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Menger algebras of terms induced by

transformations with restricted range

Sarawut Phuapong and Thodsaporn Kumduang

Abstract. In this paper, a special kind of n-ary terms of type τn, which are called T (n̄, Y )-full
terms, are introduced. They are derived by applying transformations on the set n̄ = {1, 2, . . . , n}
with restricted range. Under the superposition operation Sn, the algebra of such terms called the
clone of T (n̄, Y )-full terms is constructed. We prove that the superassociative law is satisfied in
the clone of T (n̄, Y )-full terms and the freeness is investigated using a generating set and a suitable
homomorphism. Based on the theory of hypervariety, we study T (n̄, Y )-full hypersubstitutions
which are maps taking all operation symbols to our obtained terms. These lead us to provide
the classes of T (n̄, Y )-full hyperidentities and T (n̄, Y )-full solid varieties. A connection between
identities in cloneT (n̄,Y )(τn) and T (n̄, Y )-full hyperidentities is established.

1. Introduction

It is commonly known that the idea of terms is one of fundamental tools in
study of universal algebra. It is also connect with various fields of science, for
instance, graph theory and automata theory. Normally, terms are formal expres-
sion defined from variables and operation symbols. Let X := {x1, x2, . . .} be a
countably infinite set of symbols called variables. We often refer to these variables
as letters to X as an alphabet, and also refer to the set Xn := {x1, x2, . . . , xn}
as an n-element alphabet. Let (fi)i∈I be an indexed set which is disjoint from
X. Each fi is called an ni-ary operation symbol, where 1 6 ni 6 n is a natural
number. Let τ be a function which assigns to every fi the number ni as its arity.
The sequence of the values of function τ , written as (ni)i∈I , is called a type. An
n-ary term of type τ is defined inductively as follows: (i) Every variable xj ∈ Xn

is an n-ary term of type τ . (ii) fi(t1, . . . , tni) is an n-ary term of type τ where
t1, . . . , tni are n-ary terms of type τ and fi is an ni-ary operation symbol. The set
of all n-ary terms of type τ , closed under finite number of applications of (ii), is

denoted by Wτ (Xn). The symbol Wτ (X) :=

∞⋃
n=1

Wτ (Xn) stands for the set of all

terms of type τ . See [13, 14, 15, 21, 22, 24] for example of current trands in the
study of terms.
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The set of all terms of type τ can be used as the universe of an algebra of type
τ . For every i ∈ I, an ni-ary operation f̄i : Wτ (X)ni −→Wτ (X) is defined by

f̄i (t1, . . . , tni) := fi (t1, . . . , tni) .

The algebra Fτ (X) := (Wτ (X); (f̄i)i∈I) is called the absolutely free algebra of
type τ over the set X.

There is another way to consider the operation on the set of terms. Now, we
recall the concept of superposition operation of terms. For each natural numbers
m,n > 1, the superposition operation is a many-sorted mapping

Snm : Wτ (Xn)× (Wτ (Xm))n →Wτ (Xm)

defined by

(i) Snm(xj , t1, . . . , tn) := tj , if xj ∈ Xn,

(ii) Snm(fi(s1, . . . , sni), t1, . . . , tn) :=fi(S
n
m(s1, t1, . . . , tn), . . . , Snm(sni , t1, . . . , tn)).

Then the many-sorted algebra can be defined by

clone τ := ((Wτ (Xn))n∈N+ ; (Snm)n,m∈N+ , (xi)i6n∈N+),

which is called the clone of all terms of type τ . For recent developments in this
way, see [3].

Let τn = (n, n, . . . , n) be a type consisting of the same values equal to n, i.e.
τn = (ni) with ni = n for all i ∈ I. The concept of full terms is used in [6] to study
the depth of terms and full hypersubstitutions, and solid varieties. The composed
full terms are derived by operation symbols and terms in which all input variables
occur. Thus the resulting subterms in each step of composition, content whole set
of the input variables, which can be permuted, only.

In 2004, Denecke and Jampachon [5] inductively defined n-ary full terms of type
τn, based on the full transformations (mappings) instead of the permutations, as
follows:

(i) fi(xα(1), . . . , xα(n)) is an n-ary full term of type τn if fi is an n-ary oper-
ation symbol and α ∈ Tn where Tn is the set of all full transformation on
{1, 2, . . . , n};

(ii) fi (t1, . . . , tn) is an n-ary full term of type τn if fi is an n-ary operation
symbol and t1, . . . , tn are n-ary full terms of type τn.

The set of all n-ary full terms of type τn, closed under finite application of (ii),
is denoted by WF

τn(Xn). If Tn is replaced by the submonoid {1n}, then WF
τn(Xn)

is denoted by WSF
τn (Xn) called the set of all strongly full terms of type τn [4].

Actually, there are many generalizations of full terms as in [4, 18, 19, 27, 28].
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Beginning with the notions of terms, we define T (n̄, Y )-full terms through
transformations with restricted range. The Menger algebea of T (n̄, Y )-full terms is
presented. In Section 3, we construct the monoid of T (n̄, Y )-full hypersubstitution
of type τn which consists of a mapping from the set of operation sysmbols to the set
of all T (n̄, Y )-full terms. These mappings preserve the arity of operation symbols
and the arity of T (n̄, Y )-full terms, together with one binary associative operation
and the identity element. Finally, the T (n̄, Y )-full solid varieties of type τn are
charaterized.

2. The algebra of T (n̄, Y )-full terms
The first aim of our main results is to propose the new concept of a specific term,
based on full transformation mappings and the original notions of terms. For this,
we recall the concept of the full transformations.

Let X be a nonempty set and let T (X) denote the semigroup of the full trans-
formations from X into itself under composition of mappings and let Y be a
nonempty subset of X. Then T (X,Y ) was introduced by Symons [26] to be the
set of all transformations from X to Y called the full transformation semigroup
with restricted range, that means

T (X,Y ) := {α ∈ T (X) | Xα ⊆ Y } .

Clearly, T (X,Y ) is a subsemigroup of T (X) and if X = Y then T (X,Y ) =
T (X). For more information about T (X,Y ), we refer to[1, 11, 25].

Let τn = (ni)i∈I be a type and let (fi)i∈I be an indexed set of operation symbols
of type τ . The full transformation semigroup Tn consists of the set of all maps
α : {1, 2, . . . , n} −→ {1, 2, . . . , n} and the usual composition of mappings. Indeed,
Tn is a monoid and identity map 1n acts as its identity. Let n̄ := {1, 2, . . . , n}.
For a fixed nonempty subset Y of n̄, it is well-known that the set

T (n̄, Y ) := {α ∈ Tn | Imα ⊆ Y } ∪ {1n}

is a submonoid of Tn.
Then we introduce the definition of n-ary T (n̄, Y )-full term of type τn.

Definition 2.1. Let fi be an n-ary operation symbol and α ∈ T (n̄, Y ). An n-ary
T (n̄, Y )-full term of type τn is defined in the following way:

(i) fi(xα(1), . . . , xα(n)) is an n-ary T (n̄, Y )-full term of type τn;

(ii) if t1, . . . , tn are n-ary T (n̄, Y )-terms of type τn, then fi (t1, . . . , tn) is an
n-ary T (n̄, Y )-full term of type τn.

Let WT (n̄,Y )
τn (Xn) be the set of all n-ary T (n̄, Y )-full terms of type τn.

Now we give an example of Definition 2.1.
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Example 2.2. Let τn = (n) be a type with one operation symbol f and let us
consider the following examples:

(i) Let n = 2, and Y = {2}, then
f(x1, x2), f(x2, x2), f(f1(x2, x2), f(x2, x2)) ∈WT (2̄,Y )

τ2 (X2).

(ii) Let n = 3, and Y = {1, 3}, then
f(x1,x2, x3),f(x3, x3, x3),f(f2(x3, x3, x1),f(x1, x1, x1),f(x1,x3, x3))∈WT (3̄,Y )

τ3 (X3).

(iii) Let n = 4, and Y = {2, 3, 4}, then
f(x1, x2, x3, x4), f(x2, x2, x4, x2), f(x2, x4, x2, x4) ∈WT (4̄,Y )

τ4 (X4).

Let us note that if Y = n̄ then the set WT (n̄,Y )
τn (Xn) of all T (n̄, Y )-full terms

is equal to the set WF
τn(Xn) of all n-ary full terms of type τn, as defined in [5].

This means that T (n̄, Y )-full terms of type τn are natural generalization of the full
terms of type τn, discussed in [5] and [6]. By the definition of T (n̄, Y )-full terms of
type τn we have that

(
W

T (n̄,Y )
τn (Xn); (f̄i)i∈I

)
is a subalgebra of

(
Wτ (X); (f̄i)i∈I

)
.

Normally, terms have many measures of their complexity, see [23]. As a result,
there is a possibility to measure a complexity of T (n̄, Y )-full terms. The depth
of a T (n̄, Y )-full term t, denoted by Depth(t), is the longest distance from a first
operation symbol that appears in a term (from the left) to variables. It can be
inductively defined by

(i) Depth(t) = 1 if t = fi(xα(1), . . . , xα(n)) and α ∈ T (n̄, Y );

(ii) Depth(t) = 1 +max{Depth(tj) | 1 6 j 6 n} if t = fi(t1, . . . , tn).

On the set WT (n̄,Y )
τn (Xn), we define an (n+ 1)-ary operation Sn,

Sn :
(
WT (n̄,Y )
τn (Xn)

)n+1

−→WT (n̄,Y )
τn (Xn)

for all t1, . . . , tn, s1, . . . , sn ∈WT (n̄,Y )
τn (Xn) by

(i) Sn
(
fi
(
xα(1), . . . , xα(n)

)
, t1, . . . , tn

)
:= fi

(
tα(1), . . . , tα(n)

)
;

(ii) Sn(fi(t1, . . . , tn) , s1, . . . , sn) :=fi (Sn(t1, s1, . . . , sn) , . . . , Sn(tn, s1, . . . , sn)).

Then we form the algebra

cloneT (n̄,Y )(τn) :=
(
W

T (n̄,Y )
τn (Xn), Sn

)
which is called the clone of all T (n̄, Y )-full terms of type τn. Theorem 2.3, pre-
sented below, shows that the algebra

(
W

T (n̄,Y )
τn (Xn), Sn

)
satisfies the superasso-

ciative law (SASS):

Sn(X0, S
n(Y1, Z1, . . . , Zn), . . . , Sn(Yn, Z1, . . . , Zn))

≈ Sn(Sn(X0, Y1, . . . , Yn), Z1, . . . , Zn) (1)
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where Sn is an (n + 1)-ary operation symbol and X0, Yj , Zj are variables for all
1 6 j 6 n.

Next, we shall show that the superassociative law is satisfied in the clone of all
T (n̄, Y )-full terms.

Theorem 2.3.The algebra cloneT (n̄,Y )(τn) satisfies the superassociative law.

Proof. We give a proof by induction on the depth of an n-ary T (n̄, Y )-full term
t which is substituted for X0 from (1). If we substitute for X0 from (1) by a
T (n̄, Y )-full term t = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ), and Depth(t) = 1,
then we have

Sn(fi(xα(1), . . . , xα(n)), S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= fi(S
n(xα(1), S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)), . . . ,

Sn(xα(n), S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= fi(S
n(tα(1), s1, . . . , sn), . . . , Sn(tα(n), s1, . . . , sn))

= Sn(fi(tα(1), . . . , tα(n)), s1, . . . , sn)

= Sn(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn), s1, . . . , sn).

If we substitute for X0 from (1) by a T (n̄, Y )-full term t = fi(r1, . . . , rn) where
r1, . . . , rn ∈WT (n̄,Y )

τn (Xn) and assume that

Sn(rk, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)) = Sn(Sn(rk, t1, . . . , tn), s1, . . . , sn)

for all 1 6 k 6 n, and max16k6nDepth(rk) = m, then Depth(t) = m+ 1 and we
have

Sn(fi(r1, . . . , rn), Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= fi(S
n(r1, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)), . . . ,

Sn(rn, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= fi (Sn (Sn(r1, t1, . . . , tn), s1, . . . , sn) , . . . , (Sn(rn, t1, . . . , tn), s1, . . . , sn))

= Sn(fi(S
n(r1, t1, . . . , tn), . . . , Sni(rn, t1, . . . , tn)), s1, . . . , sn)

= Sn(Sn(fi(r1, . . . , rn), t1, . . . , tn), s1, . . . , sn). �

An algebraM := (M,Sn) of type τ = (n+1) is called a Menger algebra of rank
n ifM satisfies the condition (SASS) [2]. It follows immediately from Theorem 2.3
that cloneT (n̄,Y )(τn) is a Menger algebra of rank n. For basics and some advanced
developments of Menger algebras can be found in the works of W.A. Dudek and
V.S. Trokhimenko, for example, see [8, 9, 10].

It is clear that cloneT (n̄,Y )(τn) is generated by

F
W
T (n̄,Y )
τn (Xn)

:=
{
fi
(
xα(1), . . . , xα(n)

)
| i ∈ I, α ∈ T (n̄, Y )

}
.
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Let V T (n̄,Y ) be the variety of type τ = (n+1) generated by the superassociative
law (SASS). Now let FV T (n̄,Y )({Yl | l ∈ J}) be the free algebra with respect to
V T (n̄,Y ), freely generated by an alphabet {Yl | l ∈ J} where J = {(i, α) | i ∈
I , α ∈ T (n̄, Y )}. The operation of FV T (n̄,Y )({Yl | l ∈ J}) is denoted by S̃n. Next,
we are going to prove that the clone of all T (n̄, Y )-full terms is a free algebra with
respect to the variety V T (n̄,Y ).

Theorem 2.4.The algebra cloneT (n̄,Y )(τn) is isomorphic to FV T (n̄,Y )({Yl | l ∈ J})
and therefore it is free with respect to the variety V T (n̄,Y ), and freely generated by
the set

{fi(xα(1), . . . , xα(n)) | i ∈ I, α ∈ T (n̄, Y )}.

Proof. We define the mapping ϕ : W
T (n̄,Y )
τn (Xn) −→ FV T (n̄,Y )({Yl | l ∈ J}) induc-

tively as follows:

(i) ϕ(fi(xα(1), . . . , xα(n)) = y(i,α);

(ii) ϕ(fi(tα(1), . . . , tα(n))) = S̃n(y(i,α), ϕ(t1), . . . , ϕ(tn)).

Since ϕ maps the generating system of cloneT (n̄,Y )(τn) onto the generating
system of FV T (n̄,Y )({Yl | l ∈ J}), it is surjective. We prove the homomorphism
property

ϕ(Sn(t0, t1, . . . , tn)) = S̃n(ϕ(t0), ϕ(t1), . . . , ϕ(tn))

by induction on the depth of an n-ary T (n̄, Y )-full term t0.If t0 =fi(xα(1), . . . , xα(n))
where α ∈ T (n̄, Y ), and Depth(t) = 1, then we have

ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn))
= ϕ(fi(tα(1), . . . , tα(n)))

= S̃n(y(i,α), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(xα(1), . . . , xα(n))), ϕ(t1), . . . , ϕ(tn)).

If t0 = fi(r1, . . . , rn) and assume that

ϕ(Sn(rk, t1, . . . , tn)) = S̃n(ϕ(rk), ϕ(t1), . . . , ϕ(tn))

for all 1 6 k ≤ n and max16k6nDepth(rk) = m, then Depth(t) = m + 1 and we
have

ϕ(Sn(fi(r1, . . . , rn), t1, . . . , tn))
= ϕ(fi(S

n(r1, t1, . . . , tn), . . . , Sn(rn, t1, . . . , tn)))
= S̃n(y(i,1n), ϕ(Sn(r1, t1, . . . , tn)), . . . , ϕ(Sn(rn, t1, . . . , tn)))

= S̃n(y(i,1n), S̃
n(ϕ(r1), ϕ(t1), . . . , ϕ(tn)), . . . ,

S̃n(ϕ(rn), ϕ(t1), . . . , ϕ(tn)))
= S̃n(S̃(y(i,1n), ϕ(r1), . . . , ϕ(rn)), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(r1, . . . , rn)), ϕ(t1), . . . , ϕ(tn)).

Thus ϕ is a homomorphism. The mapping ϕ is clearly bijective since the set
{y(i,α) | i ∈ I, α ∈ T (n̄, Y )} is free independent. Therefore we have
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y(i,α) = y(j,β) =⇒ (i, α) = (j, β) =⇒ i = j, α = β.

So fi(xα1), . . . , xα(n)) = fj(xβ(1), . . . , xβ(n)). Thus ϕ is a bijection between the
generating sets of cloneT (n̄,Y )(τn) and FV T (n̄,Y )({Yl | l ∈ J}) and therefore ϕ is an
isomorphism.

3. T (n̄, Y )-full hypersubstitutions
The concept of a hypersubstitution is the main tool used to study hyperidentities
and hypervarieties, see, for instance, in [7, 16, 17, 20] for more background. In
this section, the monoid of hypersubstitution will be studied. First, we recall the
definition and notation of hypersubstitutions.

A hypersubstitution of type τ is a mapping σ : {fi | i ∈ I} −→ Wτ (X) which
maps each operation symbol fi to an ni-ary term σ(fi) of type τ . Any hyper-
substitution σ : {fi | i ∈ I} −→ Wτ (X) can be uniquely extended to a mapping
σ̂ : Wτ (X) −→Wτ (X) as follows:

(i) σ̂[t] := t if t ∈ X ; and

(ii) σ̂[t] := Sni (σ(fi), σ̂[t1], . . . , σ̂[tni ]) if t = fi(t1, . . . , tni) ∈Wτ (Xni).

The set Hyp(τ) of all hypersubstitutions of type τ forms a monoid under the
binary operation ◦h, defined by

σ1 ◦h σ2 := σ̂1 ◦ σ2

where ◦ denotes the usual composition of mappings.
The identity is σid : {fi | i ∈ I} −→Wτ (X) such that σid(fi) = fi(x1, ..., xni).
Now, we call mapping

σ : {fi | i ∈ I} −→W
T (n̄,Y )
τn (Xn).

T (n̄, Y )-full hypersubstitution of type τn.
For a T (n̄, Y )-full term t we need the T (n̄, Y )-full term tβ derived from t by

replacement a variable xα(j) in t by a variable xβ(α(j)) for a mapping β ∈ T (n̄, Y ).
This can be defined as follows.

Let t, t1, . . . , tn ∈ W
T (n̄,Y )
τn (Xn) and α, β ∈ T (n̄, Y ). Then we define the

T (n̄, Y )-full term tβ in the following steps:

(i) If t = fi(xα(1), . . . , xα(n)), then tβ := fi(xβα(1), . . . , xβα(n)).

(ii) If t = fi(t1, . . . , tn), then tβ := fi((t1)β , . . . , (tn)β).

It is observed that if t is an T (n̄, Y )-full term of type τn, then tβ is an T (n̄, Y )-
full term of type τn for all β ∈ T (n̄, Y ). Then an T (n̄, Y )-full hypersubstitution
σ : {fi | i ∈ I} −→W

T (n̄,Y )
τn (Xn) of type τn can be extended to a mapping

σ̂ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn)

as follows:
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(i) σ̂[fi(xα(1), . . . , xα(n))] := (σ(fi))α,

(ii) σ̂[fi(t1, . . . , tn)] := Sn (σ(fi), σ̂[t1], . . . , σ̂[tni ]).

The set of all T (n̄, Y )-full hypersubstitutions of type τn will be denoted by
HypT (n̄,Y )(τn). It is easy to see that

(
HypT (n̄,Y )(τn); ◦h, σid

)
is a submonoid of

(Hyp(τn); ◦h, σid).
The following lemma shows the property of a term tα and the extension σ̂.

Lemma 3.1. Let t, t1, ..., tn ∈WT (n̄,Y )
τn (Xn). Then

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn(tα, σ̂[t1], . . . , σ̂[tn])

for all α ∈ T (n̄, Y ).

Proof. We begin with the case when t = fi(xα(1), xα(2), . . . , xα(n)), which is the
first claim of the first step of the induction Depth(t) = 1. In fact, we have
Sn(fi(x1, x2, . . . , xn), σ̂[tα(1)], . . . , σ̂[tα(n)]) = fi(σ̂[tα(1)], σ̂[tα(2)], . . . , σ̂[tα(n)]) =
Sn(fi(xα(1), . . . , xα(n)), σ̂[t1], . . . , σ̂[tn]) = Sn(fi(x1, x2, . . . , xn)α, σ̂[t1], . . . , σ̂[tn]).

If t = fi(s1, . . . , sn) and assume that

Sn(sk, σ̂[tα(1)], . . . , σ̂[tα(n)]) = Sn((sk)αi , σ̂[tα(1)], . . . , σ̂[tα(n)])

for all 1 6 k 6 n and α ∈ T (n̄, Y ) then

Sn(t, σ̂[tα(1)], . . . , σ̂[tα(n)])
= Sn(fi(s1, . . . , sn), σ̂[tα(1)], . . . , σ̂[tα(n)])
= fi(S

n(s1, σ̂[tα(1)], . . . , σ̂[tα(n)]), . . . , S
n(sn, σ̂[tα(1)], . . . , σ̂[tα(n)]))

= fi(S
n((s1)α, σ̂[t1], . . . , σ̂[tn]), . . . , Sn((sn)α, σ̂[t1], . . . , σ̂[tn]))

= Sn(fi((s1)α, . . . , (sn)α), σ̂[t1], . . . , σ̂[tn])
= Sn(tα, σ̂[t1], . . . , σ̂[tn]).

Using Lemma 3.1 we show that the extension σ̂ of each T (n̄, Y )-full hypersub-
stitution σ preserves the operation Sn on the set WT (n̄,Y )

τn (Xn).

Theorem 3.2. For σ ∈ HypT (n̄,Y )(τn), the extension

σ̂ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn)

is an endomorphism on the algebra cloneT (n̄,Y )(τn).

Proof. It is clear that σ̂ : W
T (n̄,Y )
τn (Xn) −→ W

T (n̄,Y )
τn (Xn). Let t0, t1, . . . , tn ∈

W
T (n̄,Y )
τn (Xn). We will show by induction on the depth of t0 that

σ̂[Sn(t0, t1, . . . , tn)] = Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

If t0 = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ), and Depth(t) = 1, then we have

σ̂[Sn(t0, t1, . . . , tn)] = σ̂[Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn)]
= σ̂[fi(tα1), . . . , tα(n))]
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= Sn(σ(fi), σ̂[tα(1)], . . . , σ̂[tα(n)])
= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

If t0 = fi(r1, . . . , rn) and we assume that

σ̂[Sn(rk, t1, . . . , tn)] = Sn(σ̂[rk], σ̂[t1], . . . , σ̂[tn])

for all 1 6 k 6 n and max16k6nDepth(rk) = m, then Depth(t) = m + 1 and we
have

σ̂[Sn(t0, t1, . . . , tn)]
= σ̂[Sn(fi(r1, . . . , rn), t1, . . . , tn)]
= σ̂[fi(S

n(r1, t1, . . . , tn), . . . , Sni(rn, t1, . . . , tn))]
= Sn(σ(fi), σ̂[Sn(r1, t1, . . . , tn)], . . . , σ̂[Sn(rni , t1, . . . , tn)])
= Sn(σ(fi), S

n(σ̂[r1], σ̂[t1], . . . , σ̂[tn]), . . . , Sn(σ̂[rn], σ̂[t1], . . . , σ̂[tn]))
= Sn(Sn(σ(fi), σ̂[r1], . . . , σ̂[rn]), σ̂[t1], . . . , σ̂[tn])
= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

We complete this section by studying the connection between T (n̄, Y )-full terms
and the extension of a mapping which maps fundamental term to any T (n̄, Y )-full
terms.

As mentioned, the algebra cloneT (n̄,Y )(τn) is generated by the set

F
W
T (n̄,Y )
τn (Xn)

:=
{
fi
(
xα(1), . . . , xα(n)

)
| i ∈ I, α ∈ T (n̄, Y )

}
.

Thus, any mapping
η : F

W
T (n̄,Y )
τn (Xn)

−→W
T (n̄,Y )
τn (Xn)

called T (n̄, Y )-full clone substitution, can be uniquely extended to endomorphism

η̄ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn).

Let SubstT (n̄,Y )(τn) be the set of all T (n̄, Y )-full clone substitutions. On the
set SubstT (n̄,Y )(τn), a binary operation � can be defined by

η1 � η2 := η̄1 ◦ η2

where ◦ denotes the usual composition of mappings. Furthermore, the identity
mapping with respect to � is denoted by idF

W
T (n̄,Y )
τn (Xn)

.

Then clearly,
(
SubstT (n̄,Y )(τ);�, idF

W
T (n̄,Y )
τn (Xn)

)
forms a monoid.

Consider σ ∈ HypT (n̄,Y )(τn) and by Theorem 3.2,

σ̂ : W
T (n̄,Y )
τn (Xn) −→W

T (n̄,Y )
τn (Xn)

is an endomorphism. Since F
W
T (n̄,Y )
τn (Xn)

generates cloneT (n̄,Y )(τn), σ̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

is an T (n̄, Y )-full clone substitution with

σ̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

= σ̂.
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Define a mapping ψ : HypT (n̄,Y )(τn) −→ SubstT (n̄,Y )(τn) by

ψ(σ) = σ̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

.

We have that ψ is a homomorphism. In fact: Let σ1, σ2 ∈ HypT (n̄,Y )(τn). Then

ψ(σ1 ◦h σ2) = (σ1 ◦h σ2)̂
∣∣
F
W
T (n̄,Y )
τn (Xn)

= (σ̂1 ◦ σ̂2)
∣∣
F
W
T (n̄,Y )
τn (Xn)

= σ̂1

∣∣
F
W
T (n̄,Y )
τn (Xn)

◦ σ̂2

∣∣
F
W
T (n̄,Y )
τn (Xn)

= ψ(σ1) ◦ ψ(σ2)

= ψ(σ1)� ψ(σ2).

Clearly, ψ is an injection. Hence we have proved, the following corollary.

Corollary 3.3. The monoid
(
HypT (n̄,Y )(τn); ◦h, σid

)
can be embedded into

(SubstT (n̄,Y )(τn);�, idF
W
T (n̄,Y )
τn (Xn)

).

4. T (n̄, Y )-full hyperidentities and clone identities
In this section we examine the relationship between a variety V of type τn and the
identity in the cloneT (n̄,Y )(τn).

Let V be a variety of type τn and let IdV be the set of all identities of V . Let
IdT (n̄,Y )V be the set of all s ≈ t of V such that s and t are both T (n̄, Y )-full term
of type τn; that is

IdT (n̄,Y )V :=
(
W

T (n̄,Y )
τn (Xn)

)2

∩ IdV.

It is well-known that IdV is a congruence on the free algebra Fτ (X). However, in
general this is not true for IdT (n̄,Y )V . The following theorem shows that IdT (n̄,Y )V
is a congruence on cloneT (n̄,Y )(τn).

Theorem 4.1. Let V be a variety of type τn. Then IdT (n̄,Y )V is a congruence on
the algebra cloneT (n̄,Y )(τn).

Proof. We will prove that if t ≈ r, tk ≈ rk ∈ IdT (n̄,Y )V, k = 1, 2, . . . , n,
then Sn(t, t1, . . . , tn) ≈ Sn(r, r1, . . . , rn) ∈ IdT (n̄,Y )V . Firstly, we give a proof
by induction on the depth of a term t ∈ W

T (n̄,Y )
τn (Xn) that for every i ∈ I

from tk ≈ rk ∈ IdT (n̄,Y )V, k = 1, 2, . . . , n, there follows Sn(t, t1, . . . , tn) ≈
Sn(t, r1, . . . , rn) ∈ IdT (n̄,Y )V . If t = fi(xα(1), . . . , xα(n)), where α ∈ T (n̄, Y ),
and Depth(t) = 1, then we have

Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) = fi(tα(1), . . . , tα(n))

≈ fi(rα(1), . . . , rα(n)) = ψ(σ1) ◦ ψ(σ2)

= Sn(fi(xα(1), . . . , xα(n)), r1, . . . , rn) ∈ IdT (n̄,Y )V,

since IdV is compatible with the operation fi of the absolutely free algebra Fτ (X)
and by the definition of T (n̄, Y )-full terms.
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If t = fi(l1, . . . , ln) ∈WT (n̄,Y )
τn (Xn) and assume that

Sn(lk, t1, ..., tn) ≈ Sn(lk, r1, ..., rn) ∈ IdT (n̄,Y )V.

for all 1 6 k 6 n and max16k6nDepth(rk) = m, then Depth(t) = m + 1 and we
obtain

Sn(fi(l1, . . . , ln), t1, . . . , tn) = fi(S
n(l1, t1, . . . , tn), . . . , Sn(ln, t1, . . . , tn))

≈ fi(Sn(l1, r1, . . . , rn), . . . , Sni(ln, r1, . . . , rn))

= Sn(fi(l1, . . . , ln), r1, . . . , rn) ∈ IdT (n̄,Y )V.

This means
Sn(t, t1, . . . , tn) ≈ Sn(t, r1, . . . , rn) ∈ IdT (n̄,Y )V.

This is a consequence of the fact that IdV is a fully invariant congruence on the
absolutely free algebra Fτ (X). Assume now that t ≈ r, tk ≈ rk ∈ IdT (n̄,Y )V .
Then

Sn(t, t1, . . . , tn) ≈ Sn(r, t1, . . . , tn) ≈ Sn(r, r1, . . . , rn) ∈ IdT (n̄,Y )V. �

By using the concepts of T (n̄, Y )-full hypersubstitution as we presented in
Section 3. We shall define T (n̄, Y )-full hyperidentities in a variety of typer τn.

Let V be a variety of type τn. An identity s ≈ t ∈ IdT (n̄,Y )V is called a
T (n̄, Y )-full hyperidentity of V if σ̂[s] ≈ σ̂[t] ∈ IdV for all σ ∈ HypT (n̄,Y )(τn).
Moreover, the variety V is called T (n̄, Y )-full solid if the following holds:

∀s ≈ t ∈ IdT (n̄,Y )V ∀σ ∈ HypT (n̄,Y )(τn) σ̂[s] ≈ σ̂[t] ∈ IdV.

Next theorem characterizes the T (n̄, Y )-full solid variety.

Theorem 4.2. Let V be a variety of type τn. If IdT (n̄,Y )V is a fully invariant
congruence on cloneT (n̄,Y )(τn), then V is T (n̄, Y )-full solid.

Proof. Assume that IdT (n̄,Y )V is a fully invariant congruence on cloneT (n̄,Y )(τn).
Let s ≈ t ∈ IdT (n̄,Y )V and σ ∈ HypT (n̄,Y )(τn). By Theorem 3.2, σ̂ is an endo-
morphism of cloneT (n̄,Y )(τn). Hence σ̂[s] ≈ σ̂[t] ∈ IdT (n̄,Y )V , which shows that V
is T (n̄, Y )-full solid.

For a variety V of type τn, IdT (n̄,Y )V is a congruence on cloneT (n̄,Y )(τn) by
Theorem 4.1. We can form the quotient algebra

cloneT (n̄,Y )(V ) := cloneT (n̄,Y )(τn)/IdT (n̄,Y )V.

This quotient algebra belongs to the class of a Menger algebra of rank n. Note
that we have a natural homomorphism

natIdT (n̄,Y )V : cloneT (n̄,Y )(τn) −→ cloneT (n̄,Y )(V )
such that

natIdT (n̄,Y )V (t) = [t]IdT (n̄,Y )V .

Finally, we prove the following connection between T (n̄, Y )-full hyperidentities
of a variety V and clone identities.
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Theorem 4.3. Let V be a variety of type τn. If s ≈ t ∈ IdT (n̄,Y )V is an identity
in cloneT (n̄,Y )(V ), then s ≈ t is T (n̄, Y )-full hyperidentity of V .

Proof. Assume that s ≈ t ∈ IdT (n̄,Y )V is an identity in cloneT (n̄,Y )(V ). Let σ ∈
HypT (n̄,Y )(τn). Then σ̂ : cloneT (n̄,Y )(τn) −→ cloneT (n̄,Y )(τn) is an endomorphism
by Theorem 3.2. Thus

natIdT (n̄,Y )V ◦ σ̂ : cloneT (n̄,Y )(τn) −→ cloneT (n̄,Y )(V )

is a homomorphism. By assumption,

(natIdT (n̄,Y )V ◦ σ̂) (s) = (natIdT (n̄,Y )V ◦ σ̂) (t).

That is
natIdT (n̄,Y )V (σ̂[s]) = natIdT (n̄,Y )V (σ̂[t]).

Thus
[σ̂[s]]IdT (n̄,Y )V = [σ̂[t]]IdT (n̄,Y )V ,

and hence
σ̂[s] ≈ σ̂[t] ∈ IdT (n̄,Y )V.

Therefore, s ≈ t is a T (n̄, Y )-full hyperidentity of V .

5. Open Problems
Finally, we give three problems and suggestions for the future research in this area.

(1) Determine the semigroup properties of the monoid
(
HypT (n̄,Y )(τn); ◦h, σid

)
.

Find the order of its elements for the particular type. Describe the idempo-
tency and several kinds of regularity of the T (n̄, Y )-full hypersubstitutions.

(2) Use some difference definions of transformation semigroup, for instance trans-
formations with invariant subset to define new generalizations of full terms.
Study the connection between the different kinds of full terms.

(3) Based on [12], define the set of all formulas induced by T (n̄, Y )-full terms
and study this set.
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