Generalized Moufang G-loops

Alexander S. Basarab

Abstract

In this note some relations among generalized Moufang loops and G-loops are considered.

A loop $\mathcal{Q}(\cdot)$ is called:

- (a) a *G*-loop [1], if every loop which is isotopic to $\mathcal{Q}(\cdot)$ is also isomorphic to it;
- (b) a *generalized Moufang loop* [2], if one of the following identities holds:

$$x \cdot (yz \cdot x) = I(I^{-1}y \cdot I^{-1}x) \cdot zx, \qquad (x \cdot yz) \cdot x = xy \cdot I^{-1}(Ix \cdot Iz);$$

(c) an Osborn loop [2], if the identity

$$xy \cdot (\Theta_x z \cdot x) = (x \cdot yz) \cdot x$$

holds, where Θ_x is a permutation which depends on x;

(d) a *K*-loop [3], if the following identities hold:

 $(x \cdot yIx) \cdot xz = x \cdot yz$ and $(y \cdot x) \cdot ((I^{-1}xz) \cdot x) = yz \cdot x$, (1)

where $Ix = x^{-1}$ and $I^{-1}x = x^{-1}$;

¹⁹⁹¹ Mathematics Subject Classification: 20N05 Keywords: Moufang loop, Osborn loop, G-loop

(e) a *VD-loop*, if we have the equalities

$$(\cdot)_x = (\cdot)_x^{L_x^{-1}R_x}$$
 and $_x(\cdot) = (\cdot)^{R_x^{-1}L_x}$, (2)

which are true for any $x \in \mathcal{Q}$, where

$$(\cdot)_x = (\cdot)^{(L_x, 1, L_x)}, \qquad x(\cdot) = (\cdot)^{(1, R_x, R_x)}$$

Any K-loop (any VD-loop) is a G-loop and any VD-loop is an Osborn loop.

Theorem 1. A generalized Moufang loop $\mathcal{Q}(\cdot)$ is a K-loop if and only if $x^2 \in N$ for any $x \in \mathcal{Q}$.

Proof. For a generalized Moufang loop $\mathcal{Q}(\cdot)$ the property *WIP* is universal [2]. Therefore, by a result from [4], one has the autotopy $T = (R_y^{-1}L_z, R_x^{-1}L_y, L_z R_x^{-1})$, where $z = I^{-1}(y \cdot x)$. By identifying xand y in the autotopy T, one obtains

$$T_1 = (R_x^{-1} L_{I^{-1}(x \cdot x)}, R_x^{-1} L_x, L_{I^{-1}(x \cdot x)} R_x^{-1})$$

In any generalized Moufang loop $I^{-1}(x \cdot x) = I(x \cdot x)$ holds, hence T_1 provides the equality

$$R_x^{-1}L_{I(x\cdot x)}u \cdot R_x^{-1}L_xv = L_{I(x\cdot x)}R_x^{-1}(u \cdot v).$$
(3)

Let v = 1 in (3), then

$$R_x^{-1}L_{I(x\cdot x)} = L_{I(x\cdot x}R_x^{-1}.$$
(4)

Identity (4) implies $T_1 = (L_{I(x \cdot x)}R_x^{-1}, R_x^{-1}L_x, L_{I(x \cdot x}R_x^{-1}))$. Hence T_1^{-1} implies $L_x^{-1}R_x$ is a pseudoautomorphism with the right companion $\alpha_1 = R_x L_{I(x \cdot x)}^{-1} 1 = (x \cdot x) \cdot x$. Thus

$$(\cdot)_{x^2 \cdot x} = (\cdot)^{R_x^{-1} L_x} \tag{5}$$

In any generalized Moufang loop the equalities

$$I_x(\cdot) = (\cdot)_x \tag{6}$$

$$R_x L_{I^{-1}x} = L_x^{-1} R_x , \qquad L_x R_{I_x} = R_x^{-1} L_x$$
(7)

hold.

Let $x^2 \in N$, where N is the nucleus of the generalized Moufang loop $\mathcal{Q}(\cdot)$. Since $(\cdot)_{x^2} = (\cdot)$ (5) implies $(\cdot)_x = (\cdot)^{R_x^{-1}L_x}$, or, in other words,

$$T_2 = (R_x, L_x^{-1}R_x, R_x) = (R_x, R_x L_{I^{-1}x}, R_x)$$

(by (7)) is an autotopy, that yields $yx \cdot (I^{-1}xz \cdot x) = yz \cdot x$, which coincides with the second equality from (1). By using (6) in the equality $(\cdot)_x = (\cdot)^{R_x^{-1}L_x}$ we obtain $I_x(\cdot) = (\cdot)^{R_x^{-1}L_x}$, and consequently, have the autotopy

$$T_3 = (L_x^{-1}R_x, R_{Ix}L_x^{-1}R_x, R_{Ix}L_x^{-1}R_x) = (L_x^{-1}R_x, L_x^{-1}, L_x^{-1})$$

or

$$T_3^{-1} = (R_x^{-1}L_x L_x, L_x) = (L_x R_{Ix}, L_x, L_x),$$

hence $(x \cdot yI_x) \cdot xz = x \cdot yz$, meaning that the first equality from (1) is true. Thus, if in the generalized Moufang loop $\mathcal{Q}(\cdot)$, $x^2 \in N$ for any $x \in Q$, then $\mathcal{Q}(\cdot)$ is a K-loop.

Now, let the generalized Moufang loop $\mathcal{Q}(\cdot)$ be a K-loop, then the equality (5) and the equality $(\cdot)_x = (\cdot)^{R_x^{-1}L_x}$ are true and they imply $(\cdot)_{x^2 \cdot x} = (\cdot)_x$, or $(\cdot)_{x^2} = (\cdot)$, or $x^2 \in N$.

Theorem 2. A generalized Moufang loop $\mathcal{Q}(\cdot)$ is a VD-loop, if $x^4 \in N$ whichever $x \in \mathcal{Q}$.

Proof. If $\mathcal{Q}(\cdot)$ is a generalized Moufang loop, then (5) holds, so: $((\cdot)_{x^2 \cdot x})_x = ((\cdot)^{R_x^{-1}L_x})_x$ or $(\cdot)_{x^4} = (\cdot)^{R_x^{-1}L_x}$. Suppose $x^4 \in N$, then $(\cdot)_{x^4} = (\cdot)$, hence $(\cdot)^{R_x^{-1}L_x}_x = (\cdot)$, and $(\cdot)_x = (\cdot)^{L_x^{-1}R_x}$. The equalities $_{I_x}(\cdot) = (\cdot)_x = (\cdot)^{L_x^{-1}R_x}$ supply $_x(I_x(\cdot)) = _x((\cdot)^{L_x^{-1}R_x})$ or $(\cdot) = _x(\cdot)^{L_x^{-1}R_x}$. If in the generalized Moufang loop $\mathcal{Q}(\cdot)$ one has $x^4 \in N$ for every $x \in \mathcal{Q}$, then $\mathcal{Q}(\cdot)$ is a VD-loop. In each generalized Moufang loop the equality

$$(\cdot)_{x^4} = (\cdot)_x^{R_x^{-1}L_x} \tag{8}$$

holds. If the generalized Moufang loop is a VD-loop then (2) implies

$$(\cdot)_x^{R_x^{-1}L_x} = (\cdot) . (9)$$

(8) and (9) provide $(\cdot)_{x^4} = (\cdot)$, therefore $x^4 \in N$.

Theorem 3. Each VD-loop is an Osborn loop.

Proof. Let $\mathcal{Q}(\cdot)$ be a *VD*-loop, then the equalities (2) are true, that is $(\cdot)_x = (.)^{L_x^{-1}L_x}$. They imply the autotopies

$$S = (L_x R_x^{-1} L_x, R_x^{-1} L_x, L_x R_x^{-1} L_x)$$

and

$$S_1 = (L_x^{-1} R_x, R_x L_x^{-1} R_x, R_x L_x^{-1} R_x).$$

By multiplying the autotopies S and S_1 we obtain

$$SS_1 = (L_x, R_x^{-1} L_x R_x L_x^{-1} R_x, L_x R_x^{-1} L_x R_x L_x^{-1} R_x),$$

which carries out the equality

$$L_x u \cdot R_x^{-1} L_x R_x L_x^{-1} R_x v = L_x R_x^{-1} L_x R_x L_x^{-1} R_x (u \cdot v).$$
(10)

Let v = 1 in (10) (1 is the unit of the loop $\mathcal{Q}(\cdot)$), then

$$R_x L_x = L_x R_x^{-1} L_x R_x L_x^{-1} R_x \tag{11}$$

and

$$L_x^{-1} R_x L_x = R_x^{-1} L_x R_x L_x^{-1} R_x).$$
(12)

Applying (11) and (12) to (10), we obtain

$$L_x u \cdot (R_x^{-1} L_x^{-1} R_x L_x v \cdot x) = R_x L_x (u \cdot v) \quad \text{or} \quad xu \cdot \Theta_x vx = (x \cdot uv) \cdot x,$$

that is $\mathcal{Q}(\cdot)$ is an Osborn loop. \Box

Theorem 3 implies

Corollary 1. The three nuclei of each VD-loop $\mathcal{Q}(\cdot)$ coincide, i.e. $N_r = N_m = N_l = N$. Moreover, N is a normal subloop in $\mathcal{Q}(\cdot)$.

Proposition 1. A K-loop $\mathcal{Q}(\cdot)$ is a VD-loop if $x^2 \in N$ for any $x \in \mathcal{Q}$.

Proof. The following equalities are consequences of the definition of K-loops:

$$(\cdot)_x = (\cdot)^{R_x^{-1}L_x}$$
 and $_x(\cdot) = (\cdot)^{L_x^{-1}R_x}$

By means of the properties of the derived operations, one has

$$((\cdot)_x)_x = ((\cdot)^{R_x^{-1}L_x})_x$$
 and $_x(x(\cdot)) = _x((\cdot)^{L_x^{-1}R_x})$

or

$$(\cdot)_{x^2} = (\cdot)_x^{R_x^{-1}L_x}$$
 and $_{x^2}(\cdot) =_x (\cdot)^{L_x^{-1}R_x}$ (13)

If $x^2 \in N$ then

$$(\cdot)_{x^2} = (\cdot)$$
 and $_{x^2}(\cdot) = (\cdot)$. (14)

By using (14) in (13), we obtain $(\cdot) = (\cdot)_x^{R_x^{-1}L_x}$ and $(\cdot) = {}_x(\cdot)L_x^{-1}R_x$, or $(\cdot)_x = (\cdot)^{L_x^{-1}R_x}$ and ${}_x(\cdot) = (\cdot)^{R_x^{-1}L_x}$ however, this means $\mathcal{Q}(\cdot)$ is a *VD*-loop.

Proposition 2. A VD-loop $\mathcal{Q}(\cdot)$ is a K-loop if $x^2 \in N$ for any $x \in \mathcal{Q}$. The proof is analogous to that of Proposition 1.

References

- [1] V. D. Belousov: Foundations of the Theory of Quasigroups and Loops, (Russian), "Nauka", Moscow, 1967.
- [2] A. S. Basarab: A class of WIP-loops, (Russian), Mat. Issled. 2 (1967), 3 - 24.
- [3] A. S. Basarab: *K*-loops, Buletinul AS RM, Matematica 1(7) (1992), 28 - 33.
- [4] J. M. Osborn: Loops with weak inverse property, Pacific J. Math. 10 (1960), 295 - 304.

Department of Physics and Mathematics Tiraspol State University 5 Iablocikin str. Kishinau, 277050 MOLDOVA

Received August 20, 1995