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Frobenius groups and one-sided S-systems

Evghenii A. Kuznetsov

Abstract

Frobenius groups are studied by the means of systems of orthogonal operations,

naturally being built over these groups.

1. Introduction

Definition 1. [4,8] The transitive irregular permutation group G act-
ing on a set E is called a Frobenius group, if St,,(G) = (id) for any
a,be E, a#b.

Frobenius groups are one of the classical group classes in permu-
tation group theory. The studying of these groups was begun in the
Frobenius article [3| at the beginning of 20th century and was con-
tinued by M.Hall [4], H.-Wielandt [8] etc. Frobenius proved in [3]| by
means of character group theory that there exists an invariant regular
subgroup consisting of all fixed-point free permutations and the iden-
tity permutation in a finite Frobenius group (Frobenius theorem). It is
not known any other proof of this theorem (without using of character
group theory) till now.

In present article a 1-1 correspondence between Frobenius groups
and one-sided S-systems of orthogonal operations [1] (on the same set
of symbols E), whose cell permutations form a group, is built.
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In the section 2 the incident system of (left) cosets in an arbitrary
finite Frobenius group G by stabilizer St,(G) (a € E) is investigated.
It is proved that this incident system is an algebraic m-net [2|, where
m = |5t (G)].

In the section 3 the construction of two systems of the orthogonal
operations over an arbitrary finite Frobenius group G is given. It is
proved that they form a left and a right S-systems [1]. Some other
properties of these one-sided S-systems are studied too. A number-
ing correlation between permutations degree n and m = |St,(G)| is
obtained. As a corollary of this correlation it is proved that finite
Frobenius p-groups doesn’t exist (the negative answer on the problem
6.55 from [5] in a finite case). At the end of the part 2 the right (left)
cell permutations of right (left) S-system are defined and it is shown
that the set of all cell permutations forms a group coinciding with the
group G.

In the section 3 an arbitrary right (left) S-systems of binary idem-
potent quasigroups on some set E (finite or infinite) are investigated.
In any right (left) S-system of operations the cell functions are in-
troduced, and it is proved that all these functions are permutations
on the set E. If the set of all cell permutations forms a group (with
respect to natural operation of composition), then this group is a
Frobenius group. As a corollary, the proof of Frobenius theorem is
obtained (when the set E is finite). Another construction of one-sided
S-systems of operations on E over the Frobenius group G, no depend-
ing from the cardinality of the set F, are given in order to demonstrate
preserving of the correspondence between Frobenius groups and one-
sided S-systems of operations on E with the property mentioned above
in the case when the set F is infinite.

We will use the following notations:
H, = St,(G) is the stabilizer of the element a € F in the group G,
0, 1 are two distinguished elements in the set F,

E*={0} U {h(1) : h e Hy=St,(G)} CE.



Frobenius groups and one-sided S-systems 23

2. Incident system of cosets

In this paragraph we suppose that the set E is finite, i.e. the permu-
tations from the Frobenius group G have the finite degree n = |E|.
In a Frobenius group all subgroups H, (a € E) are conjugate and
so we can denote
m = |Hy| = |H,| .

At last, we can suppose the elements from E are renamed so that

E*=1{0,1,...,m}.

Let’s consider all (left) cosets H’ = {« € G : afa) = b} in
G by the subgroup H, and define the following incident system
R=<X,L,1 >:

points from X are (left) cosets HY,

lines from £ are permutations « € G,

incidence [ is a belonging relation, i.e.

(a,0)I[a] < (point H2)I(line a)‘g(aeHS). (1)

Definition 2. By an algebraic k-net [2] we mean an incidence sys-

tem R =< X,L,Ly,...,Lg, I > consisting of the point set X, the

line set £ which is separated on £ distinct classes of "parallel" lines

ly, Ls, ..., L, and the incidence relation I between elements from X

and £, which satisfy the following two conditions:

1) any two lines from the different classes L; and L; are incident to
one and only one point from X,

2) every point from X is incident to one and only one line from each
class L.

Lemma 1. The system R =< X, L, 1 > defined in (1) is an algebraic
m-net.

Proof. According to Frobenius theorem [8], in a finite Frobenius group
G of permutations of degree n all fixed-point-free permutations with
the identity permutation form a transitive invariant subgroup A, more-
over, |A| = n. It is easy to see that A is a group transversal (see [6])
in G to H, Ya € E.
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Let’s define the classes L; of "parallel" lines in £ by the following:
LZ:{ahZ . OéEA, hiEHo, hz(l) :Z}, 1= 1,...,n.
Note that h; =id and L; = A.

Lemma A. Let o,3 € L and o # (. The following conditions are
equivalent:
1) both of lines o and [ are in the class L; for some i,

2) a(t) £ B(t) Vte E.

Proof of Lemma A. 1) = 2). Let «,( € L; and a # (3. Let’s assume
there exists to € E such that «(tg) = B(tp). Then we have

aohi(to) = Bohi(to),
ao(tr) = Polt1)

where ag, By € A, t1 = hi(to). The last equality contradicts the regu-
larity of the group A. So

a(t) £ B(t) Vte E.

2) = 1). Let a, € L, a# (3 and
a(t) #B(t) VteE.
The set A is a (left) transversal in G' to Hy, so we have
a = aohi, = Pohy,

where o9, 8y € A, h;, h; € Hy. It is necessary to prove that h; = h;.
We have

aohi(t) # Boh;(t) YVt € E,
ag Bohih N (') At V' = hi(t) € E,

ie. v = Oéalﬁohjhi_l is a fixed-point-free permutation. Then v, € A
and we obtain

hih;' = hy = By ooy € Ho N A = {id},
i.e. h; = h;. The proof of Lemma A is completed. |

Let’s return to the proof of Lemma 1. It is necessary to check
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the realization of the conditions 1) and 2) from Definition 2 for the
incidence system R =< X, L, [ >.

a) Let a and (3 be two different lines from the different classes L;
and L;. Then there exist element ¢, € E such that

a(ty) = B(to) = d, (2)

(in a contrary case we would have «(t) # B(t) Vt € E, and so
a, B € Ly for some k according to Lemma A. Moreover, there exist
an unique element ¢, € E satisfying (2), because in a opposite case
the permutation ! would fix two different elements from E and so
a~ '8 =id according to Definition 1. So we have:

a, (e H{é,

i.e. the lines a and (8 are incident to the unique point Hff). The con-
dition 1) is proved.

b) Let H? be an arbitrary point from X. This point is incident
to all lines o; € G such that a; € H?, ie. a;(a) = b. By means of
Lemma A we obtain that different such lines «; lie in different classes
L;. As |H®| = |H,| = m, then the point H is incident to m different
lines «; from different classes L;; moreover, it is incident to an unique
line in each class L;. The number of classes L; is equal to m, so every
of these classes consists of a line being incident to the point H’. The
condition 2) is proved.

The proof of Lemma 1 is completed. o

3. One-sided S-systems being constructed
over a Frobenius group

In this paragraph we will suppose that Frobenius group G is finite.
Let’s define the following two binary operations (-) and (x):
() : EXE—E,

de
Toy=2z PN 2= @.(y),
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where @, € A, ¢,(0) ==z,
() : B*xX E— FE,

0xv £L 0,

u#0: uxv=w &, w = hy(v),

where h, € Hy, h,(1) = u. Note that (%) is a partial operation.

Lemma 2. The following statements are true:

1) <E - 0>% A,

2) < E*—{0},*,1>2= Hy,

) zx(y-2)=(rx*xy) - (xxz) VeeE* VyzekE,

) every permutation h € Hy is an automorphism of the subgroup A,
) G={aus : auy(@) =a-(bsa), a€E be B —{0}}.

Proof. 1) Let’s consider the following mapping
a < E - 0>— A, a(r) = s

where x € E and the permutation ¢, is defined above. Then « is
a bijection, because the group A is regular on the set E. Further we
have

(a2 - y))(0) = pry(0) = 2 - y.
On the other hand we have

(a(@)a(y))(0) = po0y(0) = pu(y) =7 y.
So we obtain

and

a(z - y) = a(z)aly),
because the group A is regular (i.e. sharply transitive) on the set FE.
We obtain that the mapping « is an isomorphism.

2) can be proved analogously, and the isomorphism is determined
by the mapping

B < E*—{0},%x,1>— Hy, ﬂ(u)défhu,

where u € E* — {0} and the permutation h, is defined above.
3) and 4) can be proved analogously to 3) of Lemma 8 from |7].
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5) can be proved analogously to Lemma 9 from [7]. O

Note that ap; = id and o,1(x) = a -z is a fixed-point-free
permutation if a # 0; moreover {ag1}ecr = A.
Now let’s define the following partial ternary operation

(,,): EXE*XE—FE,

(@,a,y) @ w - (ax (@t y)), (3)

where a € E*, x,y € E, and z7! is the inverse element to z in
< FE,- 0>

Lemma 3. The following statements are true:
) (2,0,y) =z, (z,1,y) =y,
(x,a,z) =z, (0,a,1)=a, Ya€FE* xzy€E.
2) The system of operations A,(z,y) = (z,a,y) (a € E* —{0})
a right S-system.
3) The operations (x,a,y) and (x,b,y) are orthogonal for any a # b,

and they are quasigroups for a # 0, 1.

1

4) The operations (x,a,y) and roy =z -y are orthogonal for any

a€ bB*.

Proof 1) (,0,y) =2 (0% (" y) =2 0=z,
(l’,l,y)—l’ (1*( - y))_l"mil'y:ya
(x,a,2) =z (a ( O)) r-(ax0)=z-0=uzx,

(0,a,1)=0-(a*x (071 1)) =ax1=a.

2) According to the definition from [1], a system of operations
Ay(z,y) (a € E* C E) on some set E is a right (left) S-system, if for
any a,b € E* and x,y € E there exists ¢ = ¢(a,b) € E* such that the
following equality

(Aa 0 Ap)(z,y) = Au(z, Ay(2, 1)) = Ac(z,y)
holds, and moreover, the system < A,,o, Ay >, where u # 0, is a

group (correspondingly, if for any a,b € E* and z,y € E there exist
such ¢ = c(a,b) € E* that the following equality
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(Ao @ Ap)(7,y) = Aa(As(2,y),y) = Acl2,y)
holds, and moreover, the system < A, (u # 1),e, Ay > is a group).
According to the equality (3) we obtain for the operations A,(z,y) =
(z,a,y) and Ay(x,y) = (x,b,y) (where a,b € E* — {0} ):
(Aq 0 Ap)(z,y) = Aa(z, Ap(2,y)) = (2,0, (z,b,y)) =
—w(as (@ (2 (bx (a7 ) =
=x-(axbx(z7' - y)) = Aps(z, 7).

With the help of Lemma 2, we obtain that the system < A,, 0, A; >,
where u # 0 is a group (this group is isomorphic to the group Hy),
i.e. the system of operations A,(x,y) = (x,a,y) is a right S-system.

3) We notice that for any a € E*, z € E,

(ax2)t=axzL

Really, with the help of Lemma 2, we obtain
(ax2)-(axz)=ax(z-27)=a*x0=0,

(axz Y- (axz)=ax*(z7'-2)=ax0=0.

Further, let we have the following system
{ (x,0,9) = ¢,
(z,0,y) = d,
where a,b € E*, a#b,c,d € E are arbitrary given elements.
If a=0 thenx=¢, y=c-(b"'*(c!-d)), ie. this system has

an unique solution in F x E; so the operations (z,a,y) and (z,b,y)
are orthogonal. If b = 0 then we obtain the same result.

Let a,b # 0. Then we have

(Eogzs = {inim):

{a*@—l.y):x—i.c @{(

bx(z7ty)=a"1-
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where a~! is the inverse element to a in < E* — {0},*,1 >. From

the last equality we obtain
ctax=(axbH*((d?t-e) (ct ),

i.e. (see Lemma 2)

1

ctor= Ag—1.caxb(—1) (C_ ’ .ﬁL')

As a # b then a % b1 # 1; so the permutation Qg-1.cqup(-» has
an unique fixed-point element py. So we obtain that x = ¢ - pg,
y = c-po- (™Y % pg), i.e. the operations (z,a,y) and (z,b,y) are
orthogonal.

4) We have for any a € E* — {0} and ¢,d € E:
{ (x,a,y):c <:>{ LE'(CL*(.%'_l-y)):C

roy=d rty=d =
y=zx-d y=c-(axd)™"-d,

i.e. the operations (x,a,y) and x oy are orthogonal. |

{x.m*d):c ¢:>{ z=c-(axd)!

By an analogical way it can be defined one more partial ternary
operation

[, t,y] : EXE*XE—FE
w0,y Y (ax (x-y )y, acE

Lemma 4. The following statements are true:

1) [2,0,y] =y, [z.1y]=ux,
[z,a,2] =z, [l,a,0]=a, VYa€FE* z,y€kF.

2) The system of operations A.(z,y) = [z,a,y] (a € E* —{0}) is a
left S-system.

3) The operations [x,a,y] and —[z,b,y] are orthogonal for any a # b
and they are quasigroups for a # 0, 1.

4) The operations [r,a,y] and xey=x-y~' are orthogonal for any
ac E*.

Proof. 1). It is evident.
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2)-4) can be proved analogously to the proof of Lemma 3. O

Remark. There is a 1-1 correspondence between algebraic m-net
from Lemma 1 and some system of m orthogonal operations on the
set E. Defining the partial ternar < z,¢,y > by the following:

(a,b)I[c,d] <= < a,c,b>=d,
where [ is the incidence relation, we obtain
<z,a,y>=vy-(axz)™ a€L*

This system of operations is not a left or a right S-system of operations.
Let’s return back to the ternary operation (z,a,y).

Lemma 5. The following statements are true:

1) The mapping opo(z) =0-(axx), be E,ae E*—{0},z € FE
is an isomorphism between operations (x,c,y) and (x,a*c*a™t,y).
2) The mapping ap; is an automorphism of the operation (x,c,y)
forany be E, ce E*.

Proof. 1) We have:

aa((z,c,y)) =b-(ax(z-(c* (a7 -y)))) =
=b-(axz) (axcx(x7t y))=

=b-(axz) - ((axcxa™D)xax (7' y)) =

=b-(axz) ((axcxa™)x((ax2™) - (axy))) =
=b-(axz) ((axcxa™)x ([(axz)™ b7 -[b-(axy)]) =
= (aa(2)) - ((a* cxal™V) x ((apa(@)) ™" - (wa(y) =

= (apa(z),a % cxa™Y ayq(y)).

It means that the mapping «y, is an isomorphism between operations
(r,c,y) and (z,a*xcxaly).

2) is an evident corollary of 1). O
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Lemma 6. The following equality is true:
n—1=km
for some ke N, ie. (|JE*|—1)|(|E|-1).

Proof. (see [1] too). Let a; € E and a; # 0. Let’s consider the
following equalities:
Ai1(0,a1) = (0, La1) = 1xa1 =
AQ(O, al) == (0, 2, Cbl) = 2% aq

All values in the right sides of the equalities are different. Really, we
have

axa; Zbxay, a#£b
because < E* — {0}, *,1 > is a group.
Let’s denote
M, ={A0,a1) : i=1,....,m}, |M]|=m.
Let ay # 0 and as € E\M;. By analogy with above we have:
A1(0,a0) = agy
As(0,az) = 2 % ay

and we obtain analogously that the right sides of these equalities are
different. Let’s denote

MQZ{Az’(O?aQ) : izl,...,m}, ‘M2| =m
If we assume that
M, N My # 0,
i.e. there exists b € M; N My, then there exist such k,r € E* — {0}
that
b= Ax(o,a1) = A, (0, as),
b=kxa =rx*ay

ar=rVxksxa =k xar, K=r"Dxk,
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i.e. as € My, contradicting to the choosing of the element a,. Con-
tinuing this process up to the complete exhaustion of the set E, we
obtain

E\{0} = [1 M,

moreover, M; N M; =0 if i # j, and |M;| =m forevery i =1,..., k.
Then

| — {0} =k |M],
n—1=%k-m

and Lemma 6 is proved. U

Corollary. Finite nontrivial (i.e. m > 1 and n > 1) Frobenius p-
group does not exist.

Proof. Let’s assume the contrary and let G be a Frobenius p-group
with m,n > 1. Then we have

|G| =p', m=|Hy|||G] = m=p°, s>0,
n=1A4| |G| = n=p' t>0.
With the help of Lemma 6 we obtain

n—1=%k-m

pt —1=%k- ps

pt _ k . ps =1
that is impossible because the left part of the last equality is divisible
by number p, but the right one is not divisible. |

This corollary gives a negative solution of the problem 6.55 from
Kourovskaya notebook [5] in the case of a finite Frobenius group.

Lemma 7. The mappings
Qob,a(x) = (b, a, ZE),
/(/}b,(l(‘/’v) - (b7 a7 (07 a(_l)’ x))?
where b€ B, a € E* —{0,1} and a'=Y is inverse to a in the group
< E* — {0}, %,1 >, form a permutation group, which is isomorphic to
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the group G.

Proof. By means of Lemma 2 we have for a € E*\{0,1} and b€ E:
opa(z) = (bya,x) =b-(ax (b7 2)=b-(axb') (axx) = a..(z),

where

c=b-(axb”')=(b,a,o).

In a such way it can be represented all the permutations oy, from G,
except the permutations like oy ;. Further we obtain

%,a(l’) = (b7a7 (O,G(_l),l’))
) =b-(ax (b - (a"V*2))=b-(a*xb7') 2= ae(z)

c=b-(axb"')=(ba,o).

In a such way it can be represented all the permutations from G
like oy ;. It means that the set of permutations like ¢, and i,
(a € E*\{0,1} and b € E) coincides with the set of permutations
o q. By the help of Lemma 2 we obtain that this set of permutations
forms a group, which is isomorphic to the group G. U

The mappings like ¢y, and 1, are called right cell permutations
of the ternar (x,t,y) (cf. [7]).

It is evident, that the analogous symmetric constructions can be
done for the ternar [z,t,y] too.

4. One sided S-systems of operations, whose
cell permutations forms a group

In this paragraph the set £/ may be as finite as infinite.

Let Ao(x,y), A1(z,y), ..., Am(x,y), ... be a collection of binary op-
erations on some set F (E* = {0,1,...,m,...} is the set of indexes of
th operations A;(z,y), and moreover, E* C FE), and let this collection
forms a right S-system of indempotent quasigroups A;(z,y), ¢ # 0,1,
ie.

AO(x7y) =, A1($7y) =Y, AZ(ZL’,I') =T,
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(Ao 0 Ap)(x,y) = Aa(z, Ap(2,y)) = Ac(2,y) (4)

for some ¢ € E*—{0}, moreover, system < A,, 0, A; >, where u # 0,
is a group. Rewrite (4) as a (partial) ternary operation (z,t,y):

(,,): ExE*xE—E, E*CE, 01¢E,
) (SL’,t,y) = At(l’,y),
ie.
(,0,y) =z, (2,1,y) =y,
Vabe E*—{0} : (x,a,(z,b,y)) = (z,c,y) (5)
for some ¢ = c(a,b) € E* — {0},

(x,a,2) =2 VzxekE VaekFE" (6)

It is easy to prove that all operations (z,a,y) are mutually or-
thogonal for different @ € E*. As all the operations (z,a,y) are
mutually orthogonal and the identity (6) is true, we obtain that all
values (0,a,1) are different for differenet a € E*. So renumerating
the indexes from E* it can obtain the following identity (a € E*):

(0,a,1) = a. (7)

Let’s define the following operation (%) on the set E*:
(%) : E*x E* — E*
Oxa=ax0=0,
r,y,z2#0, xxy=2z<= (r,q,(x,by)) = (x,c,vy).
As a corollary of (4) and (5) we obtain the system < E* — {0}, *,1 >
is a group. Further we have from (5) when z =0 and y € E* — {0}:
(0,a,(0,b,y)) = (0,axb,1), Va,be E—{0}. (8)

If y =1, then we obtain from (8) with the help of (7):
(0,a,b) = (0,a,(0,b,1)) = (0,axb,1) =axb.
So Va,b,y € E* —{0} we obtain from (8):
(0,a,(0,b,y)) = (0,a,bxy) = ax (bxy) =
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=(axb)xy=(0,axb,y) =(0,(0,a,b),y),

i.e. the operation z ey = (0,z,y) on the set E* — {0} is a group,
and this operation coincide with the operation (x) from the initial S-
system. O

Lemma 8. The mappings
wba(z) = (b,a,z), beE, aecE*—{0},
Vpaa(z) = (b,a,(d,a"Y 7)), bdeE, acE*—{0},
are permutations on the set E.

Proof. We have from (5):
Q0b71(l') = (bv 171‘) =,
Vpad(r) = (bya, (b,a 2)) = (b,axa"V, ) =z,
Yp1a(z) = (b,1,(d, 1,2)) = x.

If a € E* — {0}, then for any arbitrary b and a the mapping
VpalT) = Lga) (x) is a left translation in the quasigroup (z,a,y) with
respect to the element b, i.e. it is a permutation. If a € E* — {0, 1},
then for any arbitrary b, a and d we have:

(1)
Unaale) = Ly Ly (@),
i.e. the mapping 3,4 is a composition of two translations: Ll(,a) in

. (=1)y ., .
the quasigroup (z,a,y) and L. ") in the quasigroup (z,aV,y); so
it is a permutation too. 0

Lemma 9. The following statements are true:

1) permutation ¢y, (b€ E, a € E* —{0,1}) has one and only one
fized element b,

2) permutation Yyaq (b,d € E, a € E*—{0,1}) is a fized-point-
free permutation, if b +# d,

3) the set of permutations
T ={Ypa0 : bEE, ao is a fivred element from E* —{0,1}}

18 transitive on the set K.

Proof. 1) We have
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©ba(b) = (b,a,b) =b.
Let’s assume there exists an element xq € E, xg # b such that
®b,a(T0) = To.
Then we obtain
(b,a,xq) = xo.
But it is evident that
(o, a,xy) = .

As the operation (x,a,y) is a quasigroup and z, # b we obtain a
contradiction between the last two equalities. So

‘pb,a(m) 7& x
for any = € E — {b}.

2) Let’s assume there exists an element xy € E such that b # d
and

zﬁb,a,d(ﬂﬁo) = Xy,
i.e.

(b,a, (d, a1, z0)) = .
Then we obtain with the help of (5)

(b, a1 xo) ( a( Y (b, a, (d,a=Y, x0))) =
= (b7 al=b ( )) (b7 7( 73;0)) =
- ( - 7'7;0)’

ie. b=d (because the operation (z,a"",y) is a quasigroup when
a # 0,1). We obtain a contradiction; so if b # d, then ¢y, q(x) #
for any x € E.

3) Let ag be an arbitrary element from E* — {0,1}. We have for
an arbitrary fixed element ¢ € E:

Pra00(€) = (t,ag, (0,a5 " ¢)) = (t,a0,af " x c) = RY, (1),

aO *C
where nga) denotes the right translation in the quasigroup (z,a,y)
with respect to the element b € E. As the mapping R(?O_)n is a
(10 *C

permutation on the set E, so for any c,d € E there exists an element
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to € E such that we have
Yigano(c) = R, (to) = d,

aé_l)*c

i.e. the set T is a transitive set of permutations on FE. O

Lemma 10. Let permutations ¢y, and ¥pqq where b,d € E, a €
E*—{0}), form a group G under the natural product of permutations.
Then G is a Frobenius group.

Proof is an easy corollary of Lemma 9. o

Lemma 11. Let the set E be a finite one. If the conditions of Lemma
10 take place, then the set of fixed-point-free permutations

T ={Ypan0 : b€ E, is any fived element from E* —{0,1}}

with the identity permutation id = 14,0 15 a normal subgroup in the
Frobenius group G.

Proof. Let the conditions of Lemma hold. Then G is a finite Frobenius
group of permutations of degree n, where n = |E|. It is easy to show
that the group G contains exactly n—1 fixed-point-free permutations
(see |4]). As the set T contains exactly n—1 different fixed-point-free
permutations (see Lemma 9), so T contains all the fixed-point-free
permutations of group G.
Let’s denote
H, = St,(G), a€ckE.

As the set T is a transitive set of permutations on F, so 1" is a left
transversal in the group G to its subgroup H, for any a € E. So we
have

t7't; € H, Vi#j.
Then we obtain that t;'t; is a fixed-point-free permutation, i.e.
t7t =t
for some element ¢; € T', because the set T' contains all the fixed-point-

free permutations of the group G. So all fixed-point-free permutations
of the group G with the identity permutation id form a group which
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is a normal subgroup of the group G. O

By means of Lemmas 10 and 11 we obtain that there exist nor-
mal subgroups, consisting from fixed-point-free permutations and the
identity permutation, in the finite Frobenius groups, which are groups
of cell permutations of the right S-system.

Further we will demonstrate one more method of definition of the
operations (z,a,y) by an arbitrary Frobenius group (that method is
different from the method described in the part 3; moreover, that
method does not use the fact of existing a normal subgroup in the
Frobenius group and is independent for the cardinality of the set F.

Let G be an arbitrary Frobenius group of permutations on some
set I/ and 0,1 be two distinct distinguished elements from E. As the
group G is transitive on the set E, then there exists a set of n permu-
tations P = {0, }sep such that 0,(0) =2z V2 € E, and oy = id.
Let’s define the operation (z,a,y) as follows:

(z,0,y) =z, (x,1,y)=y,

(9)

Vae E*, a#0,1, (z,a,y) =z <= z=a(y),
where a € G, a(z) =z, B(1)= (0, 'ac,)(1) =a.

This definition is correct, because there exist an unique permutation
h = Hy = Sto(G) satisfying the condition h(1) = a and so there exist
an unique permutation a € G satisfying the condition (9).

Lemma 12. The operation (x,a,y) (defined by (9)) satisfies the fol-
lowing properties:

1) (0,a,1)=a, (x,a,2)=uz,
2) Ya,be E* : (z,a,(x,b,y)) = (z,c,y) for some ¢ = c(a,b) € E*.

Proof. 1) We have

u=a(l)
(0,a,1) =u<=< «a0)=0
A1) =a

which implies o = id, a« = 3, and in the consequence u = (1) =
B(1) =a,ie (0,a,1) =a.
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Similarly

(r,a,7) =u &

@0 =
N
I

ie. (z,a,x)=x.

2). If a =0, then we have
(z,a,(x,b,y)) =2 = (x,0,y) = c=¢(0,b) = 0.
If b =0, then we have
(z,a,(z,b,y)) = (x,a,2) =2 = (x,0,y) = ¢ = ¢(a,0) = 0.
Let a,b# 0. Then we obtain

(x,a,(x,b,y)) :u<:>{ (x,clz,y) ;

—
a(r) = =z, a(v) =u
o tac, =he,  ho(l)=a
<~ <~
a(z) =z,  oa(y)=v
o taio, = hy, hy(1) =0

— -1 -1 -1
0, Q0 = 0, Q00, 010, = hohy = he

C= hc(l) = hahb(1> = ha<b)

u="(y) = (c,z,9) = (z, ha(b), y)
7= @y
V(z) ==
o v, = he
ie.
(z,a, (z,b,y)) = (z,c,y).
So we have demonstrated that it can define a right S-system of idem-

potent operations (z,a,y) over an arbitrary Frobenius group G with
the help of equalities (9).

Moreover, it can define the left S-system of idempotent operations
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[z, a,y] over an arbitrary Frobenius group G changing symmetrically
the definitive equalities (9).
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