}\binom{(n-1)}{v}, \binom{(n)}{z}$.

Hence

$$f_{(3)} \begin{pmatrix} {}^{(n-1)}, {}^{(n)}, {}^{(n-1)}, {}^{(n)}, {}^{(n-1)} \end{pmatrix} = f_{(3)} \begin{pmatrix} {}^{(n-1)}, {}^{(n-1)}, {}^{(n-1)}, {}^{(n)} \end{pmatrix} = f_{(3)} \begin{pmatrix} {}^{(n-1)}, {}^{(n-1)}, {}^{(n)}, {}^{(n)} \end{pmatrix} = f_{(3)} \begin{pmatrix} {}^{(n-1)}, {}^{(n-1)}, {}^{(n)}, {}^{(n)} \end{pmatrix} = f_{(3)} \begin{pmatrix} {}^{(n-1)}, {}^{(n-1)}, {}^{(n)}, {}^{(n)} \end{pmatrix} ,$$

which by the cancellativity gives $f_{(2)}(\overset{(n-1)}{x}, \overset{(n)}{v}) = f_{(2)}(\overset{(n-1)}{y}, \overset{(n)}{u})$. Since (G, f) is semiabelian, then

$$f_{(2)}({}^{(n-1)},{}^{(n)},{}^{(n)}) = f_{(2)}({}^{(n-1)},{}^{(n)},{}^{(n)}),$$

and in the consequence

$$f_{(2)}({{}^{(n-1)},{}^{(n)},{}^{(n)}}) = f_{(2)}({{}^{(n-1)},{}^{(n)},{}^{(n)}}),$$

which proves the transitivity.

In the set $G^* = G \times G / \sim$ of all equivalence classes $\langle x_i, y_i \rangle$ we define the new *n*-ary operation

$$f^*(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \dots, \langle x_n, y_n \rangle) = \langle f(x_1^n), f(y_1^n) \rangle$$

If $\langle x_i, y_i \rangle \sim \langle s_i, t_i \rangle$ for all i = 1, 2, ..., n, then also

$$f_{(2)}\binom{(n-1)}{y_i}\binom{(n)}{s_i} = f_{(2)}\binom{(n-1)}{t_i}\binom{(n)}{x_i}$$

and

$$f(f_{(2)}(\overset{(n-1)}{y_1}, \overset{(n)}{s_1}), \dots, f_{(2)}(\overset{(n-1)}{y_n}, \overset{(n)}{s_n})) = f(f_{(2)}(\overset{(n-1)}{t_1}, \overset{(n)}{x_1}), \dots, f_{(2)}(\overset{(n-1)}{t_n}, \overset{(n)}{x_n})).$$

But every semiabelian n-semigroup is also medial (see [10]), i.e. it satisfies

$$f(f(x_{11}^{1n}), f(x_{21}^{2n}), \dots, f(x_{n1}^{nn})) = f(f(x_{11}^{n1}), f(x_{12}^{n2}), \dots, f(x_{1n}^{nn})).$$

Then the last identity may be written in the form

$$f_{(2)}\left(\begin{array}{c} {}^{(n-1)}_{1} \\ f(y_1^n), f(s_1^n) \end{array}\right) = f_{(2)}\left(\begin{array}{c} {}^{(n-1)}_{1} \\ f(t_1^n), f(x_1^n) \end{array}\right),$$

which proves that

$$\langle f(x_1^n), f(y_1^n) \rangle \sim \langle f(s_1^n), f(t_1^n) \rangle.$$

Hence the operation f^* is well defined. It is clear that this operation is also associative and (1, n)-commutative.

Now let

$$x = f_{(\cdot)} \Big(a, \overset{(n-1)(n-2)}{d}, \overset{(n-1)(n-1)}{c} \Big)$$

and

$$y = f_{(\cdot)} \left(b, \overset{(n-1)(n-1)}{d}, \overset{(n-1)n}{c} \right),$$

where a, b, c, d are fixed elements from G. Then, using (1, n)-commutativity, we obtain

$$\begin{split} f_{(\cdot)}\Big(\underbrace{f(y, \overset{(n-1)}{d}), \dots, f(y, \overset{(n-1)}{d})}_{(n-1)-times}, \overset{(n)}{a}\Big) = \\ &= f_{(\cdot)}\Big(\underbrace{b, \overset{(n-1)(n-1)}{d}, \overset{(n-1)n}{c}, \overset{(n-1)}{d}}_{(n-1)-times}, \dots, \underbrace{b, \overset{(n-1)(n-1)}{d}, \overset{(n-1)n}{c}, \overset{(n-1)}{d}}_{(n-1)-times}, \overset{(n)}{a}\Big) = \\ &= f_{(\cdot)}\Big(\overset{(n-1)}{b}, \overset{(n)}{a}, \overset{(n-1)^{2n}}{d}, \overset{(n-1)^{2n}}{c} \Big) = W_1 \end{split}$$

and

Since $W_1 = W_2$, then

$$f_{(\cdot)}\Big(\underbrace{f(y, \overset{(n-1)}{d}), \dots, f(y, \overset{(n-1)}{d})}_{(n-1)-times}, \overset{(n)}{a}\Big) = f_{(\cdot)}\Big(\overset{(n-1)}{b}, \underbrace{f(x, \overset{(n-1)}{c}), \dots, f(x, \overset{(n-1)}{c})}_{n-times}\Big)$$

which proves that

$$\langle f(x, \overset{(n-1)}{c}), f(y, \overset{(n-1)}{d}) \rangle = \langle a, b \rangle,$$

i.e.

$$f^*(\langle x, y \rangle, \underbrace{\langle c, d \rangle, \ldots, \langle c, d \rangle}_{n-1 times}) = \langle a, b \rangle.$$

Hence for all $\langle a, b \rangle, \langle c, d \rangle \in G^*$ the last equation has the solution $\langle x, y \rangle \in G^*$.

In the similar way we prove that for all $\langle a, b \rangle, \langle c, d \rangle \in G^*$ there exists $\langle x, y \rangle \in G^*$ such that

$$f^*(\underbrace{\langle c,d\rangle,\ldots,\langle c,d\rangle}_{(n-1)-times},\langle x,y\rangle) = \langle a,b\rangle$$

This proves (cf. [18]) that (G^*, f^*) is a semiabelian *n*-group.

The map $p(x) = \langle x, x \rangle$ is a homomorphic embedding of an *n*-semigroup (G, f) in an *n*-group (G^*, f^*) . Indeed,

$$p(f(x_1^n)) = \langle f(x_1^n), f(x_1^n) \rangle =$$

= $f^*(\langle x_1, x_1 \rangle, \dots, \langle x_n, x_n \rangle) = f^*(p(x_1), \dots, p(x_n))$

and p(x) = p(y) implies $\langle x, x \rangle = \langle y, y \rangle$, i.e.

$$f_{(2)}\binom{(n-1)}{x}, \binom{(n)}{y} = f_{(2)}\binom{(n-1)}{y}, \binom{(n)}{x} = f_{(2)}\binom{(n-1)}{x}, \binom{(n-1)}{y}, x),$$

which by the cancellativity gives x = y. Thus the following lemma is true.

Lemma 5.1. Every semiabelian cancellative n-semigroup may be embedded into a semiabelian n-group. \Box

Lemma 5.2. If φ is a left invariant deviation of a cancellative semiabelian n-semigroup (G, f), then

$$\varphi_G(\langle x, y \rangle, \langle z, t \rangle) = \varphi(f_{(2)}(\overset{(n-1)}{t}, \overset{(n)}{x}), f_{(2)}(\overset{(n-1)}{y}, \overset{(n)}{z}))$$

is a left invariant deviation on G^* such that $\varphi_G(p(x), p(y)) = \varphi(x, y)$.

Proof. From the definition of φ_G follows $\varphi_G(\langle x, x \rangle, \langle x, x \rangle) = 0$ and $\varphi_G(\langle x, y \rangle, \langle z, t \rangle) = \varphi_G(\langle z, t \rangle, \langle x, y \rangle).$

Moreover, if $\langle x, y \rangle \sim \langle u, v \rangle$, where $\langle x, y \rangle, \langle u, v \rangle \in G \times G$, then

$$f_{(2)}\binom{(n-1)}{v}, \binom{(n)}{x} = f_{(2)}\binom{(n-1)}{y}, \binom{(n)}{u}$$

 $\quad \text{and} \quad$

$$\begin{split} \varphi_{G}(\langle x, y \rangle, \langle z, t \rangle) &= \varphi(f_{(2)}(\overset{(n-1)}{t}, \overset{(n)}{x}), f_{(2)}(\overset{(n-1)}{y}, \overset{(n)}{z})) = \\ &= \varphi(f_{(3)}(\overset{(n-1)}{v}, \overset{(n-1)}{t}, \overset{(n)}{x}), f_{(2)}(\overset{(n-1)}{v}, \overset{(n-1)}{y}, \overset{(n)}{z})) = \\ &= \varphi(f_{(3)}(\overset{(n-1)}{t}, \overset{(n-1)}{v}, \overset{(n)}{x}), f_{(3)}(\overset{(n-1)}{v}, \overset{(n-1)}{y}, \overset{(n)}{z})) = \\ &= \varphi(f_{(3)}(\overset{(n-1)}{t}, \overset{(n-1)}{y}, \overset{(n)}{u}), f_{(3)}(\overset{(n-1)}{v}, \overset{(n-1)}{y}, \overset{(n)}{z})) = \\ &= \varphi(f_{(3)}(\overset{(n-1)}{t}, \overset{(n-1)}{t}, \overset{(n)}{u}), f_{(3)}(\overset{(n-1)}{y}, \overset{(n-1)}{v}, \overset{(n)}{z})) = \\ &= \varphi(f_{(2)}(\overset{(n-1)}{t}, \overset{(n)}{u}), f_{(2)}(\overset{(n-1)}{v}, \overset{(n)}{z})) = \varphi_{G}(\langle u, v \rangle, \langle z, t \rangle) \end{split}$$

which proves that φ_G is well defined.

Now, for all $\langle x,y\rangle, \langle z,t\rangle\in G\times G$ we have

$$\begin{split} \varphi_{G}(\langle x,y\rangle,\langle z,t\rangle) &= \varphi(f_{(2)}(\overset{(n-1)}{t},\overset{(n)}{x}), f_{(2)}(\overset{(n-1)}{y},\overset{(n)}{z})) = \\ &= \varphi(f_{(3)}(\overset{(n-1)}{v},\overset{(n-1)}{t},\overset{(n)}{x}), f_{(3)}(\overset{(n-1)}{v}, \overset{(n-1)}{t}, \overset{(n)}{x})) \leq \\ &\leq \varphi(f_{(3)}(\overset{(n-1)}{v}, \overset{(n-1)}{t}, \overset{(n)}{x}), f_{(3)}(\overset{(n-1)}{y}, \overset{(n-1)}{t}, \overset{(n)}{u})) \\ &+ \varphi(f_{(3)}(\overset{(n-1)}{y}, \overset{(n-1)}{t}, \overset{(n)}{u}), f_{(3)}(\overset{(n-1)}{v}, \overset{(n-1)}{y}, \overset{(n)}{z})) = \\ &= \varphi(f_{(3)}(\overset{(n-1)}{t}, \overset{(n-1)}{v}, \overset{(n)}{x}), f_{(3)}(\overset{(n-1)}{t}, \overset{(n)}{y}, \overset{(n)}{u})) \\ &+ \varphi(f_{(3)}(\overset{(n-1)}{y}, \overset{(n-1)}{t}, \overset{(n)}{u}), f_{(3)}(\overset{(n-1)}{y}, \overset{(n-1)}{v}, \overset{(n)}{z})) = \\ &= \varphi(f_{(2)}(\overset{(n-1)}{v}, \overset{(n)}{x}), f_{(2)}(\overset{(n-1)}{y}, \overset{(n)}{u})) + \varphi(f_{(2)}(\overset{(n-1)}{t}, \overset{(n)}{u}), f_{(2)}(\overset{(n-1)}{v}, \overset{(n)}{z})) = \\ &= \varphi_{G}(\langle x, y \rangle, \langle u, v \rangle) + \varphi_{G}(\langle u, v \rangle, \langle z, t \rangle). \end{split}$$

Hence φ_G is a deviation on G^* .

To prove that φ_G is left invariant observe that for all i = 1, ..., n-1, and $a_i, b_i, a_{n-1}, x, y, u, v \in G$ we have

$$\varphi_G\Big(f(\langle a_1, b_1 \rangle, ..., \langle a_{n-1}, b_{n-1} \rangle, \langle x, y \rangle), \ f(\langle a_1, b_1 \rangle, ..., \langle a_{n-1}, b_{n-1} \rangle, \langle u, v \rangle)\Big)$$

$$= \varphi_{G} \Big(\langle f(a_{1}^{n-1}, x), f(b_{1}^{n-1}, y) \rangle, \langle f(a_{1}^{n-1}, u), f(b_{1}^{n-1}, v) \rangle \Big) =$$

$$= \varphi \Big(f_{(2)} \Big(\underbrace{f(b_{1}^{n-1}, v), \dots, f(b_{1}^{n-1}, v)}_{(n-1)-times}, \underbrace{f(a_{1}^{n-1}, x), \dots, f(a_{1}^{n-1}, x)}_{n-times} \Big),$$

$$f_{(2)} \Big(\underbrace{f(b_{1}^{n-1}, y), \dots, f(b_{1}^{n-1}, y)}_{(n-1)-times}, \underbrace{f(a_{1}^{n-1}, u), \dots, f(a_{1}^{n-1}, u)}_{n-times} \Big) \Big).$$

By the associativity and (1, n)-commutativity of f, the last formula may be written in the form

$$\varphi(f_{(.)}(\ldots, \overset{(n-1)}{v}, \overset{(n)}{x}), f_{(.)}(\ldots, \overset{(n-1)}{y}, \overset{(n)}{u})),$$

which, together with the fact that φ is left invariant, implies

$$\varphi\Big(f_{(2)}\begin{pmatrix}\binom{(n-1)}{v},\binom{(n)}{x}, f_{(2)}\begin{pmatrix}\binom{(n-1)}{y}, \binom{(n)}{u}\end{pmatrix}\Big) = \varphi_G(\langle x, y \rangle, \langle u, v \rangle).$$

This proves that φ_G is a left invariant deviation on G^* .

Moreover

$$\begin{split} \varphi_{G}(p(x), p(y)) &= \varphi_{G}(\langle x, x \rangle, \langle y, y \rangle) = \varphi\Big(f_{(2)}\binom{(n-1)}{y}, \binom{(n)}{x}, f_{(2)}\binom{(n-1)}{x}, \binom{(n)}{y}\Big) \\ &= \varphi\Big(f_{(2)}\binom{(n-1)}{y}, \binom{(n-1)}{x}, x), f_{(2)}\binom{(n-1)}{x}, \binom{(n-1)}{y}, y)\Big) = \\ &= \varphi\Big(f_{(2)}\binom{(n-1)}{y}, \binom{(n-1)}{x}, x), f_{(2)}\binom{(n-1)}{y}, \binom{(n-1)}{x}, y)\Big) = \varphi(x, y), \\ \text{which completes our proof.} \qquad \Box$$

which completes our proof.

Theorem 5.3. A cancellative semiabelian n-semigroup (G, f) with a topology \mathcal{T} may be topologically embedded in a topological n-group if and only if a topology \mathcal{T} is induced by a some family of left invariant deviations defined on G.

Proof. If a cancellative semiabelian n-semigroup (G, f) with a topology \mathcal{T} is topologically embedded in a topological *n*-group (H, f) with a topology \mathcal{T}_H , then \mathcal{T}_H is induced by some family Φ of deviations such that 1

$$\varphi(f(z, a_2^{n-1}, x), f(z, a_2^{n-1}, y)) = \varphi(x, y),$$

where $x, y, z \in H$ and $a_2, ..., a_n$ is a right neutral sequence of an n-group H (Theorem 4.3). Since in an n-group H for all $a_2, ..., a_{n-1} \in H$ there exists $a_n \in H$ such that $a_2, ..., a_n$ is a right neutral sequence, then in the above formula all $x, y, z, a_2, ..., a_{n-1}$ are arbitrary. This proves that all $\varphi \in \Phi$ are left invariant deviations.

Conversely, if a topology \mathcal{T} on a cancellative semiabelian *n*-semigroup (G, f) is induced by a some family Φ of left invariant deviations, then every φ_G defined in Lemma 5.2 is a left invariant deviation on G^* . By Theorem 4.3 the family $\{\varphi_G\}_{\varphi \in \Phi}$ induces on G^* the topology \mathcal{T}_G such that G^* is a topological *n*-group and $p(x) = \langle x, x \rangle$ is a topological embedding of (G, f, \mathcal{T}) in $(G^*, f^*, \mathcal{T}_G)$.

References

- [1] Balci Dervis: Zur Theorie der topologischen n-Gruppen, Minerva Publikation, Munich 1981.
- H. Buzhuf, V. V. Mukhin: Topologies on semigroups and groups defined by families of deviations and norms, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1997), 74-77, (transl. in Russian Math. (Iz. VUZ 41 (1997), No. 5, 71-74)).
- [3] F. Christoph: Embedding topological semigroups in topological groups, Semigroup Forum 1 (1970), 224 - 231.
- [4] G. Crombez, G. Six: On topological n-groups, Abhand. Math. Semin. Univ. Hamburg 41 (1974), 115 - 124.
- [5] G. Cupona: On topological n-groups, Bull. Soc. Math. Phys. R.S.Macédoine 22 (1971), 5 - 10.
- [6] W. A. Dudek: *Remarks on n-groups*, Demonstratio Math. 13 (1980), 165 181.
- [7] W. A. Dudek, J. Michalski: On a generalization of Hosszú theorem, Demonstratio Math. 15 (1982), 783 – 805.

- [8] R. Ellis: Locally compact transformation group, Duke Math. J. 24 (1957), 119 125.
- [9] N. Endres: On topological n-groups and their corresponding groups, Discussiones Math., Algebra and Stochastic Methods 15 (1995), 163 - 169.
- [10] K. Głazek, B. Gleichgewicht: Abelian n-groups, Colloquia Math. Soc. J. Bolyai 29 "Universal Algebra", Esztergom (Hungary) 1997, 195 – 202 (North-Holland, Amsterdam 1982).
- [11] M. Hosszú: On the explicit form of n-group operations, Publ. Math. Debrecen 10 (1963), 88 - 92.
- [12] V. V. Mukhin, H. Boujuf: On embedding n-ary abelian topological semigroups in n-ary topological groups, (in Russian) Voprosy Algebry 9 (1996), 153 – 157.
- [13] E. L. Post: Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208 - 350.
- [14] N. J. Rothman: Embedding of topological semigroups, Math. Ann. 139 (1960), 197 - 203.
- [15] S. A. Rusakov: On two definitions of topological n-ary groups, (Russian) Voprosy Algebry 5 (1990), 86 - 91.
- [16] S. A. Rusakov: Algebraic n-ary systems, (Russian), Izd. Navuka, Minsk 1992.
- [17] F. M. Sioson: On free abelian m-groups, I, Proc. Japan. Acad.
 43 (1967), 876 879.
- [18] V. I. Tyutin: On the axiomatics of n-ary groups, Dokl. Acad. Nauk BSSR 29 (1985), 691 - 693.
- [19] M. R. Zižović: Topological analog of Hosszú-Gluskin's theorem, (Serbian), Mat. Vesnik 13 (28) (1976), 233 – 235.
- [20] M. R. Zižović: Topological medial n-quasigroups, Proc. Algebraic Conference, Novi Sad 1981, p.61 – 66.

[21] M. R. Žižović, Lj.D.Kočinac: Some remarks on n-groups, Zb. rad.Fil. fak. u Nišu, ser. Mat. 2 (1988), 69 - 71.

Received May 10, 1997

W.A.Dudek Institute of Mathematics Technical University Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland e-mail: dudek@im.pwr.wroc.pl V.V.Mukhin Department of Mathematics Technological University Sverdlova str. 13 a 200 630 Minsk Belarus

or

Higher College of Engineering ul. Jaworzyńska 151 59-200 Legnica Poland