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Frobenius groups and one-sided S-systems

Evghenii A. Kuznetsov

Abstract

Frobenius groups are studied by the means of systems of orthogonal operations,
naturally being built over these groups.

1. Introduction
De�nition 1. [4,8] The transitive irregular permutation group G act-
ing on a set E is called a Frobenius group, if Stab(G) = 〈id〉 for any
a, b ∈ E, a 6= b.

Frobenius groups are one of the classical group classes in permu-
tation group theory. The studying of these groups was begun in the
Frobenius article [3] at the beginning of 20th century and was con-
tinued by M.Hall [4], H.Wielandt [8] etc. Frobenius proved in [3] by
means of character group theory that there exists an invariant regular
subgroup consisting of all �xed-point free permutations and the iden-
tity permutation in a �nite Frobenius group (Frobenius theorem). It is
not known any other proof of this theorem (without using of character
group theory) till now.

In present article a 1-1 correspondence between Frobenius groups
and one-sided S-systems of orthogonal operations [1] (on the same set
of symbols E), whose cell permutations form a group, is built.

1991 Mathematics Subject Classi�cation: 20N05, 20N10, 08A55
Keywords: Frobenius group, orthogonal operation



22 E. A. Kuznetsov

In the section 2 the incident system of (left) cosets in an arbitrary
�nite Frobenius group G by stabilizer Sta(G) (a ∈ E) is investigated.
It is proved that this incident system is an algebraic m-net [2], where
m = |Sta(G)|.

In the section 3 the construction of two systems of the orthogonal
operations over an arbitrary �nite Frobenius group G is given. It is
proved that they form a left and a right S-systems [1]. Some other
properties of these one-sided S-systems are studied too. A number-
ing correlation between permutations degree n and m = |Sta(G)| is
obtained. As a corollary of this correlation it is proved that �nite
Frobenius p-groups doesn't exist (the negative answer on the problem
6.55 from [5] in a �nite case). At the end of the part 2 the right (left)
cell permutations of right (left) S-system are de�ned and it is shown
that the set of all cell permutations forms a group coinciding with the
group G.

In the section 3 an arbitrary right (left) S-systems of binary idem-
potent quasigroups on some set E (�nite or in�nite) are investigated.
In any right (left) S-system of operations the cell functions are in-
troduced, and it is proved that all these functions are permutations
on the set E. If the set of all cell permutations forms a group (with
respect to natural operation of composition), then this group is a
Frobenius group. As a corollary, the proof of Frobenius theorem is
obtained (when the set E is �nite). Another construction of one-sided
S-systems of operations on E over the Frobenius group G, no depend-
ing from the cardinality of the set E, are given in order to demonstrate
preserving of the correspondence between Frobenius groups and one-
sided S-systems of operations on E with the property mentioned above
in the case when the set E is in�nite.

We will use the following notations:

Ha = Sta(G) is the stabilizer of the element a ∈ E in the group G,

0, 1 are two distinguished elements in the set E,

E∗ = {0} ∪ {h(1) : h ∈ H0 = St0(G)} ⊆ E.
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2. Incident system of cosets
In this paragraph we suppose that the set E is �nite, i.e. the permu-
tations from the Frobenius group G have the �nite degree n = |E|.

In a Frobenius group all subgroups Ha (a ∈ E) are conjugate and
so we can denote

m = |H0| = |Ha| .
At last, we can suppose the elements from E are renamed so that

E∗ = {0, 1, ..., m}.

Let's consider all (left) cosets Hb
a = {α ∈ G : α(a) = b} in

G by the subgroup Ha and de�ne the following incident system
R =< X,L, I >:

points from X are (left) cosets Hb
a,

lines from L are permutations α ∈ G,
incidence I is a belonging relation, i.e.

(a, b)I[α] ⇔ ( point Hb
a )I( line α)

def⇔ ( α ∈ Hb
a ). (1)

De�nition 2. By an algebraic k-net [2] we mean an incidence sys-
tem R =< X,L, L1, ..., Lk, I > consisting of the point set X, the
line set L which is separated on k distinct classes of "parallel" lines
l1, L2, ..., Lk, and the incidence relation I between elements from X
and L, which satisfy the following two conditions:
1) any two lines from the di�erent classes Li and Lj are incident to

one and only one point from X,
2) every point from X is incident to one and only one line from each

class Li.

Lemma 1. The system R =< X,L, I > de�ned in (1) is an algebraic
m-net.

Proof. According to Frobenius theorem [8], in a �nite Frobenius group
G of permutations of degree n all �xed-point-free permutations with
the identity permutation form a transitive invariant subgroup A, more-
over, |A| = n. It is easy to see that A is a group transversal (see [6])
in G to Ha ∀a ∈ E.
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Let's de�ne the classes Li of "parallel" lines in L by the following:
Li = {αhi : α ∈ A, hi ∈ H0, hi(1) = i}, i = 1, ..., n .

Note that hi = id and Li = A.

Lemma A. Let α, β ∈ L and α 6= β . The following conditions are
equivalent:

1) both of lines α and β are in the class Li for some i,
2) α(t) 6= β(t) ∀t ∈ E.

Proof of Lemma A. 1) ⇒ 2). Let α, β ∈ Li and α 6= β. Let's assume
there exists t0 ∈ E such that α(t0) = β(t0). Then we have

α0hi(t0) = β0hi(t0),
α0(t1) = β0(t1)

where α0, β0 ∈ A, t1 = hi(t0). The last equality contradicts the regu-
larity of the group A. So

α(t) 6= β(t) ∀t ∈ E.

2) ⇒ 1). Let α, β ∈ L, α 6= β and
α(t) 6= β(t) ∀t ∈ E.

The set A is a (left) transversal in G to H0, so we have
α = α0hi, β = β0hj,

where α0, β0 ∈ A, hi, hj ∈ H0. It is necessary to prove that hi = hj.
We have

α0hi(t) 6= β0hj(t) ∀t ∈ E,
α−1

0 β0hjh
−1
i (t′) 6= t′ ∀t′ = hi(t) ∈ E,

i.e. γ0 = α−1
0 β0hjh

−1
i is a �xed-point-free permutation. Then γ0 ∈ A

and we obtain
hjh

−1
i = hk = β−1

0 α0γ0 ∈ H0 ∩ A = {id},
i.e. hi = hj. The proof of Lemma A is completed.

Let's return to the proof of Lemma 1. It is necessary to check
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the realization of the conditions 1) and 2) from De�nition 2 for the
incidence system R =< X,L, I >.

a) Let α and β be two di�erent lines from the di�erent classes Li

and Lj. Then there exist element t0 ∈ E such that

α(t0) = β(t0) = d, (2)
(in a contrary case we would have α(t) 6= β(t) ∀t ∈ E, and so
α, β ∈ Lk for some k according to Lemma A. Moreover, there exist
an unique element t0 ∈ E satisfying (2), because in a opposite case
the permutation α−1β would �x two di�erent elements from E and so
α−1β = id according to De�nition 1. So we have:

α, β ∈ Hd
t0
,

i.e. the lines α and β are incident to the unique point Hd
t0
. The con-

dition 1) is proved.

b) Let Hb
a be an arbitrary point from X. This point is incident

to all lines αi ∈ G such that αi ∈ Hb
a, i.e. αi(a) = b. By means of

Lemma A we obtain that di�erent such lines αi lie in di�erent classes
Li. As |Hb

a| = |Ha| = m, then the point Hb
a is incident to m di�erent

lines αi from di�erent classes Li; moreover, it is incident to an unique
line in each class Li. The number of classes Li is equal to m, so every
of these classes consists of a line being incident to the point Hb

a. The
condition 2) is proved.

The proof of Lemma 1 is completed.

3. One-sided S-systems being constructed
over a Frobenius group

In this paragraph we will suppose that Frobenius group G is �nite.
Let's de�ne the following two binary operations (·) and (∗):

(·) : E × E → E,
x · y = z

def⇐⇒ z = ϕx(y),
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where ϕx ∈ A, ϕx(0) = x,
(∗) : E∗ × E → E,

0 ∗ v
def⇐⇒ 0,

u 6= 0 : u ∗ v = w
def⇐⇒ w = hu(v),

where hu ∈ H0, hu(1) = u. Note that (∗) is a partial operation.

Lemma 2. The following statements are true:
1) < E, ·, 0 > ∼= A,
2) < E∗ − {0}, ∗, 1 > ∼= H0,
3) x ∗ (y · z) = (x ∗ y) · (x ∗ z) ∀x ∈ E∗, ∀y, z ∈ E,
4) every permutation h ∈ H0 is an automorphism of the subgroup A,
5) G = {αa,b : αa,b(x) = a · (b ∗ x), a ∈ E b ∈ E∗ − {0}}.

Proof. 1) Let's consider the following mapping
α : < E, ·, 0 >→ A , α(x) = ϕx

where x ∈ E and the permutation ϕx is de�ned above. Then α is
a bijection, because the group A is regular on the set E. Further we
have

(α(x · y))(0) = ϕx·y(0) = x · y.
On the other hand we have

(α(x)α(y))(0) = ϕxϕy(0) = ϕx(y) = x · y .

So we obtain
(α(x · y))(0) = x · y = (α(x)α(y))(0),

and
α(x · y) = α(x)α(y),

because the group A is regular (i.e. sharply transitive) on the set E.
We obtain that the mapping α is an isomorphism.

2) can be proved analogously, and the isomorphism is determined
by the mapping

β : < E∗ − {0}, ∗, 1 > → H0 , β(u)
def
= hu,

where u ∈ E∗ − {0} and the permutation hu is de�ned above.
3) and 4) can be proved analogously to 3) of Lemma 8 from [7].
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5) can be proved analogously to Lemma 9 from [7].

Note that α0,1 ≡ id and αa,1(x) = a · x is a �xed-point-free
permutation if a 6= 0; moreover {αa,1}a∈E ≡ A.

Now let's de�ne the following partial ternary operation
( , , ) : E × E∗ × E → E,

(x, a, y)
def
= x · (a ∗ (x−1 · y)), (3)

where a ∈ E∗, x, y ∈ E, and x−1 is the inverse element to x in
< E, ·, 0 >.

Lemma 3. The following statements are true:
1) (x, 0, y) = x, (x, 1, y) = y,

(x, a, x) = x, (0, a, 1) = a, ∀a ∈ E∗, x, y ∈ E.
2) The system of operations Aa(x, y) = (x, a, y) (a ∈ E∗ − {0}) is

a right S-system.
3) The operations (x, a, y) and (x, b, y) are orthogonal for any a 6= b,

and they are quasigroups for a 6= 0, 1.
4) The operations (x, a, y) and x◦y = x−1 ·y are orthogonal for any

a ∈ E∗.

Proof. 1) (x, 0, y) = x · (0 ∗ (x−1 · y)) = x · 0 = x,
(x, 1, y) = x · (1 ∗ (x−1 · y)) = x · x−1 · y = y,

(x, a, x) = x · (a ∗ (x−1 · x)) = x · (a ∗ 0) = x · 0 = x,
(0, a, 1) = 0 · (a ∗ (0−1 · 1)) = a ∗ 1 = a.

2) According to the de�nition from [1], a system of operations
Aa(x, y) (a ∈ E∗ ⊆ E) on some set E is a right (left) S-system, if for
any a, b ∈ E∗ and x, y ∈ E there exists c = c(a, b) ∈ E∗ such that the
following equality

(Aa ◦ Ab)(x, y) = Aa(x,Ab(x, y)) = Ac(x, y)

holds, and moreover, the system < Au, ◦, A1 >, where u 6= 0, is a
group (correspondingly, if for any a, b ∈ E∗ and x, y ∈ E there exist
such c = c(a, b) ∈ E∗ that the following equality



28 E. A. Kuznetsov

(Aa • Ab)(x, y) = Aa(Ab(x, y), y) = Ac(x, y)

holds, and moreover, the system < Au(u 6= 1), •, A0 > is a group).
According to the equality (3) we obtain for the operations Aa(x, y) =

(x, a, y) and Ab(x, y) = (x, b, y) (where a, b ∈ E∗ − {0} ):
(Aa ◦ Ab)(x, y) = Aa(x,Ab(x, y)) = (x, a, (x, b, y)) =

= x · (a ∗ (x−1 · (x · (b ∗ (x−1 · y))))) =
= x · (a ∗ b ∗ (x−1 · y)) = Aa∗b(x, y).

With the help of Lemma 2, we obtain that the system < Au, ◦, A1 >,
where u 6= 0 is a group (this group is isomorphic to the group H0),
i.e. the system of operations Aa(x, y) = (x, a, y) is a right S-system.

3) We notice that for any a ∈ E∗, z ∈ E,
(a ∗ z)−1 = a ∗ x−1.

Really, with the help of Lemma 2, we obtain
(a ∗ z) · (a ∗ z−1) = a ∗ (z · z−1) = a ∗ 0 = 0,
(a ∗ z−1) · (a ∗ z) = a ∗ (z−1 · z) = a ∗ 0 = 0.

Further, let we have the following system
{

(x, a, y) = c,
(x, b, y) = d,

where a, b ∈ E∗, a 6= b, c, d ∈ E are arbitrary given elements.
If a = 0 then x = c, y = c · (b−1 ∗ (c−1 · d)) , i.e. this system has

an unique solution in E ×E; so the operations (x, a, y) and (x, b, y)
are orthogonal. If b = 0 then we obtain the same result.

Let a, b 6= 0. Then we have
{

(x, a, y) = c
(x, b, y) = d

⇐⇒
{

x · (a ∗ (x−1 · y)) = c
x · (b ∗ (x−1 · y)) = d

⇐⇒
{

a ∗ (x−1 · y) = x−1 · c
b ∗ (x−1 · y) = x−1 · d ⇐⇒

{
(a ∗ (x−1 · y))−1 = c−1 · x
(b ∗ (x−1 · y))−1 = d−1 · x ⇐⇒

{
a ∗ (y−1 · x) = c−1 · x
b ∗ (y−1 · x) = d−1 · x ⇔ a(−1) ∗ (c−1 · x) = y−1 · x = b(−1) ∗ (d−1 · x),
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where a−1 is the inverse element to a in < E∗ − {0}, ∗, 1 >. From
the last equality we obtain

c−1 · x = (a ∗ b−1) ∗ ((d−1 · c) · (c−1 · x)),
i.e. (see Lemma 2)

c−1 · x = αd−1·c,a∗b(−1)(c−1 · x)

As a 6= b then a ∗ b(−1) 6= 1; so the permutation αd−1·c,a∗b(−1) has
an unique �xed-point element p0. So we obtain that x = c · p0,
y = c · p0 · (a(−1) ∗ p0), i.e. the operations (x, a, y) and (x, b, y) are
orthogonal.

4) We have for any a ∈ E∗ − {0} and c, d ∈ E:
{

(x, a, y) = c
x ◦ y = d

⇐⇒
{

x · (a ∗ (x−1 · y)) = c
x−1 · y = d

⇐⇒
{

x · (a ∗ d) = c
y = x · d ⇐⇒

{
x = c · (a ∗ d)−1

y = c · (a ∗ d)−1 · d,

i.e. the operations (x, a, y) and x ◦ y are orthogonal.

By an analogical way it can be de�ned one more partial ternary
operation

[x, t, y] : E × E∗ × E → E

[x, a, y]
def
= (a ∗ (x · y−1)) · y , a ∈ E∗.

Lemma 4. The following statements are true:
1) [x, 0, y] = y, [x, 1, y] = x,

[x, a, x] = x, [1, a, 0] = a, ∀a ∈ E∗, x, y ∈ E.
2) The system of operations Aa(x, y) = [x, a, y] (a ∈ E∗ − {0}) is a

left S-system.
3) The operations [x, a, y] and −[x, b, y] are orthogonal for any a 6= b

and they are quasigroups for a 6= 0, 1.
4) The operations [x, a, y] and x • y = x · y−1 are orthogonal for any

a ∈ E∗.

Proof. 1). It is evident.
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2)-4) can be proved analogously to the proof of Lemma 3.

Remark. There is a 1-1 correspondence between algebraic m-net
from Lemma 1 and some system of m orthogonal operations on the
set E. De�ning the partial ternar < x, t, y > by the following:

(a, b)I[c, d] ⇐⇒ < a, c, b >= d,
where I is the incidence relation, we obtain

< x, a, y >= y · (a ∗ x)−1, a ∈ E∗

This system of operations is not a left or a right S-system of operations.

Let's return back to the ternary operation (x, a, y).

Lemma 5. The following statements are true:
1) The mapping αb,a(x) = b · (a ∗ x) , b ∈ E, a ∈ E∗ − {0}, x ∈ E
is an isomorphism between operations (x, c, y) and (x, a ∗ c ∗ a−1, y).
2) The mapping αb,I is an automorphism of the operation (x, c, y)
for any b ∈ E, c ∈ E∗.

Proof. 1) We have:
αb,a((x, c, y)) = b · (a ∗ (x · (c ∗ (x−1 · y)))) =

= b · (a ∗ x) · (a ∗ c ∗ (x−1 · y)) =

= b · (a ∗ x) · ((a ∗ c ∗ a(−1)) ∗ a ∗ (x−1 · y)) =

= b · (a ∗ x) · ((a ∗ c ∗ a(−1)) ∗ ((a ∗ x−1) · (a ∗ y))) =

= b · (a ∗ x) · ((a ∗ c ∗ a(−1)) ∗ ([(a ∗ x)−1 · b−1] · [b · (a ∗ y)])) =

= (αb,a(x)) · ((a ∗ c ∗ a(−1)) ∗ ((αb,a(x))−1 · (αb,a(y)))) =

= (αb,a(x), a ∗ c ∗ a(−1), αb,a(y)).
It means that the mapping αb,a is an isomorphism between operations
(x, c, y) and (x, a ∗ c ∗ a−1, y).

2) is an evident corollary of 1).
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Lemma 6. The following equality is true:
n− 1 = km

for some k ∈ N , i.e. (|E∗| − 1) | (|E| − 1).

Proof. (see [1] too). Let a1 ∈ E and a1 6= 0. Let's consider the
following equalities:

A1(0, a1) = (0, 1, a1) = 1 ∗ a1 = a1

A2(0, a1) = (0, 2, a1) = 2 ∗ a1

. . . . . . . . . . . . . . . . . .

Am(0, a1) = (0,m, a1) = m ∗ a1.
All values in the right sides of the equalities are di�erent. Really, we
have

a ∗ a1 6= b ∗ a1, a 6= b

because < E∗ − {0}, ∗, 1 > is a group.
Let's denote

M1 = {Ai(0, a1) : i = 1, ...,m} , |M1| = m.
Let a2 6= 0 and a2 ∈ E\M1. By analogy with above we have:

A1(0, a2) = a2

A2(0, a2) = 2 ∗ a2

. . . . . . . . . . . .

Am(0, a2) = m ∗ a2

and we obtain analogously that the right sides of these equalities are
di�erent. Let's denote

M2 = {Ai(0, a2) : i = 1, ..., m} , |M2| = m

If we assume that
M1 ∩ M2 6= ∅,

i.e. there exists b ∈ M1 ∩ M2, then there exist such k, r ∈ E∗ − {0}
that

b = Ak(o, a1) = Ar(o, a2),
b = k ∗ a1 = r ∗ a2

a2 = r(−1) ∗ k ∗ a1 = k′ ∗ a1 , k′ = r(−1) ∗ k,
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i.e. a2 ∈ M1, contradicting to the choosing of the element a2. Con-
tinuing this process up to the complete exhaustion of the set E, we
obtain

E\{0} =
k∐

i=1
Mi ,

moreover, Mi ∩ Mj = ∅ if i 6= j, and |Mi| = m for every i = 1, ..., k.
Then

|E − {0}| = k · |M1| ,
n− 1 = k ·m

and Lemma 6 is proved.

Corollary. Finite nontrivial (i.e. m > 1 and n > 1) Frobenius p-
group does not exist.

Proof. Let's assume the contrary and let G be a Frobenius p-group
with m,n > 1. Then we have

|G| = p′ , m = |H0| | |G| ⇒ m = ps, s > 0,
n = |A| | |G| ⇒ n = pt, t > 0.

With the help of Lemma 6 we obtain
n− 1 = k ·m
p t − 1 = k · ps

p t − k · ps = 1

that is impossible because the left part of the last equality is divisible
by number p, but the right one is not divisible.

This corollary gives a negative solution of the problem 6.55 from
Kourovskaya notebook [5] in the case of a �nite Frobenius group.

Lemma 7. The mappings
ϕb,a(x) = (b, a, x),

ψb,a(x) = (b, a, (0, a(−1), x)),
where b ∈ E, a ∈ E∗−{0, 1} and a(−1) is inverse to a in the group
< E∗−{0}, ∗, 1 >, form a permutation group, which is isomorphic to
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the group G.

Proof. By means of Lemma 2 we have for a ∈ E∗\{0, 1} and b ∈ E:
ϕb,a(x) = (b, a, x) = b · (a ∗ (b−1 · x)) = b · (a ∗ b−1) · (a ∗ x) = αc,a(x),
where

c = b · (a ∗ b−1) = (b, a, 0).
In a such way it can be represented all the permutations αb,a from G,
except the permutations like αb,1. Further we obtain
ψb,a(x) = (b, a, (0, a(−1), x))

= b · (a ∗ (b−1 · (a(−1) ∗ x))) = b · (a ∗ b−1) · x = αc,1(x)
where

c = b · (a ∗ b−1) = (b, a, 0).
In a such way it can be represented all the permutations from G
like αb,1. It means that the set of permutations like ϕb,a and ψb,a

(a ∈ E∗\{0, 1} and b ∈ E) coincides with the set of permutations
αb,a. By the help of Lemma 2 we obtain that this set of permutations
forms a group, which is isomorphic to the group G.

The mappings like ϕb,a and ψb,a are called right cell permutations
of the ternar (x, t, y) (cf. [7]).

It is evident, that the analogous symmetric constructions can be
done for the ternar [x, t, y] too.

4. One sided S-systems of operations, whose
cell permutations forms a group

In this paragraph the set E may be as �nite as in�nite.
Let A0(x, y), A1(x, y), ..., Am(x, y), ... be a collection of binary op-

erations on some set E (E∗ = {0, 1, ..., m, ...} is the set of indexes of
th operations Ai(x, y), and moreover, E∗ ⊆ E), and let this collection
forms a right S-system of indempotent quasigroups A1(x, y), i 6= 0, 1,
i.e.

A0(x, y) = x , A1(x, y) = y , Ai(x, x) = x,
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(Aa ◦ Ab)(x, y) = Aa(x,Ab(x, y)) = Ac(x, y) (4)
for some c ∈ E∗−{0}, moreover, system < Au, ◦, A1 >, where u 6= 0,
is a group. Rewrite (4) as a (partial) ternary operation (x, t, y) :

( , , ) : E × E∗ × E → E , E∗ ⊆ E, 0, 1 ∈ E,
(x, t, y) = At(x, y),

i.e.
(x, 0, y) = x , (x, 1, y) = y,

∀ a, b ∈ E∗ − {0} : (x, a, (x, b, y)) = (x, c, y) (5)
for some c = c(a, b) ∈ E∗ − {0},

(x, a, x) = x ∀ x ∈ E, ∀ a ∈ E∗. (6)

It is easy to prove that all operations (x, a, y) are mutually or-
thogonal for di�erent a ∈ E∗. As all the operations (x, a, y) are
mutually orthogonal and the identity (6) is true, we obtain that all
values (0, a, 1) are di�erent for di�erenet a ∈ E∗. So renumerating
the indexes from E∗ it can obtain the following identity (a ∈ E∗):

(0, a, 1) = a. (7)

Let's de�ne the following operation (∗) on the set E∗:
(∗) : E∗ ∗ E∗ → E∗,

0 ∗ a = a ∗ 0 = 0,
x, y, z 6= 0 , x ∗ y = z ⇐⇒ (x, a, (x, b, y)) = (x, c, y).

As a corollary of (4) and (5) we obtain the system < E∗ − {0}, ∗, 1 >
is a group. Further we have from (5) when x = 0 and y ∈ E∗ − {0}:

(0, a, (0, b, y)) = (0, a ∗ b, 1), ∀ a, b ∈ E − {0}. (8)

If y = 1, then we obtain from (8) with the help of (7):
(0, a, b) = (0, a, (0, b, 1)) = (0, a ∗ b, 1) = a ∗ b.

So ∀ a, b, y ∈ E∗ − {0} we obtain from (8):
(0, a, (0, b, y)) = (0, a, b ∗ y) = a ∗ (b ∗ y) =
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= (a ∗ b) ∗ y = (0, a ∗ b, y) = (0, (0, a, b), y),
i.e. the operation x • y = (0, x, y) on the set E∗ − {0} is a group,
and this operation coincide with the operation (∗) from the initial S-
system.

Lemma 8. The mappings
ϕb,a(x) = (b, a, x), b ∈ E, a ∈ E∗ − {0},

ψb,a,d(x) = (b, a, (d, a(−1), x)), b, d ∈ E, a ∈ E∗ − {0},
are permutations on the set E.

Proof. We have from (5):
ϕb,1(x) = (b, 1, x) = x,

ψb,a,d(x) = (b, a, (b, a(−1), x)) = (b, a ∗ a(−1), x) = x,
ψb,1,d(x) = (b, 1, (d, 1, x)) = x.

If a ∈ E∗ − {0}, then for any arbitrary b and a the mapping
ϕb,a(x) = L

(a)
b (x) is a left translation in the quasigroup (x, a, y) with

respect to the element b, i.e. it is a permutation. If a ∈ E∗ − {0, 1},
then for any arbitrary b, a and d we have:

ψb,a,d(x) = L
(a)
b L

(a(−1))
d (x),

i.e. the mapping ψb,a,d is a composition of two translations: L
(a)
b in

the quasigroup (x, a, y) and L
(a(−1))
d in the quasigroup (x, a(−1), y); so

it is a permutation too.

Lemma 9. The following statements are true:
1) permutation ϕb,a (b ∈ E, a ∈ E∗ − {0, 1}) has one and only one

�xed element b,
2) permutation ψb,a,d (b, d ∈ E, a ∈ E∗ − {0, 1}) is a �xed-point-

free permutation, if b 6= d,
3) the set of permutations

T = {ψb,a0,0 : b ∈ E, a0 is a �xed element from E∗ − {0, 1}}
is transitive on the set E.

Proof. 1) We have
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ϕb,a(b) = (b, a, b) = b.
Let's assume there exists an element x0 ∈ E, x0 6= b such that

ϕb,a(x0) = x0.
Then we obtain

(b, a, x0) = x0.
But it is evident that

(x0, a, x0) = x0.
As the operation (x, a, y) is a quasigroup and xo 6= b we obtain a
contradiction between the last two equalities. So

ϕb,a(x) 6= x

for any x ∈ E − {b}.

2) Let's assume there exists an element x0 ∈ E such that b 6= d
and

ψb,a,d(x0) = x0,
i.e.

(b, a, (d, a(−1), x0)) = x0.
Then we obtain with the help of (5)

(b, a(−1), x0) = (b, a(−1), (b, a, (d, a(−1), x0))) =

= (b, a(−1) ∗ a, (d, a(−1), x0)) = (b, 1, (d, a(−1), x0)) =

= (d, a(−1), x0),
i.e. b = d (because the operation (x, a(−1), y) is a quasigroup when
a 6= 0, 1). We obtain a contradiction; so if b 6= d, then ϕb,a,d(x) 6= x
for any x ∈ E.

3) Let a0 be an arbitrary element from E∗ − {0, 1}. We have for
an arbitrary �xed element c ∈ E:

ϕt,a0,0(c) = (t, a0, (0, a
(−1)
0 , c)) = (t, a0, a

(−1)
0 ∗ c) = R

(a0)

a
(−1)
0 ∗c(t),

where R
(a)
b denotes the right translation in the quasigroup (x, a, y)

with respect to the element b ∈ E. As the mapping R
(a0)

a
(−1)
0 ∗c is a

permutation on the set E, so for any c, d ∈ E there exists an element
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t0 ∈ E such that we have
ψt0,a0,0(c) = R

(a0)

a
(−1)
0 ∗c(t0) = d,

i.e. the set T is a transitive set of permutations on E.

Lemma 10. Let permutations ϕb,a and ψb,a,d where b, d ∈ E, a ∈
E∗−{0}), form a group G under the natural product of permutations.
Then G is a Frobenius group.

Proof is an easy corollary of Lemma 9.

Lemma 11. Let the set E be a �nite one. If the conditions of Lemma
10 take place, then the set of �xed-point-free permutations

T = {ψb,a0,0 : b ∈ E, is any �xed element from E∗ − {0, 1}}
with the identity permutation id = ψ0,a0,0 is a normal subgroup in the
Frobenius group G.

Proof. Let the conditions of Lemma hold. Then G is a �nite Frobenius
group of permutations of degree n, where n = |E|. It is easy to show
that the group G contains exactly n−1 �xed-point-free permutations
(see [4]). As the set T contains exactly n−1 di�erent �xed-point-free
permutations (see Lemma 9), so T contains all the �xed-point-free
permutations of group G.

Let's denote
Ha = Sta(G), a ∈ E.

As the set T is a transitive set of permutations on E, so T is a left
transversal in the group G to its subgroup Ha for any a ∈ E. So we
have

t−1
i tj 6∈ Ha ∀ i 6= j.

Then we obtain that t−1
i tj is a �xed-point-free permutation, i.e.

t−1
i tj = tk

for some element tk ∈ T , because the set T contains all the �xed-point-
free permutations of the group G. So all �xed-point-free permutations
of the group G with the identity permutation id form a group which
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is a normal subgroup of the group G.

By means of Lemmas 10 and 11 we obtain that there exist nor-
mal subgroups, consisting from �xed-point-free permutations and the
identity permutation, in the �nite Frobenius groups, which are groups
of cell permutations of the right S-system.

Further we will demonstrate one more method of de�nition of the
operations (x, a, y) by an arbitrary Frobenius group (that method is
di�erent from the method described in the part 3; moreover, that
method does not use the fact of existing a normal subgroup in the
Frobenius group and is independent for the cardinality of the set E.

Let G be an arbitrary Frobenius group of permutations on some
set E and 0, 1 be two distinct distinguished elements from E. As the
group G is transitive on the set E, then there exists a set of n permu-
tations P = {σx}x∈E such that σx(0) = x ∀ x ∈ E, and σ0 = id.
Let's de�ne the operation (x, a, y) as follows:

(x, 0, y) = x , (x, 1, y) = y ,

∀ a ∈ E∗, a 6= 0, 1, (x, a, y) = z ⇐⇒ z = α(y) ,

where α ∈ G, α(x) = x, β(1) = (σ−1
x ασx)(1) = a.

(9)

This de�nition is correct, because there exist an unique permutation
h = H0 = St0(G) satisfying the condition h(1) = a and so there exist
an unique permutation α ∈ G satisfying the condition (9).

Lemma 12. The operation (x, a, y) (de�ned by (9)) satis�es the fol-
lowing properties:
1) (0, a, 1) = a, (x, a, x) = x,
2) ∀ a, b ∈ E∗ : (x, a, (x, b, y)) = (x, c, y) for some c = c(a, b) ∈ E∗.

Proof. 1) We have

(0, a, 1) = u ⇐⇒




u = α(1)
α(0) = 0
β(1) = a

which implies σ = id, α = β, and in the consequence u = α(1) =
β(1) = a, i.e. (0, a, 1) = a.
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Similarly

(x, a, x) = u ⇔




u = α(x)
α(x) = x
β(1) = a

⇒ u = α(x) = x,

i.e. (x, a, x) = x.

2). If a = 0, then we have
(x, a, (x, b, y)) = x = (x, 0, y) ⇒ c = c(0, b) = 0.

If b = 0, then we have
(x, a, (x, b, y)) = (x, a, x) = x = (x, 0, y) ⇒ c = c(a, 0) = 0.

Let a, b 6= 0. Then we obtain

(x, a, (x, b, y)) = u ⇐⇒
{

(x, a, v) = u
(x, b, y) = v

⇐⇒

⇐⇒





α(x) = x, α(v) = u
σ−1

x ασx = ha, ha(1) = a
α1(x) = x, α1(y) = v

σ−1
x α1σx = hb, hb(1) = b

⇐⇒

⇐⇒





u = α(v) = αα1(y)
αα1(x) = α(x) = x
σ−1

x αα1σx = σ−1
x ασxσ

−1
x α1σx = hahb = hc

c = hc(1) = hahb(1) = ha(b)

⇐⇒





u = γ(y) = (c, x, y) = (x, ha(b), y)
γ = αα1

γ(x) = x
σ−1

x γσx = hc

i.e.
(x, a, (x, b, y)) = (x, c, y).

So we have demonstrated that it can de�ne a right S-system of idem-
potent operations (x, a, y) over an arbitrary Frobenius group G with
the help of equalities (9).

Moreover, it can de�ne the left S-system of idempotent operations
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[x, a, y] over an arbitrary Frobenius group G changing symmetrically
the de�nitive equalities (9).
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